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Abstract

Proof-theory has traditionally been developed based on linguistic (symbolic) represen-
tations of logical proofs. Recently, however, logical reasoning based on diagrammatic or
graphical representations has been investigated by logicians. Euler diagrams were intro-
duced in the 18th century by Euler [1768]. But it is quite recent (more precisely, in the
1990s) that logicians started to study them from a formal logical viewpoint. We propose a
novel approach to the formalization of Euler diagrammatic reasoning, in which diagrams
are defined not in terms of regions as in the standard approach, but in terms of topo-
logical relations between diagrammatic objects. We formalize the unification rule, which
plays a central role in Euler diagrammatic reasoning, in a style of natural deduction. We
prove the soundness and completeness theorems with respect to a formal set-theoretical
semantics. We also investigate structure of diagrammatic proofs and prove a normal form
theorem.

1 Introduction

Euler diagrams were introduced by Euler [3] to illustrate syllogistic reasoning. In Euler dia-
grams, logical relations among the terms of a syllogism are simply represented by topological
relations among circles. For example, the universal categorical statements of the forms All A
are B and No A are B are represented by the inclusion and the exclusion relations between
circles, respectively, as seen in Fig. 1. Given two Euler diagrams which represent the premises
of a syllogism, the syllogistic inference can be naturally replaced by the task of manipulating
the diagrams, in particular of unifying the diagrams and extracting information from them.
For example, the well-known syllogism named “Barbara,” i.e., All A are B and All B are C;
therefore All A are C, can be represented diagrammatically as in Fig. 2.

However, things become complicated when existential statements come into the picture.
In Euler’s original system, any minimal region, i.e. region inside of some circles and outside
of the rest of the circles (possibly none) in a diagram, is assumed to represent a non-empty
set. Thus, in this system, diagram D; of Fig. 3 says that three sets ANB, A\ B, and B\ A are
non-empty. This existential import destroys the simple correspondence between categorical
statements and Euler diagrams (cf. Hammer-Shin [8]). For instance, Some A are B can be
expressed by the disjunction of Dy, Dy and Dj3 of Fig. 3:

Venn [23] and Peirce [16] overcame this difficulty by removing the existential import from
regions, and by introducing new syntactic devices. Venn first fixed a so-called “primary dia-
gram” such as D of Fig. 3, which does not convey any specific information about the relation

*The final publication is available at www.springerlink.com.
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between A and B. Meaningful relations between circles are then expressed by specifying
which regions are “empty” using the novel syntactic device of shading, which corresponds to
logical negation. Observe that All A are B is equivalent to There is nothing which is A but
not B, and the statement is expressed by making use of the shading as in Fig.4. In Venn
diagrams, existential claims are expressed by using another syntactic device, “x,” which was
introduced by Peirce [16, 4. 359], and which represents non-emptiness of the corresponding

region as seen in Fig. 5.
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Two Venn diagrams may be combined into another Venn diagram by accommodating
the labels of circles and then by superposing the shaded regions, as illustrated in Fig.6.
Because of their expressive power and their uniformity in formalizing the manipulation of
combining diagrams (simply as the superposition of shadings), Venn diagrams have been very
well studied; formal semantics and inference systems are given, and basic logical properties
such as soundness, completeness, and decidability are shown. Cf. Venn-I, -II systems of Shin
[18], Spider diagrams SD1 and SD2 of Howse et al. [9, 14], etc. For a recent survey, see [19].

However, the development of systems of Venn diagrams is obtained at the cost of clarity of
the representations of Euler diagrams. As Venn [23] himself already pointed out, when more
than three circles are involved, Venn diagrams fail in their main purpose of affording intuitive
and sensible illustration. (For some discussions on visual disadvantages of Venn diagrams, see



[8].) In order to make up for the shortcoming of Venn diagrams, Euler diagrams with shading
were introduced by considering some shaded regions of Venn diagrams as “missing” regions.
E.g., Euler/Venn diagrams of [22]; Spider diagrams ESD2 of [14] and SD3 of [10]. At the
concrete level of representation, the diagrams in these systems are Euler diagrams. However,
their abstract syntax and semantics are still defined in terms of regions. Thus we call both
Venn diagrams and Euler diagrams with shading region-based diagrams.

The region-based framework still fails in capturing the simplicity of representations and
inferences of Euler diagrams; it has the following complications:

(1) In region-based diagrams, logical relations among circles are represented by the use of
shading or missing regions. This makes the translation of categorical statements uncomfort-
ably complex. Cf. the translation of universal categorical statements in Fig. 4.

(2) The inference rule of wunification, which plays a central role in Euler diagrammatic rea-
soning, is defined by way of the superposition of Venn diagrams. For example, when we unify
two diagrams D; and Ds of Fig. 2 to derive the diagram &, they are first transformed into D}
and D3 of Fig. 6, respectively; then, by the derivation of Fig. 6, the diagram £V is obtained;
finally, £Y is transformed into £ of Fig. 2. In this way, processes of deriving conclusions are
often made complex, and hence less intuitive.

In contrast to the studies in the tradition of region-based diagrams, we propose a novel
approach to formalize Euler diagrams in terms of topological relations. Our system has the
following features and advantages:

(1) Our diagrammatic syntax and semantics are defined in terms of topological relations,
inclusion and exclusion relations, between two diagrammatic objects. This formalization
makes the translations of categorical sentences natural and intuitive.

(2) We decompose the unification operation into more primitive unification rules, where one
of the two unified diagrams is restricted to be a minimal diagram, i.e., a diagram consisting
of two objects. This enables us to define the unification directly without making a detour to
Venn diagrams, and hence to capture the inference process as illustrated in Fig.2. Also, by
decomposing the unification operation, the validity of the primitive unification rules becomes
immediate, and the operational meaning of them is clear. Our completeness theorem ensures
that general complex diagrams, which are not necessarily minimal, may be unified by using
our unification rules.

(3) We formalize the unification in the style of Gentzen’s natural deduction ([5]). This makes it
possible to compare our Euler diagrammatic inference system directly with linguistic natural
deduction systems. Through such a comparison, we can apply well-developed proof-theoretical
techniques such as normalization of proofs to diagrammatic reasoning studies.

From a perspective of proof-theory, the contrast between the standpoints of the region-
based framework and our topological-relation-based framework can be understood as follows:
At the level of representation, the contrast is analogous to the one between disjunctive normal
formulas and implicational formulas; at the level of reasoning, the contrast is analogous to
the one between resolution calculus style proofs and natural deduction style proofs. See [13]
for a formal discussion.

From a perspective of cognitive psychology, our system is designed not just as an alter-
native of usual linguistic/symbolic representations; we make the best use of advantages of
diagrammatic representations so that inherent definiteness or specificity of diagrams can be
exploited in actual reasoning. (See [17] for our cognitive experimental studies.)

In this paper, we start our study by concentrating on the following basic syntactic devices:
inclusion and exclusion relations between two circles and points; crossing relations between



circles, which say nothing specific about the semantic relationship between the circles as
it does in Venn diagrams; named points (constant symbols) to represent the existence of
particular objects. Although our basic system is weaker in its expressive power than usual
Venn diagrammatic systems (e.g. Shin’s Venn-II, which is equivalent to the monadic first
order logic), our system is expressive enough to characterize basic logical reasoning such as
syllogistic reasoning. (In [12], we discuss natural extensions of our system.)

The rest of this paper is organized as follows. In Section 2, we introduce a topological-
relation-based Euler diagrammatic representation system EUL. We give a definition of an Euler
diagrammatic syntax EUL in Section 2.1 and a set-theoretical semantics for it in Section 2.2.
In Section 3, we formalize a diagrammatic inference system GDS. We introduce two kinds of
inference rules: unification and deletion. We define in Section 3.2 the notion of diagrammatic
proof, which is considered as a chain of unification and deletion steps. The inference system
GDS is shown in Section 3.3 to be sound (Theorem 3.5) and complete (Theorem 3.14). In
Section 3.4, we discuss some consequences of completeness of GDS. In particular, a normal
form theorem (Theorem 3.18) of GDS is shown.

2 A diagrammatic representation system EUL for Euler circles

2.1 Diagrammatic syntax of EUL
Let us start by defining the diagrams of EUL.

Definition 2.1 (EUL-diagram) An EUL-diagram is a plane (R?) with a finite number, at
least two, of named simple closed curves ' (simply called named circles, and denoted by
A, B,C,...) and named points (denoted by a,b,c,...), where

e no two named simple closed curves and points are completely concurrent, and
e no two named circles and points have the same name.

Named circles and named points are collectively called (diagrammatic) objects, and denoted
by s,t,u,.... We use a rectangle to represent the plane for an EUL-diagram. EUL-diagrams
are denoted by D, &, Dy, Do, . ...

When D is an EUL-diagram, we denote by pt(D) the set of named points of D, by cr(D)
the set of named circles of D, by 0b(D) the set of objects of D, i.e., ob(D) = pt(D) U cr(D).

Examples of non well-formed diagrams are given in Fig.7. (i), (ii), (iii) consists of less
than two objects; in (iv), named circles A and B are completely concurrent, i.e., located at
the same place; in (v) and (vi), two objects have the same name.

O QI Oy
(i) (i) (ii) (iv) (v) (vi)
Fig.7 Non-well-formed diagrams of EUL
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Note that any two objects are spatially distinct in a diagram by definition.

!See [2] for a formal definition of simple closed curves on RZ.



Definition 2.2 (Minimal diagram) An EUL-diagram consisting of only two objects is called
a minimal diagram. Minimal diagrams are denoted by «, 5,7, .. ..

We study mathematical properties of EUL-diagrams in terms of the following topological
relations between two diagrammatic objects:

Definition 2.3 (EUL-relation) EUL-relations are the following binary relations between dis-
tinct diagrammatic objects:

A B “the interior?of A is inside of the interior of B,”

AH B “the interior of A is outside of the interior of B,”

A< B “there is at least one crossing point between A and B,”

bC A  “bis inside of the interior of A,”

bHA  “bis outside of the interior of A,”

aHDb “ais outside of b (i.e. a is not equal to b).”

EUL-relations H and < are symmetric, while C is not. Note that all EUL-relations are
irreflexive.

Proposition 2.4 Let D be an EUL-diagram. For any distinct objects s and t of D, exactly
one of the EUL-relations s C t,t C s,s Ht,s >t holds.

Observe that, by Proposition 2.4, for a given EUL-diagram D, the set of EUL-relations
holding on D is uniquely determined. We denote the set by rel(D).

The following properties, as well as Proposition 2.4, characterize EUL-diagrams.

Lemma 2.5 Let D be an EUL-diagram. Then for any objects (named circles and points)
s,t,u € ob(D), we have the following:

(Transitivity) If s C t,t C u € rel(D), then s C u € rel(D).

1.
2. (H-downward closedness) If s Ht,u C s € rel(D), then u H t € rel(D).
3.

(Point determinacy) For any x € pt(D) other than s, exactly one of x C s and x H s is
in rel(D).

4. (Point minimality) For any x € pt(D), s T x & rel(D).

In order to study mathematical properties of our diagrammatic system, we consider equiv-
alence classes of diagrams. Our equivalence relation among EUL-diagrams is defined in terms
of EUL-relations as follows.

Definition 2.6 (Equivalence among EUL-diagrams) Any EUL-diagrams D and & are syn-
tactically equivalent when rel(D) = rel(E).

For example, diagrams D, Dy, and D3 of Fig.8 are equivalent since exactly the same
EUL-relations A b1 B,A <1 C,B < C,a H A,a T B, and a H C hold on them. (See [12]
for extensions of our representation system EUL, where D;,Ds, and Dj3 are distinguished by
regarding intersection, union, and complement regions respectively as diagrammatic objects.)

?Here, the interior of a named circle A means the region strictly inside of A. Cf. [2].
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On the other hand, D; and Dy (resp. D; and Ds) are not equivalent since different EUL-
relations hold on them: A C C holds on Dy in place of A< C of Dy (resp. C C Aand C C B
hold on Dj5 in place of A1 C and C > B of Dy).

Our equation of diagrams may be explained in terms of a kind of “continuous transfor-
mation (deformation)” of named circles, which does not change any of the EUL-relations in
a diagram. The named circle C' in D; of Fig.8 can be continuously transformed, without
changing the EUL-relations with A, with B and with @ in such a way that C' covers (resp. is
disjoint from) the intersection region of A and B as it does in Dy (resp. in D3).

In what follows, the diagrams which are syntactically equivalent are identified, and they
are referred to by a single name.

2.2 Set-theoretical semantics of EUL

In this section, we give a formal semantics for EUL. We adopt the standard set-theoretical
semantics. 3 Intuitively, each circle is interpreted as a set of elements of a given domain, and
each point is interpreted as an element of the domain. However, observe that each point of
EUL can be considered as a special circle which does not contain, nor cross, any other objects.
This observation enables us to interpret the EUL-relations C and H uniformly as the subset
relation and the disjointness relation, respectively.

Definition 2.7 (Model) Let D be an EUL-diagram. Let M be a pair (U, 1), where U is
a non-empty set (the domain of M), and I : ob(D) — P(U) is an interpretation function
which assigns to each diagrammatic object a non-empty subset of U such that

e [(z) is a singleton for any named point z, and

e [(z) # I(y) for any points z,y of distinct names.

M = (U,I) is a model of D, written as M = D, if the following truth-conditions (1) and (2)
hold: For all objects s,t of D,

(1) I(s) CI(t) if s C ¢ holds on D,

(2) I(s)nI(t)=0 if sH¢ holds on D.

Note that we assign a non-empty set to each named circle. Note also that when s is a
named point a, for some e € U, I(a) = {e}, and the above I(a) C I(t) of (1) is equivalent to
e € I(t). Similarly, I(a) N I(t) = ( of (2) is equivalent to e & I(t).

The well-definedness of the truth-conditions follows from Proposition 2.4.

3For similar set-theoretical approaches to semantics of Euler diagrams, see [10, 6, 22] etc. Our semantics
is distinct from theirs in that diagrams are interpreted in terms of binary relations, and not every region in a
diagram has a meaning.



Remark 2.8 (Semantic interpretation of t<-relation) By Definition 2.7, the EUL-relation
>4 does not contribute to the truth-condition of EUL-diagrams. Informally speaking, s bt
may be understood as I(s) N I(t) =0 or I(s) NI(t) # 0, which is true in any model.

Definition 2.9 (Validity) An EUL-diagram £ is a semantically valid consequence of EUL-
diagrams Dy, ..., D,, written as Di,...,D, E &, when the following holds: For any model
M,if M =D; and ...and M |= D, then M = E.

3 Diagrammatic inference system GDS

In this section, we introduce Generalized Diagrammatic Syllogistic inference system GDS for
the EUL-diagrams defined in Section 2.1. There are two inference rules of GDS: unification
and deletion. We first give an informal explanation of our unification in Section 3.1, and we
then formalize it in Section 3.2. In Section 3.3 our GDS is shown to be sound and complete
with respect to our set-theoretical semantics. In Section 3.4, we discuss some consequences
of the completeness theorem of GDS. In particular, we define a class of normal diagrammatic
proofs of GDS and we show a normal form theorem.

3.1 Introduction to unification

Before giving a formal description of our diagrammatic inference system, we motivate our
inference rule unification. Let us consider the following question: Given diagrams Dp, Do
and D3 of Fig.9, what diagrammatic information on A, B and ¢ can be obtained by the
conjunction of the given diagrams? (In what follows, in order to avoid notational complexity
in a diagram, we express each named point, say g, simply by its name c.) Figs.9, 10, and 11
represent the three ways of solving the question.
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D\ /D2 D3 D> /D3 D1 D2\A /’D3
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D1+D2\ /D1+D3 /Dz+D3

B B
@c OF @F
(D1 + D2) + D3 Dy + (D1 + D3) D1+ (D2 + D3)
Fig.9 Fig. 10 Fig. 11

In Fig.9, at the first step, D; and D5 are unified to obtain D; + Dy, where the point ¢ in Dy
and Dy are identified, and B is added to D; so that c¢ is inside of B and B overlaps with A
without any implication of a relationship between A and B. Then, D; + D5 is combined with
another diagram D3 to obtain (D; 4+ D2) + D3. Note that the diagrams D; + Dy and D3 share
two circles A and B: A < B holds on Dy + Dy and A T B holds on D3. Since the semantic
information of A C B on D3 is more specific than that of A > B on Dy + D5, according to
our semantics of EUL (recall that A > B means just “true” in our semantics), one keeps the
relation A C B in the unified diagram (D; + D3) + D3. Observe that the unified diagram
represents the information of these diagrams Dy, Dy, and D3, that is, their conjunction.



Figs. 10 and 11, illustrate other procedures to solve the question. At the first step of
unifying D; and D3 in Fig. 10 (and Dy and D3 in Fig. 11), there are two possible positions
of the point ¢. Such disjunctive ambiguities may be represented by Peirce’s linking of points
(cf. [16, 18]) as illustrated in Figs.10 and 11. However, in order to formalize the most
basic diagrammatic system, we keep our diagrams free from such disjunctive ambiguity, and
we impose some constraint on unification, called the constraint for determinacy: Any two
diagrams are not permitted to be unified when the relations between each point and all
circles of the two diagrams are not determined. Thus D; and D3 of Fig. 10 (respectively Do
and D3 of Fig. 11) are not permitted to be unified.

We impose another constraint on unification called a constraint for consistency, in order
to avoid complexity due to conflicting graphical information represented in a single diagram.*
For example, it is not permitted to unify two diagrams Dy and Ds when, as is shown in
Fig. 12, they share two circles C' and B such that ¢ — C' and a C B hold on Dy and C' H B
holds on D5. Note that these relations a C C,a C B, and C H B are incompatible in the
same diagram. The diagrams Dg and D7 in Fig. 12 are also not permitted to be unified in
our system. Recall that each circle is interpreted by a non-empty set in our semantics of
Definition 2.7, and hence relations A C B and A H B are also incompatible.

| | O O

Dy Ds Ds Dy

Fig. 12 Inconsistency

3.2 Generalized diagrammatic syllogistic inference system GDS

We formalize our unification of two diagrams by restricting one of them to be a minimal
diagram, except for one rule called the Point Insertion-rule. Our completeness (Theorem 3.14)
ensures that any diagrams Dy, ..., D, may be unified, under the constraints for determinacy
and consistency, into one diagram whose semantic information is equivalent to the conjunction
of that of Dy, ..., D,. (We will return to this issue in Section 3.4.1.)

We give a formal description of inference rules in terms of EUL-relations. Given a diagram
D and a minimal diagram «, the set of relations rel(D 4 «) for the unified diagram D + « is
defined.

The unification rules are divided into three groups, Group (I), (II), and (III). The rules
in Group (I) and (IT) are classified according to the number and type of objects shared by
a diagram D and a minimal diagram «. In Group (I), D and « share one object. The rules
in this group are further divided into two types: those in which one point is shared (U1-U2
rules) and those in which one circle is shared (U3-U8 rules). Each rule is specified by the
relation holding on «, and has a constraint for determinacy. In Group (II), D and « share
two circles (hence a consists of two circles). We distinguish two rules in this group (U9 and

4 In place of our syntactic constraint, it is possible to allow unification of inconsistent diagrams by introduc-
ing an inference rule corresponding to the absurdity rule of Gentzen’s natural deduction system: We can infer
any diagram from a pair of inconsistent diagrams. Such a rule is introduced in, for example, [10] for spider
diagrams; [7] for Venn diagrams; [22] for Euler/Venn diagrams. However, such a rule requires a linguistic
symbol, say 1, or some arbitrary convention to represent inconsistency, and hence we prefer our syntactic
constraint in our framework of a diagrammatic inference system.



U10 rules), depending on whether A = B or A H B holds on «. Both rules have a constraint
for consistency. The rule in Group (III) is Point Insertion rule, where neither of two premise
diagrams is restricted to be minimal.

For a better understanding of the unification rule, we also give a schematic diagrammatic
representation and a concrete example of each rule. In the schematic representation of dia-
grams, to indicate the occurrence of some objects in a context on a diagram, we write the
indicated objects explicitly and indicate the context by “dots” as in the diagram to the right
below. For example, when we need to indicate only A and ¢ on the left hand diagram, we
could write it as shown on the right.
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Definition 3.1 (Inference rules of GDS) Aziom, unification, and deletion of GDS are de-
fined as follows.

Axiom:
Al: For any circles A and B, any minimal diagram where A > B holds is an axiom.
A2: Any EUL-diagram which consists only of, at least two, points is an axiom.

Unification: We denote by D+ « the unified diagram of D with a minimal diagram «. D+«
is defined when D and « share one or two objects.

(I) D and « share one object:

Premises: b C A holds on «, and b € pt(D).

Constraint for determinacy: pt(D) is the singleton {b}.
Conclusion: The set rel(D+«) of the unified diagram is rel(D) U rel(a) U {A < X | X € er(D)}.

Schema of Ul

{ b

Example of Ul

U™

D\ e D N\ Uly ©

Premises: b H A holds on «, and b € pt(D).

Constraint for determinacy: pt(D) is the singleton {b}.
Conclusion: rel(D + o) =rel(D)Urel(a) U{A < X | X € cr(D)}

Schema of U2

Ty

Example of U2
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Premises: b C A holds on «, and A € cr(D).

Constraint for determinacy: A — X or A H X holds for all circles X of D.

Conclusion: rel(D + «) is the following:

relD)Urel()U{bC X |AC X erel(D)JU{bHX | AH X €rel(D)}U{bH x|z € pt(D)}

o P

N el

SO 5

D+a D+a

Premises: b H A holds on «, and A € cr(D).

Constraint for determinacy: X C A holds for all circles X of D.
Conclusion: rel(D+ «) =rel(D)Urel(a) U{bHX | X T Acrel(D)}U{bHz |z € pt(D)}

A

SOSO @
D~ U4 S O DN\ us @
] a
D+a D+a

Premises: A T B holds on «, and B € cr(D).

Constraint for determinacy: = H B holds for all z € pt(D).

Conclusion: rel(D + «) is as follows:

rel(D)Urel(a) U{A X | X T Bor XxxBerel(D)}U{AC X |BC X erel(D)}
U{AHX | XHBerel(D)}Uu{zHA|zept(D)}

)
D \U5/a D\‘Ug'/ o
D+« D+a

Premises: A T B holds on «, and A € cr(D).

Constraint for determinacy: = C A holds for all z € pt(D).

Conclusion: rel(D + «) is as follows:

rel(D)Urel(a) U{X<xB|AC X or AHX or At X € rel(D)}
U{XCB|XCAcredD)}U{zC B|xzept(D)}

10



D\ U6 D~ U6 5 @
D+« D1 + «

Premises: A H B holds on a, and B € cr(D).

Constraint for determinacy: x C B holds for all = € pt(D).

Conclusion: rel(D + «) is as follows:

rel(D)Urel(a) U{Ax X | BC X or BH X or B X € rel(D)}
U{XHA|XCBerelD)}U{zHA|xzept(D)}

0 [00] @) |00

D S U7 DN U7 @

O @)

D+« D+«

Premises: A< B holds on «, and A € cr(D).

Constraint for determinacy: pt(D) = ().
Conclusion: rel(D + «) =rel(D) Urel(a) U{B>=< X | X € ¢r(D)}

<O S @9 ap

CE A P S
&9
D+a D+a

(IT) D and « share two circles:

Premises: A C B holds on «, and A >1 B holds on D.

Constraint for consistency: There is no object s such that s — A and s H B hold on D.

Conclusion: rel(D + «) is the following:

(rel(D) \ {AxB} \ {AxX |BC X crel(D)} \ {Ax X |BHX €rel(D)}
\ {X<B|XC AcrelD)} \ {Y=X|YC Aand BC X € rel(D)}
\{X=xY|XCAandY HBerel(D)})

U{AC B} U{AC X |BC X€<relD)} U{AHX|BHX erel(D)}
U{XCB|XCAecrelD)} U{YCX|YC Aand BC X €rel(D)}
U{XHY|XCAandY HB € rel(D)}

11
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D+« D+ o

U10 rule| Premises: A H B holds on «, and A B holds on D.
Constraint for consistency: There is no object s such that s C A and s C B hold on D.

Conclusion: rel(D + «) is the following:

(rel(P) \ {A=B} \ {X<B|XC Acrel(D)} \ {X<A|XC Berel(D)}
\{XxY|XCAandY C Berel(D)} )
U{AHB} U{XHB|XCAcrelD)} U{XHA|XLCBerelD)}
U{XHY|XCAandY C Berel(D)}

SR OO |GED | |O0

p\um/a P~ U e
OO 20O,
D+a D+«

(ITI) Neither of two premise diagrams is restricted to be minimal:

’Point Insertion‘ Premises: XOY € rel(Dy) iff XOY € rel(D2) holds for any circles X,Y
with O € {C, 3,H, >}, and pt(D2) = {b} such that b & pt(Dy).

Conclusion: rel(D; + Ds) = rel(Dy) Urel(D2) U{bHz | x € pt(D1)}

L

D1+ D2

Premise: D contains an object s.

Constraint: D is not minimal.

Conclusion: rel(D — s) =rel(D) \ {sUt | t € ob(D),0 € {, J,H, 1} }

Definition 3.2 (Diagrammatic proofs of GDS) A diagrammatic proof (or d-proof, for short)
7 of GDS is defined inductively as follows:

12



1. An axiom is a d-proof of itself.
2. A diagram D is a d-proof from the premise D to the conclusion D.

3. Let m be a d-proof from Dy,...,D, to F and m be a d-proof from &1,...,&, to &,
respectively. If D is obtained by an application of unification to F and &, then the
following is a d-proof 7 from D1,...,D,,&1,...,Em to D in GDS.

1 Uuw)

F &

N ¥
D

4. Let m; be a d-proof from Dy, ..., D, to £. If D is obtained by an application of deletion
to &£, then the following is a d-proof 7 from Dy, ..., D, to D in GDS.
m

&

'
D

s
Here D means a d-proof = with D as the conclusion.

The height of a d-proof is defined as the maximum length of the branches in the underlying
tree, where the length of a branch is the number of applications of inference rules.

Definition 3.3 (Provability) Let I' be a set of EUL-diagrams. An EUL-diagram & is prov-
able from T, written as I' F &, if there is a d-proof of £ in GDS from a sequence Dy, ..., Dy,
such that D; € I'. We call I (resp. &) premise (resp. conclusion) diagrams.

Lemma 3.4 The following hold in GDS:

1. IfTFuC sand'FsCt, then'FuCt;
2. IfTFuCtand T FsHt, then'FulHs;
3. IfTFuCsandl'FsHt andT'FovCt, then'FuHw.

®] OO

Proof. Immediate by the following d-proofs.
NMU7(U5) ¥

® oo  eo

(1) ~U6(U5) (2) NU7(Us) 3 OO
—

US(U7)—

+ @
OO o0

Our description of unification rules was given in a static way, i.e., in terms of the set of
relations. Alternatively, our unification rules can be described operationally. Recall that each
unification rule is applied to a diagram D and a minimal diagram «. From an operational
point of view, a may be considered to be an instruction on how to modify the diagram D
into a diagram D + « by (i) adding an object (U1-U8) or (ii) rearranging the configuration
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of objects (U9, U10). Although we shall not discuss details of implementation in this paper,
let us illustrate with Ul and U9 rules. The other rules can be implemented in similar ways:
U2, U5-U8, in which a circle is added, are similar to Ul; U10, in which some p<-relations are
changed, is similar to U9; and for U3-U4, in which a point is added, the location of named
point to be added is determined by our constraint for determinacy.

In U1 rule of Definition 3.1, a circle A is added to D so that b C A and A > X hold for
all X € er(D). An implementation of such an operation is given by Stapleton et al. [20], and
is further developed in [21]. In Fig. 13, we roughly sketch their idea using the example of an
application of U1 rule given in Definition 3.1. For details, we refer to the construction given
in [20].

D @D (@D | & | & @

N N
D eg(D) egd(D) cd(D) D+ A D+ a

Fig. 13 Implementation of U1 rule. We first delete the point b from a given diagram D. We then regard
the diagram as an Euler graph eg(D), whose vertexes are the crossing points of curves, and whose edges are
the curve segments that connect the vertexes. Then by taking a dual graph of eg(D), we obtain an Euler graph
dual as in egd(D). A maximal subgraph of the Euler graph dual that contains all vertexes but no multiple
edges defines a concrete dual as in cd(D). Then, by finding a Hamiltonian cycle of the concrete dual, we obtain
a diagram D+ A. We finally obtain D+ « by adding the point b to the appropriate region, which is determined
due to the constraint for determinacy.

In U9 rule, a given diagram D, where A <1 B holds, is modified into D + « so that A C B
holds. We sketch, in Fig. 14, an implementation of such modification of D.

G2 @

D D+a
Fig. 14 Implementation of U9 rule. In a given diagram D where A < B holds, we take any circle X that
is inside A, and eliminate the curve segments of A and X that are outside B. Then we obtain D + a.

3.3 Soundness and completeness of GDS

We prove soundness (Theorem 3.5) and completeness (Theorem 3.14) of GDS with respect to
our formal semantics.

In what follows, we sometimes refer to any minimal diagram, say « where s C ¢ holds, by
the EUL-relation holding on it, as s C t.

Theorem 3.5 (Soundness of GDS) Let Dy,...,D,,E be EUL-diagrams. If Dy,..., D, F &
in GDS, then D1,...,D, EE.

Proof. By induction on the height of a given d-proof as usual. [ |
For the completeness, we impose the following condition for premise diagrams:

Definition 3.6 (Semantic consistency) A set Dy,..., D, of diagrams is semantically con-
sistent if there is a model M such that M | D; for any 1 < i < n.
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Without this condition, any diagram, say £ where A H C holds, is a valid consequence of
an inconsistent set of premise diagrams D, and Dy where a C B and a H B hold, respectively,
although there is no d-proof of £ from D; and Dy in GDS. (Cf. also footnote 4.)

It is obvious that the soundness theorem (Theorem 3.5) also holds under the assumption of
the semantic consistency of the premise diagrams. The following is an important consequence
of semantic consistency:

Lemma 3.7 (Semantic consistency) Let @ be a set of minimal diagrams which is seman-
tically consistent. Then none of the following holds in GDS for any objects s and t:

1. dFsCtandat sHt.
2. There is an object u such that dF sHt anddF-uC s and dFu C t.

Given an EUL-diagram £ and two objects, say s and ¢, on £, a minimal diagram is
obtained from £ by deleting all objects other than s and t. By Proposition 2.4, the set of
such minimal diagrams of £ is uniquely determined. According to our semantics, the set of
minimal diagrams is semantically equivalent to the original diagram £. Hence, the premise
Di,...,D, E & of the completeness is equivalent to saying that Di,...,D, E B for any
minimal diagram S which corresponds to some relation holding on £. Thus we first show
atomic completeness (Proposition 3.13), which restrict the conclusion diagram to be minimal.
Then using such provable minimal diagrams, we give a canonical way to construct a d-proof
of £.

In order to show the completeness theorem of GDS, we construct two kinds of syntactic
models, called canonical models, in a similar way as the construction of Lindenbaum algebras
in the literature of algebraic semantics for various propositional logics. We first define the
simpler one.

Definition 3.8 (Canonical model Mg) Let & be a set of minimal diagrams which is se-
mantically consistent. A canonical model Mz = (Mg, Iz) for @ is defined as follows:

— The domain Mg is the set of diagrammatic objects (named circles and points) which
occur in any minimal diagram o € &.

— Iz is an interpretation function such that, for any object t,

I5(t)={s|akF sCtin GDS} U {t}.

Observe that in the above definition of I3, when ¢ is a named point, say a, its interpretation
I5(a) is the singleton {a} since @/ s C a for any object s by soundness (Theorem 3.5).

Lemma 3.9 (Canonical model Mz) Let @ be a set v, ..., a, of minimal diagrams which
is semantically consistent. Then Mg is a model of &.

Proof. We show that Mg = «; for each a; € @ (1 < i < n). The case a; = s <t is trivial.
Otherwise, we divide into the following cases according to the form of ay:

1. When «o; € @is s C t, we have @ F s C ¢ in GDS. We show Mg |= s C t, i.e., I5(s) C I5(t).
Let u € I5(s).

(a) When u = s, we immediately have s € I5(t) by the fact &'t s C ¢.
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(b) Otherwise, by the definition of Iz(s), we have @ F v  s. By composing it with @ - s C ¢
as seen in Lemma 3.4(1), we have & - u C ¢ in GDS, that is, u € Iz(t).

2. When a; € d@is s H t, we have @ - s H t in GDS. We show Mz E s H t, ie.,
I5(s) N Iz(t) = 0. When both s and ¢ are points, the claim is trivial. Otherwise, assume to
the contrary that some u € I5(s) N Iz(t).

(a) When u = s, we have s € I5(t), i.e., @ F s C t. This, together with @ - s H ¢, is a
contradiction by Lemma 3.7(1).

(b) The same applies to the case u = t.

(c) Otherwise, s # u # t, and we have @ - u C s and @ F u C ¢ by the definition of Iz(s)
and Iz(t). They contradict & F s H ¢ by Lemma 3.7(2). ]

As an illustration of the canonical model, let us consider the following example.

Example 3.10 (Canonical model M;) Let @ be the following minimal diagrams a, ag, a3, ay:

J [J 00 @

an a2 Qy

Observe that we have @ I b C B and @t/ b H B. In such a case, we say that the point b is
indeterminate with respect to the circle B. Let us construct the canonical model for the &
by defining: Iz(A) = {A,a} and Iz(B) = {B, c}. Note that the indeterminate point b w.r.t.
B is not contained in the interpretation Iz(B) of B. With this interpretation, for any named
point x € Iz(B), we have @ - x C B (i.e., for ¢ € Iz(B), @+ ¢ C B). In general, validity of
C-relation in the model Mg imply provability of C-relation.

In the above model, however, © ¢ I5(B) does not necessarily imply & - = H B; because
we do not have & F b H B, while b € I5(B). Thus, in the canonical model Mg of Definition
3.8, validity of H-relation does not imply provability of H-relation, and hence the model is
not enough to establish completeness. Let us try to modify the above model Mg so that the
indeterminate point b w.r.t. B is contained in the interpretation I%(B) of B: IL(A) = {4, a}
and I%(B) = {B,c,b}. This definition also provides a model of &, and we have & - 2 H B for
any named point = ¢ IZ(B). However, in this model, z € I(B) does not necessarily imply
d - x T B; because we do not have & F b T B, while b € IL(B).

Although the above two kinds of models alone are insufficient to establish completeness,
we can obtain our completeness result in the following manner: we construct the model My of
Definition 3.8 for validity of C-relation, which implies provability of C-relation, and the model
Mg p of the following Definition 3.11 for validity of H-relation, which implies provability of
H-relation.

Definition 3.11 (Canonical model My ) Let @ be a set of minimal diagrams which is se-
mantically consistent. Let B be a fixed named circle. A canonical model Mz g = (Mg B, s 8)
for @ is defined as follows:

— The domain My g is the same set as Mg of Definition 3.8.

— Iz p is an interpretation function defined as follows: For any object ¢,
whent = Bord k- B C tholds, Iz p(t) = Iz(t)U{s | @t/ BC sand d/ s C B and a / s H B};
otherwise, Iz p(t) = I5(t).
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As seen in Definition 3.8, observe that Iz p(a) = {a} when a is a named point. Note also
that Iz p(t) is equal to I5(t) of Definition 3.8 when &'t/ B C t.

Let us show that Mg p is a model of a.

Lemma 3.12 (Canonical model My p) Let @ be a set ai,...,a, of minimal diagrams
which is semantically consistent. Let B be a fived named circle. Then Mg g is a model of d.

Proof. We show that, for each o; € @ (1 <i < n), Mg p |= o;. The case oy = st is trivial.
Otherwise, we divide into the following cases according to the form of «;. We sometimes write
at/ st when none of - sC t,adk-tC s, and @t s H ¢ holds.

1. When o; € @ is s C t, we have d - s C t. We show I g(s) C I5 p(t). Let u € I p(s).

(a) When u = s, by the fact & - s C ¢, we have s € I5 p(t) by the definition of I5 p(t).
(b) Otherwise (u # s), we divide into the following two cases according to s and B:

(i) When s = B or & B C s hold, by the definition of I5 p(s), we have (i-1) dFuC s
or (i-2) @ // vOB. (i-1) implies, together with & F s C ¢, that & - v C ¢, by Lemma
3.4(1), ie., u € Igp(t). For (i-2), d- BC sand @+ s C t imply & - B C ¢ by Lemma
3.4(1). Hence, in conjunction with &t/ ul0B, we have u € Iz p(t) by definition.

(i) When s # B and @ I/ B C s, by the definition of I5 p(s), we have & F u C s. Hence
this case is the same as (i-1).

2. When a; € a@is s Ht, we have @ - s H t. We assume s # B # t since the other cases
are similar. We show that I5 g(s) NIz g(t) = 0. When both s and t are points, the claim is
trivial. Otherwise, assume to the contrary that some u € Iy p(s) NIz p(t).

(a) When u = s, we have s € Iz p(t). We divide into the following two cases according to
whether or not & - B C ¢ holds:

(i) When & + B C t holds, by the definition of I5 (), we have (i-1) @ F s C t or (i-2)
at/ stB. Case (i-1) contradicts @ - s H ¢t. For (i-2), from @+ sHt and @+ B C ¢, we
have, by Lemma 3.4(2), & - s H B, which contradicts & t/ sOB.

(ii) When @'t/ B C t, we have a - s T t by the definition of I5 p(t), which contradicts
aksHt.

(b) The same applies to the case u = t.

(¢) Otherwise (s # u # t), we divide into the following cases: (i) &+ B C sand &+ B C t;
()@ BCsanddl/ BCt; (li)dl/ BCsanddk- BC ¢t (iv)dk- BC s and
alf Bt (i) contradicts & - s H t. For (ii), by the definitions of I5 p(s) and Iz (%),
we have @ - u C s and @ F u C ¢, which contradict & - s H ¢. For (iii), by the definition
of Iz p(s), we have a F u C s. By the definition of I5 p(t), we have (iii-1) d - u C t
or (iii-2) @ K/ wOB. (iii-1), together with & - u T s, contradicts & - s H t. For (iii-2),
adturC s, dbsHt and @ F B C t imply, by Lemma 3.4(3), that & - v H B, which
contradicts @ I/ uJB. (iv) is similar to (iii). ]

Using the two kinds of canonical models introduced so far, we prove the following atomic
completeness, from which completeness (Theorem 3.14) of GDS is derived.
When T is a set Dy,...,D, of diagrams, we sometimes write M = I' for the formula

Vi<i<n(M = D;).
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Proposition 3.13 (Atomic completeness) LetDi,..., D, be a set of EUL-diagrams which
is semantically consistent. Let B be a minimal diagram. If Dy, ..., D, = B, thenDy,..., Dy
B in GDS.

Proof. We first consider the case where the premise diagrams Dy, ..., D, are restricted to
minimal diagrams a1, ..., a,. Then we extend to the general case. We denote by @ the set
of given minimal diagrams. Assume @ = 3. When £ is s > ¢, we immediately have @ F st
since it is an axiom. Otherwise, we divide into the following two cases according to the form
of 5.

(1) When f is of the form s C ¢, by the assumption @ |= s C ¢, we have, in particular for the
canonical model of Definition 3.8, Mz = & = Mgz | s C t. Then by Lemma 3.9, we have
Mgz |E sCt, ie., Iz(s) C Iz(t). Since s € I5(s) by Definition 3.8, we have s € I5(¢), that is,
at sCtin GDS.

(2) When S is of the form s H ¢, observe that if s and ¢ are both points, then the assertion
is trivial since § is an axiom in that case. Otherwise, we assume, without loss of generality,
that ¢ is a named circle B. By the assumption @ = s H B, we have, in particular for the
canonical model of Definition 3.11, Mg p = & = Mg p = s H B. Then by Lemma 3.12, we
have Mgz p |= s H B, i.e., Iz p(s) N1z p(B) = 0. Hence we have s € Iz p(B) and B & I p(s).
Then by the definition of Iz g(B) and Iz p(s) of Definition 3.11, we have & I/ s C B, and
al/ B s and @t sOB for some O € {C, 3J,H}. Therefore, we have @ + s H B in GDS.

Next, we extend the premises to general diagrams Dy, ..., D, instead of minimal diagrams
a. Let Dy,...,D, = B. Then, by the definition of our semantics, it is equivalent to the fact
that, for any model M, M = T1'A---AM T, = M | B, where I'; is a set of all

minimal diagrams whose relations hold on D;. Thus there is a sequence as, ..., a; of minimal
diagrams such that each relation holding on a; (1 < j < k) holds on some D; (1 <i < n)
and ai,...,0 = B. Then there is a d-proof from a1,...,q to § in GDS. Since each ¢ is
derived from some D; by some applications of Deletion rule, we have Dy,...,D, - 5. [ |

By extending the conclusion diagram (3 of atomic completeness to a general (not restricted
to minimal) diagram &, we establish the completeness of GDS.

Theorem 3.14 (Completeness of GDS) LetDy,...,D,,E be EUL-diagrams. Let D1, ..., Dy
be semantically consistent. If D1,..., D, |E E, then Dy, ..., Dy = & in GDS.

Proof. Using the atomic completeness theorem, we construct a d-proof of £ from the given
premise diagrams D;, ..., D,, in a canonical way (see also Example 3.15 given after this proof):

(I) From the premise diagrams D;, ..., D,, by using atomic completeness and U1, U2-rules,
we first construct EUL-diagrams such that each of them consists of a point and all circles
of £, and in each of them A < B holds for any pair of circles.

A diagram is called a Venn-like diagram when A <t B holds for any pair of circles in it.

(IT) Then, by unifying all Venn-like diagrams of (I) with the Point Insertion rule, we construct
a Venn-like diagram consisting of all points and circles of £.

(ITI) By using atomic completeness, we construct d-proofs for all point-free minimal diagrams
in each of which a relation A C B or A H B of £ holds.
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(IV) We then construct a diagram JF, by unifying the minimal diagrams of (III) and the
Venn-like diagram of (II) with U9 and U10-rules.

(V) Finally, we check that the diagram F of (IV) coincides with the conclusion £.

A diagrammatic proof is called a canonical diagrammatic proof when it is constructed in
accordance with the above canonical construction.

We now formalize the above (I)-(V). We denote by I' the set Dy,...,D, of the given
premise diagrams.

(I) For each point a € pt(€), let P, = {a0X | a0X € rel(€), O € {T,H}}. Then the set P,
gives rise to an EUL-diagram P, such that I' - P, in GDS.

Proof of (I). Let Ry,..., R, be an enumeration of the elements of P,, and fi,..., 3, be the
corresponding minimal diagrams where R; holds on ;. Note that all 8; share the same point
a and they differ only in their circles. The assumption I' = € of completeness implies I' |= 3;
since R; € rel(€). Hence we have I' - f3; in GDS by Proposition 3.13. Then starting from fy,
by successively applying Ul-rule (when 3; is a C B; for 1 < i < n) or U2-rule (when f; is
aH B; for 1 < i <n), we have a d-proof of P, from I' in GDS. O

(IT) Let {ai,...,am} = pt(E). Let P be the union of the relations of all P,, (1 <i < m) of
(1), i.e. P =U <i<p Pa;- Then P gives rise to an EUL-diagram P such that I' =P in GDS.
Proof of (II). We have I" - P in GDS by successively applying the Point Insertion rule for all
diagrams P,, (1 <i < m) of (I). O
Note that when £ does not contain any point, the set Ulgigm P,, becomes empty. In
such a case, we construct a Venn-like diagram P (without any point) which consists of all

circles of £. This is possible by successively applying U8-rule to axioms of the form X > Y
for X,Y € er(€).

(III) Let B be a minimal diagram such that AT B or AH B of rel(€) holds. Then we have
'+ g in GDS.

Proof of (III). Immediate by atomic completeness (Proposition 3.13). O

(IV) Let Ry,...,R; be all relations of the form A — B or A H B holding on &, and let
B1,...,0; be the corresponding minimal diagrams, where R; holds on §; for 1 < i < [. Let
P be the set of relations of (II). Then the set P U{Ry,..., R} of relations gives rise to an
EUL-diagram (--- (P + p1) + - -+ ) + [ which is provable from I" in GDS.

Proof of (IV). By induction on [. Let P + B; denote the diagram (--- (P + 51) +---) + S
We show the induction step (I > 1) since the same applies to the base step (I = 1).

We divide into the following two cases according to whether (1) AH B or (2) A C B holds
on /Bl.

Case (1): Since ¢r(€) = er(P 4 Bj—1) by the construction (II) of P and (III), we have
A,B € cr(P + Bj—1). We claim that A <t B or A H B holds on the diagram P + B;_;.
Assume to the contrary that A C B or B C A holds. If A C B holds on P + B;_1, since
'+ P+ B;—1 by the induction hypothesis, we have I' = P + B;_1, which implies I' = A C B.
This contradicts the assumption that I' is semantically consistent because we have I' = A H B.
The same applies in case B C A. Thus exactly one of A <t B and A H B holds on the diagram
P + B;_1 by Proposition 2.4.

19



Now we prove I' = (P+8;_1)+ ;. When A H B holds on P+ 8;_1, we obtain the assertion
immediately by the induction hypothesis since (P +B;_1) + 3; is P+ B;_1 itself. When A <1 B
holds on P + B;_1, by applying U10-rule to 8; and P + B;_1, we have I' - (P + B;_1) + 5
in GDS. The application of U10-rule is possible because there is no object s such that both
sC Aand s C B hold on P+ B;_;: If there were such an object s, since I' F P+ B;_1, we have
I'FsC Aand I' F s C B by applying a series of Deletion. Then we would have I' = s C A
and I' = s C B. This contradicts the assumption that I' is semantically consistent because
we have I' = AH B.

Case (2) where A C B holds on [ is similar. O

(V) For any EUL-relation R, R € rel((--- (P + p1) + ---) + 1) if and only if R € rel(E).
Proof of (V). We denote by P + B; the diagram (--- (P + 1) +---) + fi.

<) rel(€) Crel(P + B;) is immediate by the constructions (II) and (IV).

=) Let R € rel(P + B;). We divide into the following two cases depending on whether or not
R is of the form s t:

(1) When R = s i< ¢, assume to the contrary that s > ¢ & rel(£). Since € is a diagram, for
some O € {C, 0,H}, sOt € rel(§) by Proposition 2.4. Then, by definition, for some j, §; is
of the form s(J¢, which implies that s{t € rel(P + B;). This contradicts Proposition 2.4 since
s>t € rel(P + B;) by the assumption.

(2) In case, R # s > t, we show that R € rel(P+8;) = R € rel(€) by induction on [. We prove
the induction step (I > 1) since the same applies to the base step. Assume to the contrary
that R ¢ rel(£). Then, since rel(P)\{X <Y | X, Y € ¢r(P)} C rel(€) by the construction
(IT), R should be a relation between circles (not points), and R # f; for any i. Hence, there
is some 1 < i <[ such that R & rel(P+ B;_1) but R € rel((P+ B;—1) + ;). We show the case
(P + B;—1) + fi is obtained by Ul0-rule. (The case of U9-rule is shown similarly.) Assume
A H B holds on ;. By the definition of U10-rule, there are the following three cases according
to the form of R: (i) R = X H B such that X © A € rel(P + B;_1); (ii) R = X H A such
that X © B € rel(P + B;_1); (iii) R= X HY such that X C A,Y C B € rel(P + B;_1). For
case (i), by the induction hypothesis, we have X T A € rel(£). Then, since A H B € rel(£),
we have X H B € rel(£), contrary to the assumption R = X H B & rel(£). Similarly, cases
(ii) and (iii) also lead to contradictions. Therefore, we have R € rel(E). O

|

Example 3.15 (Canonical d-proof of GDS) As an illustration of the canonical construc-
tion of d-proofs, let us consider the following diagrams Dy, Dy, D3, and &:

-0 @[O0+ [OT

Dy Do

3

We have a canonical d-proof of £ from Dy, Do, D3 as in Fig. 15:

We first derive, by using atomic completeness, all pointed minimal diagrams D1, Dy, D5, and
Dg each of which corresponds to an EUL-relation holding on the conclusion £. Next, following
the construction (I) with Ul and U2 rules, we construct Venn-like diagrams D7 and Dg each
of which consists of a point a (resp. b) and all circles A and B of £. Then, following the
construction (II) with Point Insertion rule, we unify them to obtain a Venn-like diagram Dy
consisting of all points a and b and all circles A and B of £. Finally, following the construction
(IV) with U10 rule, we obtain the conclusion &£.
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Fig.15 Canonical d-proof

3.4 Some consequences of completeness of GDS

In this section, we discuss some consequences of our completeness (Theorem 3.14) of GDS.

3.4.1 Unification of any (two) diagrams

Let D1,Dy and £ be EUL-diagrams such that for any model M, M | £ if and only if
M | Dy and M |= Dy, that is, £ is semantically equivalent to the conjunction of D; and
Dy. We may write such £ as D; + Dy. Our completeness (Theorem 3.14) ensures that
D1,Ds D1 + Dy in GDS. This shows that the general notion of unification of two diagrams
(cf. Hammer-Shin [8]) is completely characterized by our formalization of unification of two
diagrams, where one of them is restricted to a minimal diagram.

3.4.2 Normal diagrammatic proofs

In order to prove a normal form theorem of GDS, we shall modify the semantic method
introduced in our completeness proof, by adopting a semantic normal form proof for the
linguistic proofs found in, for example, [15].

Let us define a class of normal diagrammatic proofs of GDS, called the +-normal d-proofs:

Definition 3.16 (£-normal d-proofs) A d-proof 7 is in +-normal form if a unification
(+) and a deletion (—) appear alternately in 7.

In Definition 3.8 and 3.11 of our canonical models, it is possible to modify the interpreta-
tion of each object by restricting the provability with a +-normal d-proof as follows:

e For Definition 3.8, I.(t) = {s | @ F s C ¢ with a +-normal d-proof } U {t}
e For Definition 3.11, when ¢t = B or & - B C t with a +-normal d-proof, I 5(t) =
ILt)U{s|d¥ BC sand @/ sC B and d /s H B}
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These slight modifications of canonical models also enable us to prove the essential part
of atomic completeness (Proposition 3.13); because any d-proof appearing in our proofs of
Lemmas 3.9 and 3.12 is in +-normal form. Hence we obtain the following version of atomic
completeness:

Corollary 3.17 Let @ be a set of minimal diagrams which is semantically consistent. Let 8
be a minimal diagram. If & |= B, then d & B in GDS with a £-normal d-proof.

Then, together with soundness of GDS, we obtain the following normal form theorem:

Theorem 3.18 (+£-normal form for minimal diagrams) Let @ be a set of minimal dia-
grams which is semantically consistent. Let B be a minimal diagram. If & & 8 in GDS, then
at B in GDS with a =-normal d-proof.

Proof. Let @+  in GDS. Then, by soundness (Theorem 3.5) of GDS, we have & |= 3, which
implies that &+ 8 in GDS with a +-normal d-proof by Corollary 3.17. [ |

Although the above normal form theorem states only the existence of normal d-proofs,
by defining a procedure to rewrite d-proofs, the theorem can be extended to a normalization
theorem: Any d-proof is rewritten into a +-normal d-proof in a finite number of steps.

3.4.3 Structure of canonical diagrammatic proofs

In order to investigate the structure of canonical d-proofs of completeness (Theorem 3.14),
we give a proposition, which is proved in a way similar to that of £-normal form Theorem
3.18.

In our Definitions 3.8 and 3.11 of canonical models, it is possible to modify the interpre-
tation of each object by restricting the provability using only U3-U7 and Deletion rules:

e For Definition 3.8, IZ(t) = {s | @ - s C ¢ with U3-U7 and Deletion rules} U {t}

e For Definition 3.11, when t = B or & F B C t with U3-U7 and Deletion rules, I 5(t) =
IZit)U{s|d¥ BC sand d /s C B and d/ s H B}.

Recall that U3-U7 rules are unification where exactly one named circle (not point) is
shared between the two premise diagrams.

These slight modifications of canonical models also enables us, in a way similar to that in
Corollary 3.17, to prove atomic completeness. Thus we obtain the following slightly stronger
version of atomic completeness:

Corollary 3.19 Let I be a set of EUL-diagrams which is semantically consistent. Let B be a
minimal diagram. If T |= B, then ' 8 in GDS with U3-U7 and Deletion rules.

Thus soundness (Theorem 3.5) and Corollary 3.19 imply that any minimal diagram is
provable by using only U3-U7 and Deletion rules:

Proposition 3.20 (U3-U7 rules) Let T be a set of EUL-diagrams which is semantically con-
sistent. Let B be a minimal diagram. If ' - 3 in GDS, then I' = 8 in GDS with U3-U7 and
Deletion rules.

Completeness (Theorem 3.14), the +-normal form theorem (Theorem 3.18), and the above
Proposition 3.20 give a more precise classification of inference rules of GDS in terms of proof-
construction as follows:
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U3-U7 and Deletion rules for derivation of a minimal diagram.

U1, U2 (resp. U8) rules for construction of a Venn-like diagram consisting of a single
point (resp. no point).

e Point Insertion rule for construction of a Venn-like diagram consisting of multiple points.

e U9, U10 rules for construction of the conclusion.

See also the canonical d-proof given in Example 3.15.

Based on the classification of inference rules and the canonical construction of d-proofs,
we showed a correspondence between our Euler diagrammatic proofs and Gentzen’s natural
deduction proofs. See [13] for a detailed discussion.
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