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第 1章

はじめに

本稿は著者が慶應義塾大学で行なってきた講義録をまとめたものである．一般教育科目としての「論理学」のテキス

トとして利用されることを意図している．内容的には，標準的な命題論理・述語論理の構文論と意味論に加えて，多値

論理や直観論理等の非標準的な論理を系統的に扱っているのが一つの特徴と言える．

『不思議の国のアリス』の著者ルイス・キャロルは，又の名をチャールズ・Ｌ・ドジソンという，19世紀後半のイギ
リスの論理学者でもあった．彼は著書『記号論理学』というテキストの冒頭で，新たに論理学を学ぼうとする読者に対

して，いくつかの従うべき規則を提案している．このルイス・キャロルの規則は，今日でも有益なものだと思われるの

で，ここで簡単に彼の規則を紹介し，さらに少し解説を加えておこう．

[規則 1] Begin at the beginning. つまり「始めから始めよ」である．
時々，小説を読むのに，どんな話の結末かを確かめてから，読みはじめる，というような人を見かける．「ああ，ハッ

ピーエンドなんだ」とか，「こいつが真犯人なのか」とか前もって確認してから，安心して小説を読み始める，というタ

イプの人がいる．小説の場合はそれも許されるかもしれないが，科学的な本，特に論理学の本では，そのような読み方

は不可能である．一段一段，概念を積み上げていくのが論理的議論の特徴であるので，途中をスキップして読むと意味

が理解できなくなる．だから，論理学の本をはじめから読む前に，中身をチラッと見てみようなどと企んで途中のペー

ジを開いてみても，結局「何が書いてあるのだか分からない．どうにもこの本は難しすぎて自分の手に負えそうもな

い．」と悲観的になるのが常である．

[規則 2] 「完全にその章が理解できるまで，次の章に読み進むな．」
どんな大天才でも，途中で分からなくなったまま先に進んでは，論理学や数学等の本は理解することはできないもの

である．それが論理的議論の特徴である．大天才でもそうなのだから，あなたがもし単なる秀才程度なら，なおさらそ

うなのである．だが逆に，各ステップを一段一段理解していけば，最初には夢にも思っていなかったような高い見晴し

のよい地点まで普通の人間ならだれでも到達できるのも，また論理学の特徴なのだ，ということを忘れないでおいてほ

しい．

[規則 3] 分からない部分に出くわしたら，そこをもう一度読んでみること．それでも分からなかったら，もう一度読み
直してみること．もし，三度読んでも分からなかったら，あなたの頭が疲れている可能性が強いから，そこで読むのを

やめて，その日はほかのことをした方がよい．そして，ゆっくり休んでから次の日に読み直してみると，「なんだ，簡

単なことじゃないか」ということになる可能性が強いのである．

次の規則は私が最も気に入っている規則である．

[規則 4] できれば，論理学が得意そうな友達をみつけて，いっしょに読むとよい．そして，難しいところを話し合いな
がら読み進めるとよい．話すことは，問題解決の最大の方策である．

ところで，以上のドジソンの 4つの規則にもう一つ私が加えるとすると，それは次のような規則であろう．
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[規則 5] 体を使って練習を充分行なうこと．即ち，頭だけを使って論理学を理解しようなどとは思わず，練習問題を実
際に紙に書いて解いてみること，である．論理学のような知的な学問分野の習得は，純粋に頭だけを使ってなされるの

であり，体を動かす必要はない，等と誤って考えられがちだが，実は論理学のような知的学問の習得は，手を動かして

練習問題をくり返し解いていくことにより体で習得していく方が近道なのである．それは，運動選手の練習や，楽器の

演奏家の練習や，語学学習者の練習がそうであるのとまったく同様なのである．

以上の 5つの規則を守って読み進めて頂きたい．本書をとおして論理学の持つ知的な楽しさの一端でも読者に伝える
ことができれば，著者にとってこの上ない喜びである．
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第 2章

論理学とは何か

論理学は，思考の道筋を「真理 (Truth)」という概念を用いて説明する学問である．そこでは，真理と真理との関係
が問題とされる．この点で論理学は，他の学問とは異なる．この違いは，研究対象の違いである．例えば，物理学は物

理についての真理を，数学は数についての真理を探究する．これに対して，論理学は真理そのものを研究対象として

いる．つまり，「· · ·が真であるならば ～ は真である」というような真理関係とはいかなるものかを探究しているので
ある．

論理学の探究の一つの方法として真理表 (truth table) が用いられる*1．論理学では，この方法によって “and”
“not”の真理関係が次のように理解される．

A not A
真 偽
偽 真

A B A and B
真 真 真
真 偽 偽
偽 真 偽
偽 偽 偽

この表で，「Aが真であるならば not Aは偽である」「Aと B が共に真であるならば，A and B は真である」等の真理

関係が表現されている．

論理学では，and，not，or，if . . . , then . . .などの真理関係を問題とする．これらの語の意味は，真理表によって与

えられる．逆の言い方をすれば，真理表を与えることによって，我々は，and，not，or，if . . . , then . . .の使い方が理

解できるのである．

我々がここで定義したいのは，記号論理学である．これは，記号を用いて真偽を表現するものである．そこで用いら

れる真理関係は，我々の通常の英語とは独立に与えられるのが普通である．これは我々が，今，人工言語を定義しよう

としているからである．それゆえ，混乱を防ぐため，次のような人工言語特有の記号を用いることにする．

∧ , ¬ , ∨ , →

これらの記号は，左からそれぞれ and，not，or，if . . . thenと呼ばれ，真理表が与えられるまでは意味がない．“∧”
と “¬”は，我々が上で真理表によって意味を与えた andと notにあたる．(その他の記号については，まだその真理表
が与えられていない．しかし，ここでは，すでにその意味があたえられているものとし，説明を続ける．) 記号論理学

*1 これは，ウィトゲンシュタインによって導入された．
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は，上にあげたような記号の他に，A, B, . . .のような記号を用いる．ここで A, B は真偽がいえるような文である．そ

して，複雑な文がこれらの記号によって表現され，その真偽が考えられるのである．

例えば，次のような哲学科の必修科目の表があるとする．

基礎科目 選択科目 I 選択科目 II

論理学入門 現代論理学 特殊講義 V
哲学史 I 科学の哲学 哲学研究会

哲学史 II 歴史の哲学 　

ここで，履修方法として「基礎科目，選択科目 I，選択科目 IIのそれぞれから少なくとも一つの授業を履修しなければ
ならない」とする．するとこの履修規則は，次のように表現される．

1. (論理学入門が必要である ∨哲学史 Iが必要である ∨哲学史 IIが必要である)
∧(現代論理学が必要である ∨科学の哲学が必要である ∨歴史の哲学が必要である)
∧(特殊講義 Vが必要である ∨哲学研究会が必要である)

論理学の興味は，真理にある．では，1の表現の真理はいかなるものであるのか．論理学では，この種の表現の真理
は偶然的真理といわれる．と言うのは，この履修規則は，ある特定の大学 (慶応)において，そしてある特定の年度に
ついて真とされているからである．同じような例として，“今日晴れている→テニスをする” がある．というのは，あ
る人は，晴れていたらテニスをするかもしれないが，他の人はピンポンをするかもしれないからである．では，偶然的

ではない真理，すなわち必然的真理とはいかなるものであろうか．それは，次のような表現についての真理である．

2. ((今日晴れている→ テニスをする) ∧ (¬(テニスをする)))→ (¬(今日晴れている))

この表現の一部 “今日晴れている→テニスをする”は，確かに偶然的真理ではあるが，この表現全体としては，常に真
である．この様な真理を論理的真と言う．また，次の表現は，天文学的には真かもしれないが，論理的必然性を持たな

い．よって，論理的真ではない．

3. UFOが存在する

しかし，次の表現は論理的真である．

4. UFOが存在する ∨ (¬(UFOが存在する))

ここで留意すべき点は，2，4が，“今日晴れている” “テニスをする” “UFOが存在する”等の文の種類のいかんによ
らず真と言える点である．すなわち，2，4は，それぞれ以下の 5，6のような形式を持ち,その形式のみで A, B の具体

的な内容にかかわらず常に真といえる．このような形式的な真理を論理的真というのである．

5. (A→ B) ∧ (¬B))→ (¬A)
6. A ∨ (¬A)

このように記号論理学は，論理的真を探求するというその性格上，文の形式のみを問題とすることから，具体的な文

を用いず，それを表わすものとして A, B 等の記号を用いる．記号論理学では，人工的に A, B, . . . ,∨,¬, . . . 等の語と

それらについての文法を導入し，そしてその意味を人工的に与える．というのは，人工言語は日常言語に比べて曖昧さ

がなく真偽がいえるからである．

次章では，人工言語を，言語，意味，文法の順に導入する．その上で常に真となる文 (論理的に真な文)とは，いかな
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る形式の文であるかを探求しようと思う．

練習問題 2.1 1. “or”の真理表を，我々の日常的表現 (英語)に照らし合わせて作れ．
2. “If A, then B”の真理表を同様に作れ．
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第 3章

命題論理

3.1 命題論理の形式言語

命題論理の形式言語のボキャブラリーは，次のものからなる．

定義 3.1（命題論理の形式言語のボキャブラリー）

論理記号 ： ∧,∨,¬,→,↔
命題変項 ： P, Q, R, . . . , P1, P2, . . .
命題定項 ： ⊤,⊥

ここで，命題変項及び命題定項は単文を表し，論理記号は文と文をつなぐ接続詞の役割を果たすことが後に示され

る．言語は，意味とは独立に，ただ記号のみが与えられるという形で定義される．つまり，言語は，その記号の意味が

与えられるまでは無意味なものとして取り扱われる．そこで，論理記号，命題定項等の意味は後で与えることにして，

ひとまず記号の意味を考えず，次のように読むことにする*1．

∧ · · · and かつ
∨ · · · or または
¬ · · · not 非
→ · · · if . . . then . . . ならば
↔ · · · if and only if 同値
⊤ · · · true 真
⊥ · · · false 偽

次に命題論理における論理式 (又はしばしば命題とも呼ばれる)を定義する．ここで論理式とは，我々の自然言語の
文にあたるものである．自然言語においてどんな言語表現が正しい文であるかを示す規則は文法と呼ばれている．日本

語や英語の文法に書かれているのは，正しい文を作る規則の集まりである．我々の命題論理言語では，全ての文法は下

の定義に示されるようにほんの数行で書き下されてしまう．

定義 3.2（命題論理における論理式 (文法)） 1. 命題変項は論理式である．

2. 命題定項は論理式である．

3. もし，Aが論理式であるならば，(¬A)も論理式である．
4. もし，A, B が共に論理式であるならば，(A ∧B)，(A ∨B)，(A→ B)，(A↔ B)は，それぞれ論理式である．
5. 以上で論理式と分かるものだけを論理式とする．

*1 というものの，我々が記号を無意味なものとして取り扱うことができるのは，記号 “A, B, . . . , ∧, ¬, ∨, →” に関する何等かの意味をあらか
じめ知っており，その上で，その「意味」をキャンセルしていることに他ならない．そうでなければ，「無意味」が何を意味しているかも理解
できないはずである．
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では，論理式とそうではないものを区別してみよう．まず，(((P ∧Q)→ ⊤) ∨ (¬R)) は論理式である．それは，次
のことより明らかである．

1よりP，Q，Rは論理式

4より(P ∧Q)は論理式
2より⊤は論理式
4より((P ∧Q)→ ⊤)は論理式
3より(¬R)は論理式
4より(((P ∧Q)→ ⊤) ∨ (¬R))は論理式

しかし，((¬ ↔ R) ∨ ⊥) は論理式ではない．
なお括弧は，すべてつけると論理式が繁雑になるので，混乱を防ぐために最小限用いる．括弧は，論理記号と命題記

号との結び付きの強さに応じて省略する．又一般に，一番外側の括弧は省略する．命題記号との結びつきは ¬がもっ
とも強く，次に ∧又は ∨，もっとも弱いのが→又は↔である．
例えば，次の論理式 ¬P ∧Qは，¬(P ∧Q)ではなく (¬P )∧Qを意味する．と言うのは，¬が ∧よりも命題 P に対

する結び付きが強いからである．また ¬P → R∧Qは，¬(P → (R∧Q))や ¬(P → R)∧Qでなく，(¬P )→ (R∧Q)
を意味する．というのは，¬，∧が→よりも結合力が強いからである．他方，(P ∨R)∧Qは，P ∨R ∧Qとは省略で

きない．これは，∨と ∧の結合力が等しいため，P ∨ (R ∧Q) との区別が付かないからである．� �
括弧の省略規則

1. 一番外側の括弧は原則として常に省略する．
2. 次の結び付きの大小関係 < に従って結び付きの関係が明かな括弧は省略する．

→
↔ <

∧
∨ < ¬� �

では，((P ∧ Q) → ⊤) ∨ (¬R) の括弧を実際に外してみよう．まず (P ∧ Q) → ⊤ が P ∧ Q → ⊤ に省略さ
れ，(P ∧ Q → ⊤) ∨ (¬R) となる．これは，∧ の方が → よりも Q に対する結び付きが強いからである．そして，

(P ∧Q→ ⊤) ∨ ¬Rとなる．しかし，最後の括弧を取り除いて P ∧Q→ ⊤∨ ¬R としてしまうと，∨が→よりも強
い結合力をもつから，この論理式は (P ∧Q)→ (⊤ ∨ ¬R)を意味することになってしまう．
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3.2 命題論理の意味論

命題論理の対象である論理式は，真又は偽という真理値を持つ．上で与えられた命題論理の言語には，この真理値を

もとにした次のような意味が与えられる*2．

定義 3.3（論理式の真理値） 1. 命題定項 ⊤は，真 (true)いう真理値を常に持つ．すなわち，論理式 ⊤の意味は，
真 (true)である．

2. 命題定項 ⊥は，偽 (false)という真理値を常に持つ．すなわち，論理式 ⊥の意味は，偽 (false)である．
3. 命題変項 P は，真 (true)及び偽 (false)を値として取り得る変項である．
4. A ∧B の形の論理式が真 (true)であるのは，Aが真 (true)でかつ B が真 (true)である時にかぎる．
5. A∨B の形の論理式が真 (true)であるのは，Aが真 (true)であるか又は B が真 (true)である時 (両方真である
時も含めて) にかぎる．

6. ¬Aの形の論理式が真 (true)であるのは，Aが偽 (false)である時 (即ち Aが真でない時)にかぎる．
7. A→ B の形の論理式が真 (true)であるのは，Aが真 (true)であれば B も真 (true)であること，即ち，Aが偽

(fasle)であるか B が真 (true)となることである．
8. A↔ B の形の論理式が真 (true)であるのは，Aと B が同じ真理値をとる時にかぎる．

特に，4～8は，論理記号の意味を真偽概念を使って定義したものであると言える．ここで注意を要するのは，ここ
で与えた論理記号の意味と日常言語における対応する接続詞等の意味とが必ずしも常に一致しているとは限らない，と

いうことである．日常言語においては，言葉の意味を曖昧に用いている場合がよくある．この曖昧さが日常言語を用い

て論理的分析をする際の困難のもとになっている．ここに論理的分析に適した人工言語を考える動機がある．そして，

この人工言語の上で曖昧さのない言葉の意味を与えておいて，その上でこのフレームワークを用いて論理的分析を行お

うとするのである．

さて，今，true を t，false を f と表す．上で与えられた意味付与は，次のような真理表で表すことができる．

1. ⊤はつねに値 tをもつ

⊤
t

2. ⊥はつねに値 f をもつ

⊥
f

3. P は値 tまたは f をもつ

P

t

f

4.

*2 命題論理における意味は，真 (true)，偽 (false)のみである．
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A B A ∧B

t t t Aが t，B が tなら A ∧B も t

t f f Aが t，B が f なら A ∧B は f

f t f Aが f，B が tなら A ∧B は f

f f f Aが f，B が f なら A ∧B は f

5.

A B A ∨B

t t t Aが t，B が tなら A ∨B も t

t f t Aが t，B が f なら A ∨B は t

f t t Aが f，B が tなら A ∨B は t

f f f Aが f，B が f なら A ∨B は f

6.

A ¬A

t f Aが tなら ¬Aは f

f t Aが f なら ¬Aは t

7.

A B A→ B

t t t Aが t，B が tなら A→ B は t

t f f Aが t，B が f なら A→ B は f

f t t Aが f，B が tなら A→ B は t

f f t Aが f，B が f なら A→ B は t

8.

A B A↔ B

t t t Aが t，B が tなら A↔ B は t

t f f Aが t，B が f なら A↔ B は f

f t f Aが f，B が tなら A↔ B は f

f f t Aが f，B が f なら A↔ B は t

以上のような意味付与規則をもとにこれらを組み合わせることにより, 任意の論理式に対して真理値を与えることが
できる。その例をいくつか挙げる。

例 3.1

(1) P ∧Q→ ¬P

P Q P ∧Q ¬P P ∧Q→ ¬P

t t t f f

t f f f t

f t f t t

f f f t t

(2) R→ ⊥∨Q
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⊥ Q R ⊥ ∨Q R→ ⊥∨Q

f t t t t

f t f t t

f f t f f

f f f f t

(3) R→ P ∨Q

P Q R P ∨Q R→ P ∨Q

t t t t t

t t f t t

t f t t t

t f f t t

f t t t t

f t f t t

f f t f f

f f f f t

上の 7による A→ B の真理表は，次の ¬A ∨B の真理表と結果が同じになることが分かる．

A B ¬A ¬A ∨B

t t f t

t f f f

f t t t

f f t t

この意味で，→は ¬と ∨を使って A→ B を ¬A ∨B の形で定義可能であることが分かる．

定義 3.4（トートロジー） すべての命題変項の可能な真理値に対して, 常に真となるような論理式はトートロジーと呼
ばれる．論理式 Aがトートロジーの時，|= Aと書く．

次にトートロジーの例を示す．

例 3.2

1. A ∨ ¬A

A ¬A A ∨ ¬A

t f t

f t t

2. A→ A

A A→ A

t t

f t

3. ¬(A ∧B)↔ (¬A ∨ ¬B)
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A B A ∧B ¬(A ∧B) ¬A ¬B ¬A ∨ ¬B ¬(A ∧B)↔ (¬A ∨ ¬B)
t t t f f f f t

t f f t f t t t

f t f t t f t t

f f f t t t t t

4. (A→ B)↔ (¬A ∨B)

A B A→ B ¬A ¬A ∨B (A→ B)↔ (¬A ∨B)
t t t f t t

t f f f f t

f t t t t t

f f t t t t

練習問題 3.1 次の論理式がトートロジーであることを示せ．

1. A↔ (¬¬A)
2. ¬(A ∨B)↔ (¬A ∧ ¬B)
3. (¬A→ (A→ B)) ∨A

4. (¬A→ (A ∧ ¬B))→ A

練習問題 3.2 次の論理式がトートロジーであるかどうか判定せよ．

1. (A→ B)→ (¬B → ¬A)
2. (A ∧ ¬A)→ B

3. (A ∨B)→ A

4. B → (A ∧B)
5. A→ (A ∨B)
6. (¬A ∨ ¬B)→ ¬(A ∨B)
7. (A ∧ (A ∧B))↔ A

8. (A→ (B → C))↔ ((A ∧B)→ C)
9. (A ∧ (B ∨ C))↔ ((A ∧B) ∨ (A ∧ C))

練習問題 3.3 1. A↔ B が→と ∧を用いて，(A→ B) ∧ (B → A)と定義できることを示せ．
2. A ∧B が ∨と ¬を用いて ¬(¬A ∨ ¬B)と定義できることを示せ．
3. A ∨B が ∧と ¬を用いて ¬(¬A ∧ ¬B)と定義できることを示せ．
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3.3 命題論理の証明論

先に我々が導入した命題論理の形式言語は，命題変項 P, Q, R, . . . , P1, P2, . . .，命題定項 ⊤，⊥，そして論理記号 ∧，
∨，¬，→から成っていた．そして，そこでは P，Q，R，P ∧Q，¬R，(P ∧Q)→ R，. . .等の記号列が論理式として
用いられていた．論理式とは通常の自然言語の文に対応するものであった．一方，自然言語においては複数の文から文

章が構成される．本節では，命題論理言語に対する文章を考える．ここで論理的言語における文章とは論証のことであ

る．論証のことを論理学では証明とも呼ぶ．一つの証明は多くの文 (論理式)から成る．証明において，各論理式は論
理的推論規則に従って導入される．論理的推論規則に従って次々に論理式が生成されることを通して証明と呼ばれる論

理的文章が構成されるわけである．この論理的形式言語上での証明概念は，通常の日常言語で行われている論証の論理

構造を抽象的に表したものだと考えられる．

任意の論理式 A, B1, . . . , Bn に対して，開いた前提 B1, . . . , Bn を持つ Aの証明構造という概念を定義する．ここで

「P が開いた前提 B1, . . . , Bn を持つ Aの証明構造である」とは，内容的には「P は B1, . . . , Bn という前提から Aと

いう結論を導く論証である」ことを表す．ここで，B1, . . . , Bn には，同じ形の論理式が重複して現れる場合を含むこ

ととする．実際，下の証明構造の定義から明らかになるように，開いた前提 Bi と Bj (ただし i ̸= j)とが論理式とし
てはまったく同じ形をしているとしても，それらは考えている証明構造の中で異なる場所 (位置)に現れているのであ
り，よって現れる場所 (位置)をも含めて論理式を同定することにすると，Bi と Bj とは「異なる」と考えられるので

ある．以下において，開いた前提の集合と呼ぶときは，このように違った位置に現れる 2つの同形の論理式をこの集合
の異なる要素として取り扱うこととする．

命題論理の自然演繹体系

定義 3.5（自然演繹体系 NKの証明構造） 証明構造とは次のような構造のことと定義する．

0. 公理： 任意の論理式 Aはそれ自体が Aの証明構造である．このときその論理式 A自体はこの証明構造の開いた

前提であると言われる．ここで，この 1つの論理式だけから成る証明構造の開いた前提の集合は，この論理式 A

だけから成る一元集合 (1つの元のみからなる集合)である．
1. ∧−導入規則 (∧−Iと略記)： 今，次のような Aの証明構造 P1 と B の証明構造 P2 が与えられているとする．こ

こで C1 · · ·Cn は Aの証明構造 P1 に現れる開いた前提の集合とし，D1 · · ·Dm は B の証明構造 P2 に現れる開

いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......

A

P2


D1 · · ·Dm.. . .. . .. . ......

B

このとき，この 2つの証明構造 P1，P2 に次の形の ∧−I規則を適用して得られる構造 P は A∧B の証明構造で

ある．

P


C1 · · ·Cn.. . .. . .. . ......

A

D1 · · ·Dm.. . .. . .. . ......
B

A ∧B
∧−I

ここで，A∧B の証明構造 P の開いた前提の集合は，P1 の開いた前提の集合 C1, . . . , Cn と P2 の開いた前提の

集合 D1, . . . , Dm の和集合 C1, . . . , Cn, D1, . . . , Dm のこととする．
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2. ∧−消去規則 (左) (∧−E(左)と略記)： 今，次のような A ∧ B の証明構造 P1 が与えられているとする．ここで

C1, . . . , Cn は証明構造 P1 に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......

A ∧B

このとき，この証明構造 P1 に次の形の ∧−E(左)規則を適用して得られる構造 P は Aの証明構造である．

P


C1 · · ·Cn.. . .. . .. . ......

A ∧B
A

∧−E(左)

ここで，Aの証明構造 P の開いた前提の集合は P1 の開いた前提の集合 C1, . . . , Cn のこととする．

3. ∧−消去規則 (右) (∧−E(右)と略記)： 今，次のような A ∧ B の証明構造 P1 が与えられているとする．ここで

C1 · · ·Cn は証明構造 P1 に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......

A ∧B

このとき，この証明構造 P1 に次の形の ∧−E規則 (右)を適用して得られる構造 P は B の証明構造である．

P


C1 · · ·Cn.. . .. . .. . ......

A ∧B
B

∧−E(右)

ここで，B の証明構造 P の開いた前提の集合は P1 の開いた前提の集合 C1, . . . , Cn のこととする．

4. → −導入規則 (→ −Iと略記)： 今，次のような B の証明構造 P1 が与えられているとする．ここで

A, A, . . . , A, C1, . . . , Cn は B の証明構造 P1 に現れる開いた前提の集合 (の適当な順番による枚挙) と
する．特に A, A, . . . , A, C1, . . . , Cn における最初の A, A, . . . , Aは論理式 Aの (開いた前提としての) 現れのう
ちのいくつかを指定したものであるとする．

P1


A A · · ·A C1 · · ·Cn.. . .. . .. . ......

B

この証明構造に次の形の→ −I規則を適用し，上で指定した開いた前提 A, . . . , Aにカギカッコを付けて “ [A] ”
として得られた構造 P は A→ B の証明構造である．

P


[A] [A] · · · [A] C1 · · ·Cn.. . .. . .. . ......

B
A→ B

→−I

ここで，A→ B の証明構造 P の開いた前提の集合は C1, . . . , Cn とする．又，P1 の中で開いた前提として現れ

ていた論理式 A, . . . , Aにカギカッコを付けたもの “ [A] . . . [A] ”は，この→ −I規則により (証明構造 P で)閉
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じられた前提と呼ばれる．特にこの証明構造 P1 の開いた前提の集合の中に Aの形の論理式が (複数)現れてい
てもよい．又，[A] . . . [A]が空列のとき (即ち，この→ −I規則で閉じる前提が 1つもない場合)も，特別な場合
として含めることとする．

従って，証明構造 P の開いた前提は

(P の開いた前提の集合) = (P1の開いた前提の集合)− (新たにカギカッコが付いた Aの集合)

として与えられることとなる．

5. → −消去規則 (→ −Eと略記)： 今，次のような Aの証明構造 P1 と，A → B の証明構造 P2 が与えられている

とする．ここで C1, . . . , Cn は Aの証明構造 P1 に現れる開いた前提の集合とし，D1, . . . , Dm は A → B の証

明構造 P2 に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......

A

P2


D1 · · ·Dm.. . .. . .. . ......

A→ B

このとき，この 2つの証明構造に次の形の→ −E規則を適用した構造 P も証明構造である．

P


C1 · · ·Cn.. . .. . .. . ......

A

D1 · · ·Dm.. . .. . .. . ......
A→ B

B
→−E

ここで，証明構造 P の開いた前提の集合は P1 の開いた前提の集合 C1, . . . , Cn と P2 の開いた前提の集合

D1, . . . , Dm の和集合 C1, . . . , Cn, D1, . . . , Dm であるとする．

6. ¬−導入規則 (¬−Iと略記)： 今，次のような論理定項 ⊥ の証明構造 P1 が与えられているとする．ここで

A, A, . . . , A, B1, . . . , Bn は論理定項 ⊥ の証明構造 P1 に現れる開いた前提の集合 (の適当な順番による枚
挙)とする．特に A, A, . . . , A, B1, . . . , Bn における最初の A, A, . . . , Aは論理式の (開いた前提としての) 現れ
のうちのいくつかを指定したものであるとする．

P1


A A · · ·A B1 · · ·Bn.. . .. . .. . ......

⊥

ここで，この証明構造 P1 に次の形の ¬−I規則を適用し，上で指定した開いた前提 A, . . . , Aにカギカッコを付

けて (→ −I規則と同様の操作により)前提を閉ざして得られる構造 P は ¬Aの証明構造である．

P


[A] [A] · · · [A] B1 · · ·Bn.. . .. . .. . ......

⊥
¬A

¬−I

ここで，証明構造 P の開いた前提の集合は P1 の開いた前提の集合 A, A, . . . , A, B1, . . . , Bn から ¬−I 規則に
より閉ざされた前提の集合 A, A, . . . , A を除いて得られる集合であるとする．又，→ −I 規則に時と同様に，
B1, . . . , Bn に論理式 Aが現れる場合，及び上で指定した A, . . . , Aが空列である場合も含むこととする．

7. ¬−消去規則 (¬−Eと略記)： 今，次のような A の証明構造 P1 と ¬A の証明構造 P2 が与えられているとする．

ここで C1, . . . , Cn は Aの証明構造 P1 に現れる開いた前提の集合とし，D1, . . . , Dm は ¬Aの証明構造 P2 の証

明構造 P2 に現れる開いた前提の集合とする．
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P1


C1 · · ·Cn.. . .. . .. . ......

A

P2


D1 · · ·Dm.. . .. . .. . ......
¬A

この 2つの証明構造 P1，P2 に次の形の ¬−E規則を適用して得られた P も証明構造である．

P


C1 · · ·Cn.. . .. . .. . ......

A

D1 · · ·Dm.. . .. . .. . ......
¬A

⊥
¬−E

ここで P の開いた前提の集合は，P1 の開いた前提の集合 C1, . . . , Cn と P2 の開いた前提の集合D1, . . . , Dm の

和集合 C1, . . . , Cn, D1, . . . , Dn であるとする．

8. ∨−導入規則 (左) (∨−I(左)と略記)： 今，次のような A の証明構造 P1 が与えられているとする．ここで

C1, . . . , Cn は証明構造 P1 に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......

A

この証明構造 P1 に次の形の ∨−I(左)規則を適用した構造 P は A ∨B の証明構造である．

P


C1 · · ·Cn.. . .. . .. . ......

A
A ∨B

∨−I(左)

ここで，A ∨B の証明構造 P の開いた前提の集合は，P1 の開いた前提の集合 C1, . . . , Cn であるとする．

9. ∨−導入規則 (右)(∨−I(右)と略記)： 今，次のような B の証明構造 P1 が与えられているとする．ここで

C1, . . . , Cn は証明構造 P1 に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......

B

この証明構造 P1 に次の形の ∨−I(右)規則を適用した構造 P は A ∨B の証明構造である．

P


C1 · · ·Cn.. . .. . .. . ......

B
A ∨B

∨−I(右)

ここで，A ∨B の証明構造 P の開いた前提の集合は，P1 の開いた前提の集合 C1, . . . , Cn であるとする．

10. ∨−消去規則 (∨−Eと略記)： 今，次のような 3つの証明構造が与えられているとする．
(1) A ∨B の証明構造 P1

(2) C の証明構造 P2

(3) C の証明構造 P3
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(1)

P1


D1 · · ·Dn.. . .. . .. . ......

A ∨B

(2)

P2


A A · · ·A E1 · · ·Em.. . .. . .. . ......

C

(3)

P3


B B · · ·B G1 · · ·Gl.. . .. . .. . ......

C

ここで A, A, . . . , A, E1, . . . , Em は証明構造 P2 に現れる開いた前提の集合とし，B, B, . . . , B, G1, . . . , Gl は証

明構造 P3 に現れる開いた前提の集合とする．特に A, A, . . . , A, E1, . . . , Em における最初の A, A, . . . , A 及び

B, B, . . . , B, G1, . . . , Gl における最初の B, B, . . . , B は，それぞれ論理式 A及び B の (開いた前提としての)現
れのうちのいくつかを指定したものであるとする．

このとき，これら 3つの証明構造 P1，P2，P3 に次の形の ∨−E規則を適用し，P2 の開いた前提として現れる

論理式 A及び P3 の開いた前提として現れる論理式 B のうちの上で指定されたものをそれぞれカギカッコでく

くって “ [A] ”，“ [B] ”として得られる構造 P は C の証明構造である．

P


D1 · · ·Dn.. . .. . .. . ......

A ∨B

[A] [A] · · · [A] E1 · · ·Em.. . .. . .. . .. . .. . ......
C

[B] [B] · · · [B] G1 · · ·Gl.. . .. . .. . .. . .. . ......
C

C
∨−E

ここで，証明構造 P の開いた前提の集合は，P1, P2 及び P3 の開いた前提の集合の和集合から ∨−E規則により
閉ざされた前提の集合を取り除いたものであるとする．又，→ −I規則や ¬−I規則の時と同様に，E1, . . . , Em

に論理式 Aが現れる場合や G1, . . . , Gl に論理式 B が現れる場合，及び上で指定した A, . . . , Aや B, . . . , B が

それぞれ空列である場合も含むこととする．

11. ⊥−消去規則 (⊥−Eと略記：) 今，次のような論理定項 ⊥ の証明構造 P1 が与えられているとする．ここで

C1, . . . , Cn は ⊥の証明構造に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......
⊥

この証明構造 P1 に次の形の ⊥−E規則を適用した構造 P は Aの証明構造である．ただし Aは任意の論理式と

する．

P


C1 · · ·Cn.. . .. . .. . ......
⊥
A

⊥−E

ここで，P の開いた前提の集合は P1 の開いた前提の集合 C1, . . . , Cn であるとする．

12. ¬¬−消去規則 (¬¬−Eと略記)： 今，次のような ¬¬A の証明構造 P1 が与えられているとする．ここで

C1, . . . , Cn は，P1 に現れる開いた前提の集合とする．

P1


C1 · · ·Cn.. . .. . .. . ......
¬¬A

この証明構造 P1 に次の形の ¬¬−E規則を適用した構造 P も証明構造である．
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P


C1 · · ·Cn.. . .. . .. . ......
¬¬A

A
¬¬−E

ここで，P の開いた前提の集合は P1 の開いた前提の集合 C1, . . . , Cn であるとする．

定義 3.6（証明） 開いた前提が 1つも現れない Aの証明構造は Aの証明と呼ばれる．

証明構造という概念が (開いた)前提のもとで終論理式が証明できることを表しているのに対し，証明概念は何の前
提も仮定することなく終論理式が証明できることを表している．

ここで上の証明構造の定義に現れた推論規則を列挙し，又その直観的な内容を与えると次の通りとなる．

命題論理の推論規則

1. ∧−I： 2つの論理式 Aと B から論理式 A ∧B を推論してよい．これを次のように表記することとする．

A B
A ∧B

∧−I

2 , 3. ∧−E： 論理式 A ∧B から Aを推論してよい．これを次のように表記することとする．

A ∧B
A

∧−E
又は

A ∧B
B

∧−E

4. → −I： A という前提を用いて B へ至る証明が与えられれば，A という仮定を用いることなしに論理式 A → B

を推論してよい．

[A]n....
B

A→ B
→−I,n

5. → −E： 論理式 Aと論理式 A→ B から論理式 B を推論してよい．

A A→ B
B

→−E

6. ¬−I： Aという主張から ⊥(false)が主張されれば，即ち Aから矛盾が主張されれば，Aという仮定なしに ¬A(非
A)が主張できる．

[A]n....
⊥
¬A

¬−I,n

7. ¬−E： Aと ¬Aが同時に主張されれば，⊥，即ち矛盾であることが主張される．

A ¬A
⊥

¬−E

8 , 9. ∨−I： 論理式 A(又は B)から A ∨B を推論してよい．

A
A ∨B

∨−I
又は

B
A ∨B

∨−I

10. ∨−E： A∨B が既に主張され，また，Aという仮定からも，B という仮定からも同じ C が主張できるときには，
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C が主張できる．

A ∨B

[A]n....
C

[B]n....
C

C
∨−E,n

11. ⊥−E： ⊥(矛盾)が主張されれば，任意の Aが主張できる．

⊥
A

⊥−E

12. ¬¬−E： ¬¬Aが主張されれば，Aが主張される．

¬¬A
A

¬¬−E

ここでいくつかの例を挙げる．

例 3.3（証明）

1. (A ∧B) ∧ C → B ∧ (C ∧A)

[(A ∧B) ∧ C]1

A ∧B
∧−E

B
∧−E

[(A ∧B) ∧ C]1

C
∧−E

[(A ∧B) ∧ C]1

A ∧B
∧−E

A
∧−E

C ∧A
∧−I

B ∧ (C ∧A)
∧−I

(A ∧B) ∧ C → B ∧ (C ∧A)
→−I,1

2. (A→ (B → C)) ∧A→ (B → C)

[(A→ (B → C)) ∧A]1
A

∧−E
[(A→ (B → C)) ∧A]1

A→ (B → C)
∧−E

B → C
→−E

(A→ (B → C)) ∧A→ (B → C)
→−I,1

3. (A→ B)→ (¬B → ¬A)

[A]1 [A→ B]2

B
→−E

[¬B]3

⊥
¬−E

¬A
¬−I,1

¬B → ¬A
→−I,3

(A→ B)→ (¬B → ¬A)
→−I,2

4. (A ∨B) ∨ C → B ∨ (C ∨A)
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[(A ∨B) ∨ C]1
[A ∨B]2

[A]3

C ∨A
∨−I

B ∨ (C ∨A)
∨−I

[B]3

B ∨ (C ∨A)
∨−I

B ∨ (C ∨A)
∨−E,3

[C]2

C ∨A
∨−I

B ∨ (C ∨A)
∨−I

B ∨ (C ∨A)
∨−E,2

(A ∨B) ∨ C → B ∨ (C ∨A)
→−I,1

5. (A ∧B) ∨ C → (A ∨ C) ∧ (B ∨ C)

[(A ∧B) ∨ C]1

[A ∧B]2

A
∧−E

A ∨ C
∨−I

[A ∧B]2

B
∧−E

B ∨ C
∨−I

(A ∨ C) ∧ (B ∨ C)
∧−I

[C]2

A ∨ C
∨−I

[C]2

B ∨ C
∨−I

(A ∨ C) ∧ (B ∨ C)
∧−I

(A ∨ C) ∧ (B ∨ C)
∨−E,2

(A ∧B) ∨ C → (A ∨ C) ∧ (B ∨ C)
→−I,1

6. (A ∨ C) ∧ (B ∨ C)→ (A ∧B) ∨ C

[(A ∨ C) ∧ (B ∨ C)]1

A ∨ C
∧−E

[(A ∨ C) ∧ (B ∨ C)]1

B ∨ C
∧−E

[A]2 [B]3

A ∧ B
∧−I

(A ∧ B) ∨ C
∨−I

[C]3

(A ∧ B) ∨ C
∨−I

(A ∧ B) ∨ C
∨−E,3

[C]2

(A ∧ B) ∨ C
∨−I

(A ∧ B) ∨ C
∨−E,2

(A ∨ C) ∧ (B ∨ C) → (A ∧ B) ∨ C
→−I,1

7. (A ∨B) ∧ C → (A ∧ C) ∨ (B ∧ C)

[(A ∨B) ∧ C]1

A ∨B
∧−E

[A]2
[(A ∨B) ∧ C]1

C
∧−E

A ∧ C
∧−I

(A ∧ C) ∨ (B ∧ C)
∨−I

[B]2
[(A ∨B) ∧ C]1

C
∧−E

B ∧ C
∧−I

(A ∧ C) ∨ (B ∧ C)
∨−I

(A ∧ C) ∨ (B ∧ C)
∨−E,2

(A ∨B) ∧ C → (A ∧ C) ∨ (B ∧ C)
→−I,1

8. (A ∧ C) ∨ (B ∧ C)→ (A ∨B) ∧ C

[(A ∧ C) ∨ (B ∧ C)]1

[A ∧ C]2

A
∧−E

A ∨B
∨−I

[A ∧ C]2

C
∧−E

(A ∨B) ∧ C
∧−I

[B ∧ C]2

B
∧−E

A ∨B
∨−I

[B ∧ C]2

C
∧−E

(A ∨B) ∧ C
∧−I

(A ∨B) ∧ C
∨−E,2

(A ∧ C) ∨ (B ∧ C)→ (A ∨B) ∧ C
→−I,1

9. A→ (¬¬A)
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[A]2 [¬A]1

⊥
¬−E

¬¬A
¬−I,1

A→ ¬¬A
→−I,2

10. (¬¬A)→ A

[¬¬A]1

A
¬¬−E

¬¬A→ A
→−I,1

11. ¬(A ∨B)→ (¬A ∧ ¬B)

[A]1

A ∨B
∨−I

[¬(A ∨B)]3

⊥
¬−E

¬A
¬−I,1

[B]2

A ∨B
∨−I

[¬(A ∨B)]3

⊥
¬−E

¬B
¬−I,2

¬A ∧ ¬B
∧−I

¬(A ∨B)→ (¬A ∧ ¬B)
→−I,3

12. (¬A ∧ ¬B)→ ¬(A ∨B)

[A ∨B]2
[A]1

[¬A ∧ ¬B]3

¬A
∧−E

⊥
¬−E

[B]1
[¬A ∧ ¬B]3

¬B
∧−E

⊥
¬−E

⊥
∨−E,1

¬(A ∨B)
¬−I,2

(¬A ∧ ¬B)→ ¬(A ∨B)
→−I,3

13. (A→ B)→ (¬A ∨B)

[A]1 [A→ B]3

B
→−E

¬A ∨B
∨−I

[¬(¬A ∨B)]2

⊥
¬−E

¬A
¬−I,1

¬A ∨B
∨−I

[¬(¬A ∨B)]2

⊥
¬−E

¬¬(¬A ∨B)
¬−I,2

¬A ∨B
¬¬−E

(A→ B)→ (¬A ∨B)
→−I,3

14. (¬A ∨B)→ (A→ B)
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[¬A ∨B]3

[A]2 [¬A]1

⊥
¬−E

B
⊥−E [B]1

B
∨−E,1

A→ B
→−I,2

(¬A ∨B)→ (A→ B)
→−I,3

15. (¬A→ (A ∧ ¬B))→ A

[¬A]1 [¬A→ (A ∧ ¬B)]2

A ∧ ¬B
→−E

A
∧−E

[¬A]1
⊥

¬−E

¬¬A
¬−I,1

A
¬¬−E

(¬A→ (A ∧ ¬B))→ A
→−I,2

定義 3.7（証明可能） 論理式 Aを終論理式とする証明が存在するとき，Aは証明可能であると言うことにする．この

時，⊢ Aと書く．また，仮定 B1, . . . , Bn から Aが推論規則にしたがって主張できる時，B1, . . . , Bn ⊢ Aと書く．

定理 3.1（健全性 (soundness)） 証明可能な論理式はすべてトートロジーである．この性質を持つ論理体系を健全であ
るという．よって命題論理の自然演繹体系は健全である．

定理 3.2（完全性 (completeness)） トートロジーな論理式は，すべて証明可能である．この性質を持つ論理体系を完
全であるという．よって命題論理の自然演繹体系は完全である．

練習問題 3.4 先の練習問題 3.2のトートロジーとなるすべての論理式が証明可能であることを示せ。

練習問題 3.5 次の論理式が証明可能であることを示せ．

1. (A ∧B → C)→ (A→ (B → C))
2. (A→ (B → C))→ (A ∧B → C)
3. (¬A→ ¬B)→ (B → A)
4. (A ∨B → C)→ ((A→ C) ∧ (B → C))

練習問題 3.6 次のような電器回路を考えることにする．ここで A, B, C, . . . 等の原始論理式は on-offスイッチを表わ
しているものとする．on-offスイッチとはそのスイッチの場所で電源をオン (流す)かオフ (止める) かのどちらかを指
定するスイッチである．¬Aという名前のスイッチはスイッチ Aと連動して，Aがオンの時に ¬Aはオフに，又 Aが

オフの時 ¬Aがオンになるスイッチである，とする．今電器回路の並列を ∨で，直列を ∧で表わすことにより，回路
全体の電流の状態が論理式で表現できる．

@
@

@
@

@
@

@
@

¬A C

B A



第 3章 命題論理 23

は，(B ∧A)∨ (¬A∧C)で表わせる．今，電器回路の観点から見ると A, B, C のスイッチ状態に対する回路全体に電流

が流れるかどうかの状態の関係が同じであれば，回路の仕様 (Spec)が違っても同じ役割を果たす，と考えてよい．こ
のことは，次のように論理的に表現できる．(命題論理の ¬，∨，∧を用いた)各論理式は電器回路の各仕様を表現し，
もし論理式 Aと論理式 B とが同値 (A ≡ B)であれば，回路 Aと回路 B とはおなじ役割を果たす．

1. まず，次の回路を論理式で表わせ．

@@

@@

@@

@@ @@

@@

@@

@@

¬B

A

¬A

¬A C

A

¬B

C

2. 次に，この回路と同じ役割を果たす最も単純な回路を与えよ．(そして，実際に，その回路がもとのものと同値
であることを論理的に証明せよ．)

練習問題 3.7 次の前提より，定理を導き出せ．

1. 今日晴れているならば，僕はテニスをする．

晴れる→ テニスをする

2. 僕が勉強するならば，僕はテニスをしない．

勉強する→ ¬テニスをする

3. 僕の気分がよければ，その日は必ず晴れている．

気分がよい→ 晴れる

4. 僕の気分が悪ければ，僕は勉強しない．

¬気分がよい→ ¬勉強する

(定理) 僕は，今日勉強しない．
¬勉強する

練習問題 3.8 次の前提より，定理を導き出せ．

1. 神が存在し，私が神を信じるならば,私は救われる．

神 ∧信→ 救
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2. 神が存在しなければ，悪魔が存在する．
¬神→ 悪魔

3. 私が救われるならば，神は存在する．
救→ 神

4. 悪魔が存在するならば，私は神を信じる．
悪魔→ 信

(定理 1) 私が救われることなく，しかも私が神を信じるならば，悪魔が存在する．

¬救 ∧信→ 悪魔

(定理 2) 神が存在するか，私が神を信じると悪魔が存在することが同値であるかである．

神 ∨ (信↔ 悪魔)

練習問題 3.9 次の前提より，定理を導き出せ．

1. 2本足であるならば，鳥であるか，人間である．

2本足→ 鳥 ∨人間

2. 鳥は空を飛べる．
鳥→ 飛

(定理) 2本足で空を飛べないならば，人間である．

2本足 ∧ ¬飛→ 人間

(参考) 自然演繹体系の基本定理 : 正規化定理 (Proof-Normalization)

証明の中で次のような形で現れる論理式 A ∧B，A→ B，¬Aを極大論理式 (maximal論理式) と呼ぶ．即ち極大
論理式とは，(自然演繹の)証明中に導入規則を用いて現われ，すぐその後に消去規則で消えてしまうような，いわば不
用な論理式である．

A B
A ∧B

∧−I

A
∧−E

A B
A ∧B

∧−I

B
∧−E

A
A ∨B

∨−I

[A]....
C

[B]....
C

C
∨−E

B
A ∨B

∨−I

[A]....
C

[B]....
C

C
∨−E

A

[A]....
B

A→ B
→−I

B
→−E
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A

[A]....
⊥
¬A

¬−I

F
¬−E

このような不用な論理式を全く含まない証明にすべての証明が変換できる．それは，次の定理で表現される．ここで

極大論理式を含まない証明を正規形証明と呼ぶ．

定理 3.3（正規化定理 (Normalization Theorem)） 自然演繹体系の任意の証明は，次の β− 簡約規則 (β− reduction
rules)の適当な有限回の適用により正規形証明に変形できる．

Reduction rules

|
A

|
B

A ∧B
∧−I

A
∧−E

=⇒
|
A

|
A

|
B

A ∧B
∧−I

B
∧−E

=⇒
|
B

|
A

A ∨B
∨−I

[A]....
C

[B]....
C

C
∨−E

=⇒

|
A
...
C

|
B

A ∨B
∨−I

[A]....
C

[B]....
C

C
∨−E

=⇒

|
B
...
C

|
A

[A]....
B

A→ B
→−I

B
→−E

=⇒

|
A
...
B

|
A

[A]....
⊥
¬A

¬−I

⊥
¬−E

=⇒

|
A
...
⊥

証明 今，証明 P が与えられたとする．今 P が正規形でないとする．証明 P に現れる極大論理式のうち論理記号を

最も多く含むもの (今，この論理記号の数を n個とする)を枚挙する．論理記号を n個含む論理式のことを「長さ nの

論理式」と呼ぶこととする．このような長さ nの極大論理式のうちで証明 P の一番左上に現れるものから順に上の簡

約規則を適用していく．(証明 P は木構造を持つので，常に「一番左の枝の一番上に現れる，長さ nの極大論理式」は

一意的に規定される．) 今，各 1回の簡約規則の適用により，証明 P に現れる長さ nの極大論理式の数は 1つ減るこ
とに注意すると，個の操作を高々有限回行った後に，長さ nの極大論理式を 1つも含まない証明 P1 が得られる．よっ

て，P1 に現れる極大論理式はすべて長さが nより小さいことが分かる．今 P1 が既に正規形であれば操作は終了する．

もし P1 が正規形でないとする．P ′
1 に現れる極大論理式の最大の長さを n1 < nとして，n′ に対して上と同じ操作をく

り返す．この手続きは有限回で終了し，正規形証明が得られる． 証明終
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次のより強い形の正規化定理も成り立つ．

定理 3.4（強正規化定理 (Strong Normalization Theorem)） 自然演繹体系の任意の証明に対して適用可能な β− 簡約
規則を任意に選んで変形していく操作は，β−簡約規則の適用の順番によらず必ず有限回で停止する (特に，この停止
した証明は正規形である)．

例 3.4 次に ¬(A ∨ B) → ¬Aの証明に対する β−簡約規則による正規化の例を示す．下の最初の証明は例 2.3(2)で
与えた ¬(A ∨B)→ ¬A ∧ ¬B を利用して構成した証明である．ただしこの証明は極大論理式を含んでいる．β−簡約
規則を 2回適用することによって下の最後の証明のような正規形証明が得られる．

[¬(A ∨B)]4

[A]1

A ∨B
∨−I

[¬(A ∨B)]3

⊥
¬−E

¬A
¬−I,1

[B]2

A ∨B
∨−I

[¬(A ∨B)]3

⊥
¬−E

¬B
¬−I,2

¬A ∧ ¬B
∧−I

¬(A ∨B)→ ¬A ∧ ¬B
→−I,3

¬A ∧ ¬B
→−E

¬A
∧−E

¬(A ∨B)→ ¬A
→−I,4

=⇒

[A]1

A ∨B
∨−I

[¬(A ∨B)]3

⊥
¬−E

¬A
¬−I,1

[B]2

A ∨B
∨−I

[¬(A ∨B)]3

⊥
¬−E

¬B
¬−I,2

¬A ∧ ¬B
∧−I

¬A
∧−E

¬(A ∨B)→ ¬A
→−I,3

=⇒

[A]1

A ∨B
∨−I

[¬(A ∨B)]2

⊥
¬−E

¬A
¬−I,1

¬(A ∨B)→ ¬A
→−I,2

練習問題 3.10 次の証明を正規化して，正規形証明を求めよ．

[¬(A∨¬A)]7

[A]1

A∨¬A [¬(A∨¬A)]3

⊥
¬A

1

[¬A]2

A∨¬A [¬(A∨¬A)]3

⊥
¬¬A

2

¬A∧¬¬A

¬(A∨¬A)→¬A∧¬¬A
3

¬A∧¬¬A

¬A

[¬(A∨¬A)]7

[A]4

A∨¬A [¬(A∨¬A)]6

⊥
¬A

4

[¬A]5

A∨¬A [¬(A∨¬A)]6

⊥
¬¬A

5

¬A∧¬¬A

¬(A∨¬A)→¬A∧¬¬A
6

¬A∧¬¬A

¬¬A

⊥
¬(A∨¬A)→⊥

7
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第 4章

タイプ付ラムダ計算 (Typed λ-calculus)

計算機科学や情報科学の基本的計算モデルの重要な枠組の１つとしてラムダ計算体系と呼ばれる計算モデルの形式体

系がある．特にプログラム言語等で重要なタイプ (型とも呼ばれる)の概念が組み込まれたラムダ計算体系はタイプ付
(型付き)ラムダ計算体系と呼ばれる．
本節では第 2章で導入した自然演繹体系による命題論理と対応させながらタイプ付ラムダ計算体系を導入する．ラム
ダ計算言語における項 (これはラムダ項と呼ばれる) はアルゴリズムを表現する表現力を持ち，特にタイプ付関数型プ
ログラミング言語のプログラムの抽象的 (数学的)表現と考えることができる．本節では，この (タイプ付)ラムダ項は
命題論理の (自然演繹の)証明構造と同一視することができ，又，タイプ (型)は命題論理の論理式と同一視することが
できることを明らかにする．又，ラムダ項で表されるアルゴリズム (プログラム)の計算過程 (実行過程)は，命題論理
の証明論 (文章論)の節で述べた証明の正規化過程と同一視することができることも明らかにする．

4.1 単純タイプ付ラムダ計算

定義 4.1（タイプ） ‾

1. P, Q, P1, P2 . . .等を基底タイプ (base types)と呼ぶ (これは第 1章では原子命題と呼んだ)．基底タイプはタ
イプである．

2. A，B がタイプのとき，A→ B もタイプである (→は第 1章では含意と呼んだ)．

上の 1，2でタイプと分かるものだけがタイプである (前はタイプを命題と呼んだ)．

定義 4.2（ラムダ項 (λ-terms)） ‾

1. 各タイプ Aに対して，変項として xA, yA, xA
1 , xA

2 を用いる．

2. もし tがタイプ Aのラムダ項で，xB がタイプ B の変項なら，λxBtはタイプ B → Aのラムダ項である．この

とき，tに現われる xB は束縛されると言われる．

3. もし tがタイプ B → Aのラムダ項で sがタイプ B のラムダ項なら，(ts)はタイプ Aのラムダ項である．

このラムダ項の形成規則は次のように表現できる．今，t : Aを「tはタイプ Aのラムダ項である」と読むこととする．

A1 → (A2 → (A3 → (· · · (An → An+1) · · ·)))のことを A1 → A2 → A3 → · · · → An → An+1 と略記する．変項の

タイプが分かっているときは、xA のかわりに xのように略記することとする。

先に挙げたラムダ項の構成規則 (定義)は次のように形式的に定式化できる．

t : A

λxB .t : B → A
→ −I
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ここで，tに自由に現れる xB は束縛されるという．

t : B → A s : B
(ts) : A

→ −E

任意のタイプ B と任意のラムダ項 tと sに対して、次のラムダ項の書き換え規則は β−簡約規則と呼ばれる．

(λxBt s) � t[xB := s] ただし sはタイプ B とする。

ここで t : Aとすると、λxBt : B → A，(λxBt s) : Aかつ t[xB := s] : Aとなることが分かる。特に β−簡約規則の
左項と右項は同じタイプ Aをもつ。

今，任意のラムダ項 uに β−簡約規則の左辺の形の項 (λxAt s)が現れているとする．このとき uに現れる (λxAt s)
の形の部分項のことを β−簡約のリデックス (redex)(又は可約部)と呼ぶ．
ラムダ項 uにリデックスが 1つも含まれない時，「uは正規形である」と言われる．又は，「uは既約形である」と言

われることもある．) uが正規形でない場合は，一般にリデックスが複数含まれている．それらのリデックスのうちの

1つ，例えば uに現れる (λzDw v)を選びこの部分を上の β−簡約規則により w[zD := v]に書き換えて得られたラム
ダ項を u′ とする．このとき，この β−簡約による uから u′ への書き換えを，

u→ u′

と表すこととする．ここで注意を要するのは，もしちょうど (λzDw v)とまったく同じ形のリデックスが uの中に複数

現れているとしても，u→ u′ が意味するのはそのうちの 1つのリデックスだけを β−簡約規則で書き換えて u′ が得ら

れたということである．uの (0回も含めた)任意有限回の β−簡約規則の適用で u′ が得られるとき，u→∗ u′ と表記

することとする．(特に u→∗ uである．又，u→ uならば u→∗ u′ でもある．)先に述べた β−簡約によりリデック
スのタイプと書き換え後のタイプが同一であるという事実から次の命題は明らかである．

命題 4.1 任意のラムダ項 uと v に対して，u→ v で u : Aならば v : Aである．同様に任意のラムダ項 uと v に対し

て，u→∗ v で u : Aならば v : Aである．

定理 4.1 β−簡約規則に関して，停止性 (terminating property)とチャーチ・ロッサー性 (Church-Rosser property)
が成立する．停止性は強正規化可能性 (strong normalizability) と，又チャーチ・ロッサー性は合流性 (confluence
property)ともしばしば呼ばれる．

ここで停止性とは，任意のラムダ項 tに対して，tから始まる任意の順序で β －簡約の適用を繰り返すと常に有限で

止まることを意味する．又，チャーチ・ロッサー性とは，tからの任意の書き換え t→∗ u及び t→∗ v で得られたラム

ダ項 u，v に対してあるラムダ項 sが存在して，

u→∗ s ∗← v

が成立する．即ち，
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t
↙ ↘

↙ ↘. .. .. .
↙ ↘

u v
↘ ↙. .. .. .

↘ ↙
↘ ↙

s

系 4.1 任意のラムダ項 tに対して，β−簡約に対して，一意的に tの正規形 (規約形)が決まる．

この tの一意的な正規形 sを tの値と同一視する．

定理 4.2（カリー=ハワード同型定理 (Curry-Howard isomorphism)） タイプ A を命題論理の論理式と同一視し，t :
A(「ラムダ項 tがタイプ Aを持つ」)を「tが命題 Aの証明構造である」と読むことにより，命題論理とラムダ計算と

の同一視をすることができる．特に次のような同一視ができる．

タイプ A = 論理式 A

ラムダ項 t = 証明構造 t

ラムダ項の正規化過程 = 証明構造の正規化過程

練習問題 4.1 上の事実を確かめよ．

4.2 積タイプを持つタイプ付ラムダ計算

タイプの定義を次のように拡張する。

定義 2.20’ (タイプ)

1及び 2は前の通り。
3. A、B がタイプのとき、A×B もタイプである。

ここで A×B は積タイプと呼ばれる．積タイプ A×B は命題論理における A ∧B に対応している．

次にラムダ項の定義を拡張する。

定義 2.21’ (ラムダ項)

1,2,3 は前の通り。
4. もし tがタイプ Aのラムダ項で sがタイプ B のラムダ項なら、< t, s >はタイプ A×B のラムダ項である。

5. もし tがタイプ A×B のラムダ項ならば、π1(t)はタイプ Aのラムダ項であり、又 π2(t)はタイプ B のラム

ダ項である。

ここで < t, s >は tと sとの対を意味する．即ち，積タイプは対のタイプを表している．

ラムダ項の形成規則は次のように拡張できる。
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t : A s : B
< t, s >: A×B

×− I

t : A×B

π1(t) : A
×− E 左

t : A×B

π2(t) : B
×− E 右

ラムダ項の書き換え規則 (β−簡約規則)を次のように拡張する。

1. これまでの β−簡約規則
2. π1 < t, s > �t

π2 < t, s > �s

この積タイプ (×)により拡張されたラムダ項に対しても上の定理 2.24は成立する。

定理 2.24 (カリー=ハワード同型定理 (Curry-Howard-Lambek isomorphism)) タイプ Aを命題論理と同一視

し、t : A(「ラムダ項 tがタイプ Aを持つ」)を「tが命題 Aの証明構造である」と読むことにより、命題論理とラムダ

計算との同一視をすることができる。特に次のような同一視ができる。

タイプ A = 論理式 A

ラムダ項 t = 証明構造 t

ラムダ項の正規化過程 = 証明構造の正規化過程

例 4.1 自然演繹体系における ∧と→のみの証明図を Curry-Howard isomorphism を用いて λ計算に書き直せ．

(1) A→ (B → A)のタイプを持つラムダ項の例

x : A

λyBx : B → A

λxAλyBx : A→ (B → A)

(2) (A ∧B) ∧ C → A ∧ (B ∧ C) のタイプを持つラムダ項の例

x : (A×B)× C

π1x : A×B

π1(π1x) : A

x : (A×B)× C

π1x : A×B

π2(π1x) : B

x : (A×B)× C

π2x : C

< π2(π1x), π2x >: B × C

< π1(π1x), < π2(π1x), π2x >>: A× (B × C)
λx(A×B)×C < π1(π1x), < π2(π1x), π2x >>: (A×B)× C → A× (B × C)

(3) (A ∧B → C)→ (A→ (B → C)) のタイプを持つラムダ項の例

x : A y : B

< x, y >: A×B z : A×B → C

z < x, y >: C

λyBz < x, y >: B → C

λxAλyBz < x, y >: A→ (B → C)
λz(A×B)×CλxAλyBz < x, y >: (A×B → C)→ (A→ (B → C))

(4) (A→ (B → C))→ (A ∧B → C) のタイプを持つラムダ項の例
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x : A×B

π2x : B

x : A×B

π1x : A y : A→ (B → C)
yπ1x : B → C

(yπ1x)π2x : C

λxA×B(yπ1x)π2x : A ∧B → C

λyA→(B→C)λxA×B(yπ1x)π2x : (A→ (B → C))→ (A ∧B → C)

4.3 ラムダ項を用いたデータ型の定義の例 (Natタイプ)
自然数を表わすデータ型 (タイプ)Natを次のように定義する．

Nat :≡ (P → P )→ (P → P )

データ型 (タイプ)Natを持つ対象を次のように定義する．

0 :≡ λfP →P λxP x

1 :≡ λfP →P λxP (fx)
2 :≡ λfP →P λxP (f(fx))

...
n :≡ λfP →P λxP (f(· · · (f︸ ︷︷ ︸

n 個

x) · · ·))

0に対するタイプチェックの例 (0が Natの証明になっていることのチェック)．

[P ]x

P → P
→−Ix

Nat(≡ (P → P )→ (P → P ))
→−If

2に対するタイプチェックの例 (2が Natの証明になっていることのチェック)．

[P → P ]f
[P → P ]f [P ]x

P
→E

P
→−E

P → P
→−Ix

Nat(≡ (P → P )→ (P → P ))
→−If

次にタイプ Natに関する簡単なプログラムを書いてみることにする．まず，自然数 nを入力して n + 1(nの次の数)
を出力する Sucという関数のプログラム (アルゴリズム)をラムダ項で与える．

定義 4.3（Suc） ‾

Suc := λnNatλfP →P λxP (f((nf)x))

計算の例： たとえば Sucに 3を入力した場合の β−簡約による計算の過程は次のようになる．

(Suc 3) ≡ (λnNatfP →P λxP (f((nf)x))λfP →P λxP (f(f(fx))))
� λfP →P λxP (f((λfP →P λxP (f(f(fx)))f)x))
� λfP →P λxP (f(λxP (f(f(fx)))x))
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� λfP →P λxP (f(f(f(fx))))
≡ 4

練習問題 4.2 (Suc 4)を計算せよ．

Sucに対する自然演繹証明

[P → P ]f

[Nat(≡ ((P → P )→ (P → P )))]n [P → P ]f

P → P
→−E

[P ]x

P
→−E

P
→−E

P → P
→−Ix

Nat(≡ (P → P )→ (P → P ))
→−If

Nat→ Nat
→−In

次に自然数 2つを引数とする加法のプログラムを与える．

定義 4.4（+） ‾

+ := λmNatλnNatλfP →P λxP ((mf)((nf)x))

計算の例：

3 + 2 � ((+3)2)
� λfP →P λxP ((3f)((2f)x))
≡ λfP →P λxP (λxP (f(f(fx)))(f(fx)))
� λfP →P λxP (f(f(f(f(fx)))))
≡ 5

練習問題 4.3 対応する証明を作り，3 + 2のタイプが Natとなっていることを確かめよ．

乗法演算子 (かけ算)はこの言語で次のようにプログラムできる．

Times := λmNatλnNatλfP →P (m(nf))

このプログラム (Times)のタイプが確かに Nat → (Nat → Nat)となっていることを対応する (自然演繹の)証明
を与えて確かめよ．

かけ算のプログラム Timesに 3と 2をインプットとして与えてプログラムを走らせた例

3 Times 2 � �λfP →P (3(2f))
� �λfP →P (3λxP (f(fx)))
≡ λfP →P (λfP →P λxP (f(f(fx))) λxP (f(fx))︸ ︷︷ ︸

≡F

)

� λfP →P λxP (F (F (Fx)))
� λfP →P λxP (F (F (f(fx))))
� λfP →P λxP (F (f(f(f(fx)))))
� λfP →P λxP (f(f(f(f(f(fx))))))
≡ 6
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練習問題 4.4 次の計算過程を示せ．

1. (3 + 4) + 2
2. (2× 3) + 2

定義 4.5 ‾

Bool
def
≡ Nat→ (Nat→ Nat)

T
def
≡ λaNatλbNata

F
def
≡ λaNatλbNatb

定義 4.6（タイプ Aのプログラム xと y に対する if − then− else） ‾

If − then− else := λpBoolλxNatλyNat((px)y)

即ち，If p then x:Nat else y:Natを ((pxNat)yNat)と定義していることとなる．
計算の例：

λpBoolλxNatλyNat((px)y)T st

��If T then s else t

≡ ((λaNatλbNata)s)t
� (λbNats)t
� s

(なぜなら，変項が新たに束縛されることはないから．)

練習問題 4.5 s : Nat及び t : Natとして If − then− else F stが tとなることを計算せよ．

定義 4.7（AND，OR） ‾

AND
def
≡ λaBoolλbBoolλmNatλnNat((a((bm)n))((bn)m))

OR
def
≡ λaBoolλbBoolλmNatλnNat((a((bm)m))((bm)n))

(e.g.)

T OR F ��λmNatλnNat((T ((Fm)m))((Fm)n))
≡ λmNatλnNat(((λcNatλdNatc)((Fm)m))((Fm)n))
� λmNatλnNat((λdNat((Fm)m))((Fm)n))
� λmNatλnNat((Fm)m)
≡ λmNatλnNat(((λcNatdNatd)m)n)
��λmNatλnNatm

≡ T

F OR F ��((λmNatλnNat((F ((Fm)m))((Fm)n))
��λmNatλNat((Fm)n)
��λmNatλNatn

≡ F
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練習問題 4.6 ‾
T AND T が T

T AND F が F

F AND T が F

F AND F が F

T OR T が T

F OR F が F

となることを計算して確かめよ．
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第 5章

述語論理

述語論理の言語

本節においては，前章の命題論理の言語を拡張して，一階述語論理 (first order predicate logic)を展開する．命題論
理では，命題を基本単位として取り扱ったが，述語論理では，命題を個体名とそれに関係する述語に分解し，それらの

関係について探求するものである．この考え方は，古代ギリシアの哲学者アリストテレスの言語観とも一致しているも

のである．

命題論理との相違を明確にするために，次の命題を考えてみる．

「亜紀は美しい」

命題論理では，この命題を一つの命題定項，例えば P 等で表した．しかし述語論理では，この命題を主語「亜紀」と述

語「∗は美しい」に分解する．そして，主語を個体記号 “亜紀”に，述語を述語記号 “美しい (∗)”にそれぞれ記号化し，
命題全体を

美しい (亜紀)

と記号化する．ここで，個体記号は対象を表し，述語記号はその対象が持つ性質を表す．

この個体記号と述語記号との関係は，主語と述語との関係に相当するものであるが，我々が今導入しようとしている

ものは人工言語であるゆえ，日本語など特定の言語における主語述語の関係とは必ずしも一致しない．実際，上のよう

に個体記号を 1つだけとる述語記号だけでなく，以下においては述語の概念を一般化して n個の個体間の関係を表す

場合も含めて述語記号を考えることとする．

さて，命題を個体記号と述語記号とによって記号化することによって，命題論理では扱えなかった領域をも扱えるよ

うになる．その 1つは，対象とその対象が持つ性質との関係である．例えば，“美しい (亜紀)” “美しい (今日子)” “美
しい (美奈子)”. . .等である．これらの命題は，命題論理においては，すべて異なる命題記号で表されてきた．しかし，
述語論理においては，それぞれが，共通の述語記号 “美しい (∗)”を持つ命題で表される．即ち，「亜紀さん」と「美し
い」との関係，「今日子さん」と「美しい」との関係，「美奈子さん」と「美しい」との関係を分析することができるの

である．

さらに，複数の個体間の関係をも取り扱うことも可能になる．例えば，

「花子は，ミツが好きです」

は個体「花子」「ミツ」と述語「∗は ∗を好きです」に分解される．ここで，「xは yを好きです」を L(x, y)と記号化す
れば，この命題は

L(花子,ミツ)
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と記号化できる．これは，紛れもなく花子とミツのある関係を表している．

以上の点に加えて，述語論理の最大の特徴は，「すべての · · ·は · · ·である．」「ある · · ·は · · ·である．」という命題を
取り扱えるようになるということである．例えば，「すべての人はミツが好き」や「ある人はミツが好き」などである．

これらは，「花子は，ミツが好きです」の「花子」を「すべての人」や「ある人」に置き変えたものである．そこで，こ

れらの命題を記号化する場合には，L(花子,ミツ)の “花子”を xで置き換え，「すべての人はミツが好き」を “すべての
xについて L(x,ミツ)”と，「ある人はミツが好き」を “ある xについて L(x,ミツ)”と記号化する．ここで，“すべての
xについて”を “∀x”で，“ある xについて”を “∃x”で記号化すると，上の命題はそれぞれ次のように記号化される．

∀xL(x,ミツ)
∃xL(x,ミツ)

この記号化によって，「すべて」と「ある」ということがどのような特徴を持つかを記号論理学上で分析できるように

なる．これは，命題論理では取り扱われ得なかった点である．

まず，言語を導入する．一階述語論理の言語は，命題論理に以下の記号を付け加えたものである．

定義 5.1（一階述語論理の言語） ‾

個体変項： x, y, z, . . . , x1, x2, . . .

個体定項： c1, c2, c3, . . . ,花子,ミツ,ポチ, . . . *1

述語 (関係)記号： P (∗), Q(∗, ∗), R(∗, ∗, ∗), . . .人間 (∗), . . . ,愛 (∗, ∗), . . . *2 ここで S(∗, . . . , ∗︸ ︷︷ ︸
n 個

)の形の述語記号は n-

項述語記号と呼ばれる．

論理記号： ∀ (全称量化記号 (universal quantifier)と呼ばれる) , ∃ (存在量化記号 (existential quantifier)と呼
ばれる) *3

個体変項及び個体定項は項と呼ばれる．又，項を表すのに s, t, t0, t1, t2, . . .等のメタ表現を用いることとする．

次に一階論理式を定義する．

定義 5.2（一階論理式の定義 (文法)） ‾

1. S(∗, . . . , ∗)が n-項述語記号で t1, . . . , tn が項ならば，S(t1, . . . , tn)は原子論理式 (atomic formula) (又はア
トムとも呼ばれる)である．原子論理式は論理式である．

2. もし A，B が論理式であるならば，(A ∧B)，(A ∨B)，(A→ B)も論理式である．
3. もし Aが論理式であるならば，(¬A)も論理式である．
4. もし Aが論理式であるならば，任意の個体変項 xに対して (∀xA)，(∃xA)も論理式である．*4

ここでカッコの省略法については命題論理の論理式のカッコの省略法に従うものとする．但し，論理記号の結びつき

の強さの順序は量化記号 ∀，∃が ¬と同じ強さ (即ち，最も強いもの)とする．

*1 個体定項は，個体が持っている名前，すなわち固有名辞である．
*2 P (x)は「xは性質 P をもつ」，Q(x, y)は，「xと y は Qの関係にある」，人間 (x)は「xは人間である」愛 (x, y)は「xは y を愛している」

. . .と読む．
*3 “∀x”は「すべての x」「for all x」と，“∃x”は「ある x」「for some x」と読む．
*4 例えば，Aを論理式 P (花子) ∧ Q(x, y)とすると，A(x)によって，論理式 Aに自由変項 xが現われていることを示す．ここで，A中のすべ
ての自由変項が “A(x)”の形で表わされる必要はない．
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カッコの省略規則 (述語論理)

→
↔ <

∧
∨ <

¬
∀
∃� �

ある論理式 Aの構成において現れる (∀xB)又は (∃xB)の形の論理式に対して，B はこの ∀xの (又は，この ∃xの)
スコープと呼ばれる．この時 B に現れる記号は ∀xのスコープに現れていると言われる．ある論理式 Aに現れている

ある個体変項 xに対して，この現れが自由に現れていると呼ばれるのは，この xがどんな ∀x又は ∃xのスコープにも
現れていない時である．特に，上の Aにおける xの現れが ∀x(又は ∃x)のスコープ B に現れてはいるが，B に現れる

どんな ∀x及び ∃xのスコープにも現れていない時，この xの現れはこの ∀x(又は ∃x)によって束縛されていると言わ
れる．又，この時，この ∀x(又は ∃x)の現れはこの xの現れを束縛すると言われる．ある量化記号 (∀又は ∃)により
束縛されている個体変項は束縛変項 (bound variable)と呼ばれる．又，どんな量化記号によっても束縛されていない
個体変項は自由変項 (free variable)と呼ばれる．
例えば，P (花子, x, y)を原子論理式とすると，∀xP (花子, x, y) において，x は束縛変項であり，y は自由変項であ

る．また，花子は個体定項である．なお，∀xP (花子, x, y) と ∀zP (花子, z, y) とは区別しない．というのは，ここで，
束縛変項 x，z は，命題中の場所を表わすのに使われ，x も z も同じ場所を束縛しているからである．

より一般的に，束縛変項の変換規則は次のように一般化して与えられる．

与えられた論理式 Aに対して，すべての束縛関係を変えることなく束縛変項記号を置き変えることにより得ら

れる論理式 B は，もとの論理式 Aと同一視される．

ここで束縛関係とは量化記号の現れがある個体変項の現れを束縛する関係のことを意味する．

以下，∃y 好き (ミツ, y)，∀x∃y 好き (x, y) *1，∀y(¬Q(c1, y) ∧ ∃xP (x, y))が論理式であることを示す．

1より好き (ミツ, y)は論理式
4より∃y 好き (ミツ, y)は論理式

1より好き (x, y)は論理式
4より∃y 好き (x, y)は論理式
4より∀x∃y 好き (x, y)は論理式

1よりQ(c1, y), P (x, y)は論理式
3より¬Q(c1, y)は論理式
4より∃xP (x, y)は論理式
2より¬Q(c1, y) ∧ ∃xP (x, y)は論理式
4より∀y(¬Q(c1, y) ∧ ∃xP (x, y))は論理式

論理式 ∃y(∀xP (x, y) ∧Q(y, x))におけるすべての束縛関係は下の矢印で示される 3つである．

*1 ここで，∃y 好き (ミツ, y)を「ミツが好きな人が存在する」，∀y 好き (ミツ, y)を「すべての人がミツが好きだ」，∃x好き (x,ミツ)は「ミツ
を好きな人が存在する」と読む．そして，∀x∃y 好き (x, y)は「すべての人は誰かを好きだ」と読み，∃y∀x好き (x, y)と区別する．後者は
「すべての人が好きな人が存在する」と読み，ある人が少なくともひとり存在し，その人はすべての人に好かれていることを意味する．一方，
前者は誰でも人には，それぞれ好きな人が少なくともひとりいることを意味する．
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∃y (∀xP (x, y) ∧Q(y, x))
666

ここで ∃y のスコープは ∀xP (x, y) ∧ Q(y, x)であり，∀xのスコープは P (x, y)である．このことから，P (x, y)の
y と Q(y, x)の y はどちらも ∃y によって束縛され，P (x, y)の xは ∀xに束縛されるのに対し，Q(y, x)の xは「自由

に」現れていることが分かる．

今，例えば束縛変項 y，xを z，w で置き換えて得られる ∃z(∀wP (w, z) ∧Q(z, x))は下の矢印で示される通り，上
の 3つの束縛関係すべてを保つので，∃y(∀xP (x, y) ∧Q(y, x))と同一視される．

∃z (∀wP (w, z) ∧Q(z, x))
666

ところで，上の自由に現れている xを他の変項記号，例えば w で置き換えて，∃z(∀wP (w, z) ∧Q(z, w))とすると，
もはやこの論理式はもとの論理式と同一視できなくなることに注意しておく．これはもとの論理式で現れていた自由変

項の記号が変わったからである．自由変項の置き換えがあると，たとえ束縛変項と量化記号の束縛関係がすべて保たれ

ていても，論理式として同一視することはできない．

一方，もとの論理式の束縛変項を次のように置き換えた場合は，図示されている通り束縛関係が変化するので，もと

論理式と同一視することはできない．

1. 束縛変項 y，xを共に z で置き換えたとき；

∃z (∀zP (z, z) ∧Q(z, x))
666

2. 束縛変項 xを wで置き換え，y を xで置き換えたとき；

∃x (∀wP (w, x) ∧Q(x, x))
6666
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5.1 述語論理の構文論

命題論理のすべての推論規則に，次の量化記号に対する推論規則を加えたものが述語論理の推論規則である．　　

∀−I
.... }Πx

A(x)
∀xA(x)

(条件) *2

ここで xが，A(x)に至る証明図 Π(x)の開かれた前提 (open assumption)において，自由変項として現われて
いない．

　　

説明のため，具体的な例をあげてみる．

[B(x)]1....
C(x)

B(x)→ C(x)
(→ −I1)

∀x(B(x)→ C(x))
(∀−I)

(5.1)

下から二段目の論理式 B(x) → C(x) は，これから量化記号 ∀ が付け加えられる論理式であり，上の推論規則の
“A(x)”にあたる．そして，条件のいう “x”とは，B(x)→ C(x)に現れている自由変項 xであり，この規則の適用に

よって，“∀x”で縛られることになる．さらに，「Πxの前提」とは，B(x) → C(x)を導くために用いられた前提であ
り，証明図の一番上に現われている B(x)である．この例では，規則→-Iによって，その前提が既に「閉じている」，
即ち [B(x)]1 となっている．ゆえに，自由変項 xがその前提に現れていない．よって，∀-Iの条件は満たされており，
∀x(B(x)→ C(x))と結論できる．
より明確にするため，誤った推論を取り上げよう．

　
[B(x)]1....
C(x)
∀xC(x)

(∀−I)

B(x)→ ∀xC(x)
(→ −I1)

(5.2)

この推論は，∀-Iの条件を満たしていない．この証明における誤りは，次の段階にある．　　　

B(x)....
C(x)
∀xC(x)

(∀−I)

*2 この規則は，「ある tが Aである」ことから「すべての y が Aである」ことを推論する規則である．しかし，この規則が無条件に用いられる
ことは危険である．というのは，たったある 1 つの事実からすべてについての法則が導き出されることになりかねないからである．例えば，
∀-I を無条件に用いれば，「x はミツが好きです」という仮定から「すべての人はミツを好きです」が推論でき，これに→ -I を用いると「x

がミツを好きならば，すべての人がミツを好きです」と結論付けられる．これは，誤りである．このことを防ぐため，ある条件が必要となる．
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ここで，推論規則の “A(x)”に当たるものは C(x)である．そして，“x”とは，C(x)の自由変項 xである．そして，

C(x)に至る証明図の「Πxの開かれた前提」とは，B(x)である．例 1とは異なり，この段階ではまだ B(x)は「開い
ている」．そして，x が B(x) において自由に現われている．よって，∀-I の条件を満しておらず，C(x) から ∀yC(y)
への推論は成り立たない．ここで，(5.2)が誤った推論であることを，それぞれに日常的な推論にあてはめて見ること
によって考えてみる．B(x) を「x はまじめに授業に出席している」とし，C(x) を「x は，その授業の先生から成績

Aをもらう」とする．この時，(5.1)の推論によって得られる結論 ∀x(B(x) → C(x))は「まじめに授業に出席してい
る人は，すべて，その授業の先生から成績 A をもらう」ということになる．これは正しい．一方，(5.2) で得られる
B(x) → ∀xC(x)は，「xがまじめに授業に出席しているならば，その授業を登録している全員が，先生から成績 Aを

もらう」ということになる．

この誤まりは A(x)から ∀xC(x)への推論が，∀-Iの条件を満たしていなかったことによるのであるが，日常的な推
論にあてはめることによって，この条件の意味が多少とも明らかになろう．例 2における B(x)から ∀xC(x)への推論
は，「ある特定の xがまじめに授業に出席している」ことから「全員が，その授業の先生から成績 Aをもらう」という
推論である．この推論のおかしなところは，ある特定の xについての事実から，全員についての事実が推論されてい

ることにある．これは，何か 1つのものが白いという事実から，すべてのものが白いということを推論することに等し
い．∀-Iの条件は，まさにこのような推論を禁止しているのである．これに対して，(5.1)では，「xがまじめに授業に出

席しているならば，その xが，その授業の先生から成績 Aをもらう」という推論が，すべての xについていえること

を示しているのである．この推論においては，何等特定の xについての言及を含んでいない．即ち，条件は，C(x)が
何か特定の xについての結論でなければ，つまり，一般的な不特定者についての結論であるならば，それから ∀xC(x)
を推論できることを示しているのである．

ここで，∀-Iの条件をいま少し形式的に説明する．∀-Iは，∧-Iの一般化である．というのは，先に上げた ∀-Iの推論
規則は，次のようなものと考えられるからである．

D....
F (c1)

D....
F (c2)

D....
F (c3) · · ·

D....
F (ci) · · ·

F (c1) ∧ F (c2) ∧ F (c3) ∧ · · · ∧ F (ci) ∧ · · ·
(∧−I)

ここで，D · · ·F (ci)という論証がすべて同じ形であるならば，つまり特定の定項 ci についてのものでなく，任意の

ものについての推論であれば，D · · ·F (c1), D · · ·F (c2), · · ·の各論証を，一般化して変項 xに対する D · · ·F (x)の論
証と書き換え可能となる．そして，F (c1) ∧ F (c2) ∧ F (c3) ∧ · · ·を ∀xF (x)とみなすと，規則 ∀-Iは，不特定な個体 x

について F であるという推論から，∀xF (x)を推論するものであると言える．

∀−E

∀xA(x)
A(t)

ここで，tは，任意の一階の項 (first order term)，即ち任意の変項または定項．

例を上げる．x, y は，自然数を値とする変項とする．

....
∀x∃y(y > x)
∃y(y > x)

(∀−E)
(5.3)

ただし，次のような推論は不可能である．
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....
∀x∃y(y > x)
∃x(x > x)

(∀−E)
(5.4)

推論 (5.3)は，「すべての自然数には，その数より大きい数が存在する」ことから，任意の数 xより大きい数 y が存

在する」ことを証明している*3．一方，(5.4)は，同じ前提から「自分自身が自分自身より大きくなるような数が存在す
る」ことを証明している．推論 (5.4)の誤りは，規則 ∀-Iにおいて導入された tが A(t)において自由に現れなければな
らないことに反していることにある．

∃−I

A(t)
∃xA(x)

ここで，tは，任意の一階の項 (first order term)，即ち任意の変項または定項．

∃−E

....
∃xA(x)

A(x)....
D

D

(条件)
(i) D には，xは自由変項として現れない．

(ii) A(x)の自由変項に対しては ∀-Iの (条件)が成立する*4．

この推論は，「Aであるものが少なくとも 1つ存在する」ことから「ある xが Aである」を推論する規則である．た

だ，その様な直接的な形式ではない．一方で「Aであるものが少なくとも 1つ存在する」ことが証明され，他方で「あ
る xが Aである」ことから “D”が任意な xについて証明された時，「xが Aである」という前提なしに，「Aであるも

のが少なくとも 1つ存在する」ことから “C”が証明できるという形式になっている．ここで「xが Aである」という

前提が消えるということで，「Aであるものが少なくとも 1つ存在する」から，「xが Aである」を介して，C への推論

が成される．

この推論をいま少し形式的に説明してみると，∃-Eは ∨-Eの一般化であるということになる．というのは，推論規
則 ∃-Eは，次のようなものと考えられるからである．

....
F (c1) ∨ F (c2) ∨ · · · ∨ F (ci) ∨ · · ·

F (c1)....
D

F (c2)....
D · · ·

F (ci)....
D · · ·

D

ここで，F (c1) · · ·D, · · · , F (ci) · · ·D, · · ·というそれぞれの推論がすべて同じ形であるならば，つまり特定の定項に
ついてのものでなければ，それぞれの推論を任意の変項 x に対する推論 F (x) · · ·D とみなすことができる．そして，
F (c1) ∨ F (c2) ∨ · · · ∨ F (ci) ∨ · · ·を ∃xF (x)とみなすと，規則 ∃-Eは ∨-Eの一般化とみなすことができる．
規則 ∃-Eを例を上げて説明する．

*3 ここで xを “2”と考えてみると，この推論の意味がより明らかになろう．
*4 A(x)の自由変項 xが，D を導くために用いられた A(x)以外の「開いた前提」に自由に現れない．
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∃y∀xF (x, y)

[∀xF (x, b)]1

F (a, b)
(∀−E)

∃yF (a, y)
(∃−I)

∃yF (a, y)
(∃−E1)

この推論において，規則内の “∃xA(x)”にあたるものは ∃y∀xF (x, y)，“A(x)”にあたるものは ∀xF (x, b)，“D”に
あたるものは ∃yF (a, y)である．そして，“自由変項 x”は，∀xF (x, b)に現れる自由変項 bである．上の推論では，自

由変項 bが ∃yF (a, y)に自由に現れていない．よって，条件 (i)を満たしている．また，∃yF (a, y)の「開いた前提」は
∃yF (a, y)以外に存在しないので，bが自由に現れようがない．よって，条件 (ii)を満たしている．
次に誤った推論をあげる．

....
∃xL(x,花子)

[L(x,花子)]1

∃yL(x, y)
(∃−I)

∀x(∃yL(x, y)→ H(x))
∃yL(x, y)→ H(x)

(∀−I)

H(x)
(→ −E)

H(x)
(∃−E1)

上で L(x, y) を「x が y を愛している」，H(x) を「x は幸せである」とする．そして，∀y(∃xL(y, x) → H(y)) を，
「誰かを愛している人は，みな幸せである」とする．この推論は，∃xL(x,花子)(花子を愛している人が少なくとも 1人
存在する) *5から，まったく突然に xという人に対して H(x)(xは幸せである) *6と推論している．

この推論の誤りは，条件 (i)を満たしていないこと，即ち，“D”にあたるH(x)に，自由変項 “x”にあたる xが自由

に現われている点である．これによって，「花子を愛している人が，この世界に少なくとも 1人いる」という事実だけ
から，その人が xという人である，と結論付けされる．もし，世界に xしか存在しないのであれば，これも言えよう．

しかし，それはあり得ない．条件の (i)前半は，これを禁止するためのものである．
次に，条件 (ii)が満たされていない場合．

....
∃xL(x,花子)

[L(x,花子)]1

∃yL(x, y)
(∃−I)

∃yL(x, y)→ P (x)
P (x)

(→ −E)

∃zP (z)
(∃−I)

∃zP (z)
(∃−E1)

ここで，P (x)を「xは禿になる」とする．そして，∃yL(x, y) → P (x)を，「xは誰かを愛すると禿になる」という x

の非常に独特な性質を表わしているとする．

この推論の誤りは，条件 (ii)を満たしていない点である．それによって，∃xL(x)(花子を愛している人が少なくとも
1人いる)から，P (x)(どこかの誰かの xが禿になる)と結論されることになる．この推論の誤りは，「花子を愛してい
る誰か」が禿となった xとは限らないにも関らず，その「誰か」を xとみなした点にある．その結果，x固有の性質

「誰かを愛すると禿になる」が適用され，「xが禿た」と結論付けているのである．条件 (ii)は，このような事態を避け
るためのものである．

ここで，いくつかの例を挙げる．

例 5.1（述語論理の証明） ‾

1. ¬∀xA(x)→ ∃x¬A(x)

*5 この論理式の xは，∃xによって縛られているから，何か特定の人を指すわけではないことに注意して欲しい．
*6 ここでの xは，ある人の名前である．従って，∃xL(x,花子)の xとは，異なることに注意!
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[¬A(x)]1

∃x¬A(x)
∃−I

[¬∃x¬A(x)]2

⊥
¬−E

¬¬A(x)
¬−I,1

A(x)
¬¬−E

∀xA(x)
∀−I

[¬∀xA(x)]3

⊥
¬−E

¬¬∃x¬A(x)
¬−I,2

∃x¬A(x)
¬¬−E

¬∀xA(x)→ ∃x¬A(x)
→−I,3

2. ¬∀x∃yA(x, y)→ ∃x∀y¬A(x, y)

[¬∃yA(x, y)]1

∃x¬∃yA(x, y)
∃−I

[¬∃x¬∃yA(x, y)]2

⊥
¬−E

¬¬∃yA(x, y)
¬−I,1

∃yA(x, y)
¬¬−E

∀x∃yA(x, y)
∀−I

[¬∀x∃yA(x, y)]5

⊥
¬−E

¬¬∃x¬∃yA(x, y)
¬−I,2

∃x¬∃yA(x, y)
¬¬−E

[A(x, y)]3

∃yA(x, y)
∃−I

[¬∃yA(x, y)]4

⊥
¬−E

¬A(x, y)
¬−I,3

∀y¬A(x, y)
∀−I

∃x∀y¬A(x, y)
∃−I

∃x∀y¬A(x, y)
∃−E,4

¬∀x∃yA(x, y)→ ∃x∀y¬A(x, y)
→−I,5

練習問題 5.1 次の命題が証明可能であることを示せ。

1. ∃x¬A(x)→ ¬∀xA(x)
2. ∃x∀y¬A(x, y)→ ¬∀x∃yA(x, y)
3. ¬∀x¬A(x)↔ ∃xA(x)
4. ∀x∃yA(x, y)↔ ¬∃x∀y¬A(x, y)
5. ∀xA(x) ∧ ¬∃yB(x)↔ ∀z(A(z) ∧ ¬B(z))
6. ∀x(A(x) ∧B(x))↔ ∀xA(x) ∧ ∀xB(x)
7. ∃x(A(x) ∨B(x))↔ ∃xA(x) ∨ ∃xB(x)
8. ∀x∀y(A(x)→ B(y))↔ (∃xA(x)→ ∀yB(y))
9. ∃x∃y(A(x)→ B(y))↔ (∀xA(x)→ ∃yB(y))
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5.2 述語論理の意味論

ここでは，一階述語論理の論理的意味論を展開する．この論理的意味論の基本的な考え方は，ある言語に属する表現

の意味 (解釈)をその表現によって指示される対象と同一視することに存する．そこで，この意味論は，しばしば表示
的意味論 (Denotational semantics)と呼ばれる．前述の命題論理の意味論では，意味対象として，命題論理における
論理式の真理値，即ち，tおよび f だけを考えた．つまり，論理式の値としての t，f だけが，意味論的対象であり，

任意の論理式は t又は f を指示すると考えられた．一階述語論理では，これまでのような論理式の値としての t，f と

いう対象領域のほかに，一階の項 (個体変項と個体定項)の指示対象領域，即ち，個体の値の領域 (これを以下では集合
D で表す) をも考えることとなる．
まず，意味領域 (値域)から定義する．論理式の値域として {t, f}，(一階述語論理の)項の値域 (これを個体領域と呼
ぶ)としてある集合D を与える．与えられた個体領域D に対して，述語論理言語表現の意味 (解釈)は次のように与
えられると考える．

1. 各個体定項の意味解釈は，領域D 内のそれが指示するある対象のこととする．

2. 各個体変項に対して領域D 上の対象を割り当て，これをその個体変項に対する付値と呼ぶ．ある付値が与えら

れたとき，個体変項の意味解釈は，その付値によって割り当てられたD 上の対象のこととする．

3. 各 1座述語記号 P (∗)の意味解釈は，領域D 内のある部分集合のこととする．即ち，P (∗)の表示的意味は，D

のある部分集合として指定される．述語記号が 1座述語記号ではなく，2座以上である場合，例えば，P (∗, ∗, ∗)
のように 3座述語記号 (three place predicate symbol) である場合は，P (∗, ∗, ∗)の意味解釈は，D ×D ×D

の部分集合のこととする．

以下において，論理式の意味，即ち真偽値を定義する．

4. 閉原子論理式*7P (c) の意味解釈を次のように考える．個体定項 c(固有名 c) の意味解釈 (D 内の指示対象) が，
P の解釈 (D の部分集合)の要素である時，P (c)は真と解釈され，そうでない場合 P (c)は偽と解釈される．
多座述語からなる閉原子論理式 P (c1, c2, c3)等についても同様に定義される．

5. P (x)の形の開論理式 (ここで xは自由変項)と与えられた xの付値 a(ここで aはDの要素)にと対して，P (x)
の意味解釈 (P (x)[a]と表わす) とは次のように与えられる．
P (x)[a]は付値 aが P の外延的意味 (D のある部分集合) の要素のとき，真と解釈され，そうでないとき偽と解
釈される．

P (x1, c1, x2)等のような多座の場合も P (x1, c1, x2)[a, b]の真偽値は，上の自然な拡張として与えられる．
6. A ∧B，A ∨B，¬A，A→ B の意味解釈 (真偽値)は，命題論理の意味論で与えた通りに与えられる．ただし，
これらに自由個体変項 x1, . . . , xn が現れている場合には，与えられた付値 a1, . . . , an(∈ D)に対して真偽値を
考える．

7. ∀xA(y1, . . . , yn, x)[a1, . . . , an] (ここで y1, . . . , yn, xは Aに現れるすべての自由変項の枚挙であり，a1, . . . , an

は，y1, . . . , yn への付値である)は次のように与えられる．
∀xA(y1, . . . , yn)[a1, . . . , an]が真であるのは，すべてのD の要素 bに対して，

A(y1, . . . , yn, x)[a1, . . . , an, b]が真である時かつその時に限る．
8. 上と同様な表記法のもとで，∃xA(y1, . . . , yn)[a1, . . . , an] が真であるのは，ある D の要素 b に対して，

A(y1, . . . , yn, x)[a1, . . . , an, b]が真である時かつその時に限る．

*7 閉原子論理式とは，論理記号も自由変項も含まない論理式のことである．
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以上の意味論を，モデル (model)の概念を用いて，次のようにより形式的に定義することができる．

定義 5.3（意味写像） 一階述語論理の言語に対するモデル ⟨D, ϕ⟩ とは，次のようにして与えられる構造のことであ
る．ここで，D は任意の空でない集合であり，個体領域と呼ばれる．ϕは意味写像と呼ばれる次のような写像である．

1. 各個体定項 cに対して ϕ(c) ∈D，つまり ϕ(c)は cという名が指示するDの対象，即ち cの解釈である．以下，

ϕ(c)を c̄と表わすことにする．

2. 各 n座述語記号 P (∗, ∗, · · · , ∗︸ ︷︷ ︸
n

)に対して，

ϕ(P ) ⊆D ×D × · · · ×D︸ ︷︷ ︸
n

これを述語 P の解釈と考える．(P の解釈とは，内容的には，P が真となるような領域上の外延である．)

今，⟨D, ϕ⟩が与えられた時，任意の論理式 A(x1, · · · , xn) (ここで x1, . . . , xn は Aに現れる自由変項の枚挙である)
と自由変項の枚挙 x1, · · · , xnに対する付値 a1, · · · , an (∈D)について，A(x1, · · · , xn)の付値 a1, . . . , anに対する解釈

(真偽値)を ϕ(A(x1, . . . , xn)[a1, . . . , an]) と表し次のように定義する．ここで，ϕ(A(x1, . . . , xn)[a1, . . . , an]) = t，即

ち A(x1, · · · , xn)が ⟨D, ϕ⟩ の上で付値 a1, · · · , an のもとで真であるということを ⟨D, ϕ⟩ |= A(x1, · · · , xn)[a1, · · · , an]
とも表わす．特に，Aが閉論理式である時は，これを ⟨D, ϕ⟩ |= Aと表す．

定義 5.4 (A(x1, · · · , xn)の付値 a1, . . . , an に対する解釈 (真偽値))

1. A(x1, · · · , xn)が原子論理式である時，即ちある n-項述語記号 P に対して，A(x1, · · · , xn)が P (x1, · · · , xn) の
形の時，⟨D, ϕ⟩ |= P (x1, · · · , xn)[a1, · · · , an]であるのは，⟨a1, · · · , an⟩ ∈ ϕ(P )の時かつその時に限る．

2. A(x1, · · · , xn)が B(x1, · · · , xn) ∧ C(x1, · · · , xn)の形である時，⟨D, ϕ⟩ |= (B(x1, · · · , xn)∧
C(x1, · · · , xn))[a1, · · · , an]であるのは，⟨D, ϕ⟩ |= B(x1, · · · , xn)[a1, · · · , an]でかつ
⟨D, ϕ⟩ |= C(x1, · · · , xn)[a1, · · · , an]である時かつその時に限る．

3. A(x1, · · · , xn)が B(x1, · · · , xn) ∨ C(x1, · · · , xn)の形である時，⟨D, ϕ⟩ |= (B(x1, · · · , xn)∨
C(x1, · · · , xn))[a1, · · · , an]であるのは，
⟨D, ϕ⟩ |= B(x1, · · · , xn)[a1, · · · , an] 又は ⟨D, ϕ⟩ |= C(x1, · · · , xn)[a1, · · · , an]である時かつその時に限る．

4. A(x1, · · · , xn) が ¬B(x1, · · · , xn) の形である時，⟨D, ϕ⟩ |= ¬B(x1, · · · , xn) であるのは，⟨D, ϕ⟩ ̸|=
B(x1, · · · , xn)[a1, · · · , an]の時 (即ち，⟨D, ϕ⟩ |= B(x1, · · · , xn)[a1, · · · , an]でない時)かつその時に限る*8．

5. A(x1, · · · , xn)が ∀yB(x1, · · · , xn, y)の形である時，⟨D, ϕ⟩ |= ∀yB(x1, · · · , xn, y)であるのは，D のすべての

要素 b (即ち，すべての b ∈D)に対して ⟨D, ϕ⟩ |= B(x1, · · · , xn, y)[a1, · · · , an, b] である時かつその時に限る．
6. A(x1, · · · , xn)が ∃yB(x1, · · · , xn, y)の形である時，⟨D, ϕ⟩ |= ∃yB(x1, · · · , xn, y)であるのは，D のある要素

b(即ち，ある b ∈D) に対して ⟨D, ϕ⟩ |= B(x1, · · · , xn, y)[a1, · · · , an, b] である時かつその時に限る．

次に例を示し以上のことを説明する．

例 5.2 D として {花子さん，聖子さん，今日子さん，美奈子さん，亜紀さん }という人間の集合を考える．つまり，
今，5人だけの世界を考える．
今，我々の言語には，個体定項として (つまり，固有名として)

則子，‾ 今日子，‾ 美奈子，‾ 亜紀

*8 A → B の意味は，¬A ∨ B として与えられるものとする．
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だけが含まれ，また，述語記号として
美しい (x) (xは美しい)

だけが含まれているとする．先に挙げた意味写像 ϕとしていろいろな可能性が考えられるが，次のように指定する．

ϕ(則子) = 聖子さん
ϕ(今日子) = 今日子さん
ϕ(美奈子) = 美奈子さん
ϕ(亜紀) = 亜紀さん

この指定が，意味写像 ϕの条件を満たしていることは明らかである．

上に挙げたものの内に ϕ(花子) = · · ·が存在しないのは，我々の人工言語には 4つ固有名しかなく，我々が考えてい
る世界D に存在する (どこかの)花子さんを示す名前は，残念ながら存在しないことを示す．また，ϕ(則子) = 聖子さ
んは，「則子」という名前が，我々の世界D の中にいる聖子さんという人間を指示していることを示している．

今，ϕ(美しい)を指定することによって我々の人工言語の「美しい」という言葉の意味を与えることができるわけで
ある．

例えば，次のように指定したとする．

ϕ(美しい) = {花子さん,亜紀さん }

この集合は，D の部分集合であるから意味写像の条件を満たしている．

今，前述した論理式の真偽値の定義に従えば，次のことが言える．

⟨D, ϕ⟩ |= 美しい (亜紀)

(つまり，「亜紀は美しい」という我々の人工言語の文は世界 ⟨D, ϕ⟩で真である．)

⟨D, ϕ⟩ |=/美しい (今日子)

(つまり，「今日子は美しい」は世界 ⟨D, ϕ⟩で偽である．)

⟨D, ϕ⟩ |=/美しい (則子)

(つまり，「則子は美しい」は世界 ⟨D, ϕ⟩で偽である．)
では，次の文についてはどうであろうか．

美しい (花子)

これは，真でも偽でもない．そもそも，“美しい (花子)”という文は我々の言語に存在しない，なぜなら，我々の言語
には，“花子”という名詞が存在しないので，“美しい (花子)” は論理式ではない (即ち，我々の人工言語の文ではない)
からである．

一方，個体定項の代わりに個体変項を用いて作られる “美しい (x)”は論理式の定義に適合するから，我々の言語では
完全な文である．

ただし，このような自由変項を含む論理式の真偽には，前に示したように，変項についてのD の要素の付値が必要

となる．定義 5.4に従えば，次のことが言える．

⟨D, ϕ⟩ |= 美しい (x)[亜紀さん]

(つまり，“亜紀さんは美しい”という内容は真である．)
同様に，次のことも言える．

⟨D, ϕ⟩ |=/美しい (x)[今日子さん]
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(つまり，“今日子さんは美しい”という内容は真である．)

⟨D, ϕ⟩ |= 美しい (x)[花子さん]

(つまり，“花子さんは美しい”という内容は真である．)

さて今までは，ある ⟨D, ϕ⟩ の下での論理式の真偽値について述べてきた．ここで，ある閉論理式 Aに対して，もし

任意の D と ϕ について ⟨D, ϕ⟩ |= Aが言える場合，Aは妥当 (valid)であるという．閉論理式 Aに対して，Aが妥

当であることを |= Aと表す．

多ソート述語論理言語

述語論理言語においては，量化論理記号 ∀，∃の解釈は与えられた領域D 全体に関して定義された．例えば，閉論

理式 ∀xA(x) に対して ⟨D, ϕ⟩ |= ∀xA(x) は領域D 上のすべての a に対して ⟨D, ϕ⟩ |= A(x)[a] と解釈され，又閉論
理式 ∃xA(x) に対して ⟨D, ϕ⟩ |= ∃xA(x) は領域D 上のある a に対して ⟨D, ϕ⟩ |= A(x)[a] と解釈された．よって特
にD の中のある部分領域上における量化の解釈を与えるには，その部分領域を意味解釈として持つような一項述語記

号を導入して，この一項述語記号を援用することにより，そのような量化の解釈がなされる．例えば，「D 上のすべ

ての人間 x に対して A(x)」及び「D 上のある人間 x に対して A(x)」は，D の部分領域である人間の集合を解釈と

して持つような一項述語記号，例えばMan(∗)を導入して，∀x(Man(x) → A(x))及び ∃x(Man(x) ∧ A(x))と表現
された．一方これに対して，項がどのような種類の領域 (これをソートと呼ぶ)を表しているかを言語のレベルで指示
しておくことがしばしば有用である．例えば，今 x，y を人間のソートを表す変項と指定しておくことにより，先の

∀x(Man(x)→ A(x))及び ∃x(Man(x) ∧A(x))は単に ∀xA(x)及び ∃xA(x)と書けることとなる．以下で，これまで
の述語論理言語を多ソート述語論理言語に拡張しておく．

定義 5.5（多ソート述語言語） ‾

ソート記号： α, β, γ, . . . , α1, α2, . . .が与えられる．

個体変項： 各ソート αに対して，ソート αの変項 xα, yα, zα, xα
1 , xα

2 , . . .が与えられる．

個体定項： 各ソート αに対して，個体定項 cα
1 , cα

2 , . . .が与えられる．

個体変項と個体定項は項と呼ばれる．

n-項述語記号： ソート α1, . . . , αn に対して n-項述語記号 P α1,...,αn(∗, . . . , ∗︸ ︷︷ ︸
n 個

) が与えられる．

論理式の定義は，次の点を除けばこれまでの述語論理言語の論理式の定義と同様である．

もし P α1,...,αn(∗, . . . , ∗)が n-項述語記号で，t1, . . . , tn が各々ソート α1, . . . , αn の項であるとき，

P α1,...,αn(t1, . . . , tn) は (原子)論理式である．
n 個のソート α1, . . . , αn を許す (多ソート) 述語論理言語の意味論においては，モデル ⟨D, ϕ⟩ の概念は，モデ
ル ⟨Dα1 , . . . , Dαn , ϕ⟩ の概念に自然に拡張される．ここで Dαi はソート αi の意味領域 (ソート αi の対象の集

合) とする．ソート αi の個体定項 cαi に対して ϕ(cαi) ∈ Dαi とする．ソート αi の個体定項 xαi の付値 a は

条件 a ∈ Dαi を満たすものとする．ソート α1, . . . , αn に対する n− 項述語記号 P α1,...,αn(∗, . . . , ∗︸ ︷︷ ︸
n 個

) に対して，

ϕ(P α1,...,αn(∗, . . . , ∗︸ ︷︷ ︸
n 個

)) ⊆Dα1 × · · · ×Dαn とする．他はこれまでの述語論理の意味論における意味解釈の定義と変わ

らないものとする．

定理 5.1（完全性定理 (Completeness thorem)） |= A(即ち，Aが妥当であること)は ⊢ A (即ち，Aが証明可能である
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こと)と同値である．

練習問題 5.2 先の例で，次を確かめよ．

< D, ϕ > |= 美しい (今日子) ∨美しい (亜紀)
< D, ϕ > ̸|= 美しい (今日子) ∧美しい (亜紀)
< D, ϕ > |= ¬(美しい (今日子) ∧美しい (亜紀))
< D, ϕ > |= ∃x(美しい (x))
< D, ϕ > ̸|= ∀x(美しい (x))

練習問題 5.3 次の前提より，定理を導き出せ．

1. 今日晴れているならば，僕はテニスをする．

晴れる→ テニスをする

2. 僕が勉強するならば，僕はテニスをしない．

勉強する→ ¬テニスをする

3. 僕の気分がよければ，その日は必ず晴れている．

気分がよい→ 晴れる

4. 僕の気分が悪ければ，僕は勉強しない．

¬気分がよい→ ¬勉強する

(定理) 僕は，今日勉強しない．
¬勉強する

練習問題 5.4 次の前提より定理を導き出せ．

1. 今日晴れているならば，すべての人はテニスをする．

晴れている→ ∀xテニス (x)

2. どんな人でも，勉強するならばテニスをしない．

∀x(勉強 (x)→ ¬テニス (x))

3. 気分がよい人がいるならば，その日は必ず晴れている．

∃x気分 (x)→ 晴れている

4. 気分が悪ければ，勉強しない人がいる．

∃x(¬気分 (x)→ ¬勉強 (x))

(定理) 勉強しない人がいる．
∃x¬勉強 (x)

練習問題 5.5 次の前提より，定理を導き出せ．
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1. 神が存在し，私が神を信じるならば,私は救われる．

神 ∧信→ 救

2. 神が存在しなければ，悪魔が存在する．
¬神→ 悪魔

3. 私が救われるならば，神は存在する．
救→ 神

4. 悪魔が存在するならば，私は神を信じる．
悪魔→ 信

(定理 1) 私が救われることなく，しかも私が神を信じるならば，悪魔が存在する．

¬救 ∧信→ 悪魔

(定理 2) 神が存在するか，私が神を信じると悪魔が存在することが同値であるかである．

神 ∨ (信↔ 悪魔)

練習問題 5.6 次の前提より，定理を導き出せ．

1. 誰かを愛する人は，みな，幸せである．
∀x(∃yL(x, y)→ H(x))

2. 愛される人は美しい．
∀y(∃xL(x, y)→ B(y))

3. 美しい人なら誰でも，愛する人がいる．
∀y(B(y)→ ∃xL(x, y))

4. すべての人が美しいならば，不幸に感じる人がいる．

∀xB(x)→ ∃y¬H(y)

(定理 1) 愛されかつ愛さない人が，いないならば，美しい人は幸せである．

¬∃x(∃yL(y, x) ∧ ¬∃yL(x, y))→ ∀y(B(y)→ H(y))

(定理 2) みんなが美しいならば，愛され愛さない人がいる．

∀xBx→ ∃x(∃yL(y, x) ∧ ∀y¬L(x, y))

練習問題 5.7 次の前提より，定理を導き出せ．

1. 2本足であるならば，鳥であるか，人間である．

2本足→ 鳥 ∨人間

2. 鳥は空を飛べる．
鳥→ 飛

(定理) 2本足で空を飛べないならば，人間である．

2本足 ∧ ¬飛→ 人間
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練習問題 5.8 次の前提より，定理を導き出せ．

1. どんな人も，勉強すれば成績が良い．
∀x(勉強 (x)→ 成績 (x))

2. どんな人も，成績が良ければ幸せである．

∀x(成績 (x)→ 幸 (x))

3. どんな人も，勉強しなければ幸せである．

∀x(¬勉強 (x)→ 幸 (x))

(定理) すべての人は，幸せである．
∀x幸 (x)

練習問題 5.9 次の前提より，定理を導き出せ．

1. どんな人も，成績が良ければ楽しい．
∀x(成績 (x)→ 楽 (x))

2. どんな人も，勉強しなければ楽しい．
∀x(¬勉強 (x)→ 楽 (x))

3. 楽しくない人がいる．
∃x¬楽 (x)

(定理) 勉強したのに成績が良くない人がいる．

∃x(勉強 (x) ∧ ¬成績 (x))


