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Abstract

To investigate the relationship between logical reasoning and majority voting, we intro-
duce logic with groups Lg in the style of Gentzen’s sequent calculus, where every sequent
is indexed by a group of individuals. We also introduce the set-theoretical semantics of
Lg, where every formula is interpreted as a certain closed set of groups whose members
accept that formula. We present the cut-elimination theorem, and the soundness and
semantic completeness theorems of Lg. Then, introducing an inference rule representing
majority voting to Lg, we introduce logic with majority voting Lv. Formalizing the dis-
cursive paradox in judgment aggregation theory, we show that Lv is inconsistent. Based
on the premise-based and conclusion-based approaches to avoid the paradox, we intro-
duce logic with majority voting for axioms Lva, where majority voting is applied only to
non-logical axioms as premises to construct a proof in Lg, and logic with majority voting
for conclusions Lvc, where majority voting is applied only to the conclusion of a proof
in Lg. We show that both Lva and Lvc are syntactically complete and consistent, and
we construct collective judgments based on the provability in Lva and Lvc, respectively.
Then, we discuss how these systems avoid the discursive paradox.
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1 Introduction

Majority voting is one of the most commonly used methods in group decision-making. It is a
simple and effective method, and it seems to be convincing, to certain extent. However, in the
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18th century, Condorcet showed that majority voting may be inconsistent with logical rea-
soning. Although the Condorcet’s paradox is a paradox in social choice theory, where logical
reasoning is represented by the transitivity of the preference relation, it can be generalized to
a paradox for general propositions and reasoning thereof. Dietrich and List [10] investigated
the following example.

Example 1.1 (Discursive paradox [10]) Three individuals 1, 2, and 3 make a collective
judgment on the following three propositions P,Q, P → Q.

P : Carbon dioxide emissions are above the threshold x.

Q: There will be global warming.

P → Q: If carbon dioxide emissions are above the threshold x, then there will be global
warming.

Each individual’s judgment is summarized in the following table.

P P → Q Q

Individual 1 T T T
Individual 2 F T F
Individual 3 T F F

Majority T T F

In the above table, T means acceptance of the proposition, and F means rejection of it. Thus,
Individual 1 accepts all three propositions, Individual 2 accepts only P → Q, and Individual
3 accepts only P . We here assume that “Individual i rejects φ” is equivalent to “i accepts
¬φ” for any proposition φ. In this situation, the majority accepts P and P → Q, and rejects
Q (i.e., accepts ¬Q). However, this collective judgment is inconsistent as a whole from the
viewpoint of standard logic, where P and P → Q imply Q, although every individual makes
a consistent judgment.

Both this discursive paradox and the original Condorcet’s paradox show that majority
voting may produce an inconsistent collective judgment. Recognizing this paradox, Arrow
[1] explored possible methods of preference aggregation and established the impossibility
theorem: There exists no aggregation procedure that satisfies certain reasonable conditions,
including not being inconsistent with logic, without being dictatorial. The impossibility
theorem has been generalized and investigated in the framework of judgment aggregation
theory. See [1, 2] for Arrow’s impossibility theorem and investigation on the conditions of
the theorem. See, e.g., [10, 20, 22, 17] for the generalized impossibility theorem in judgment
aggregation theory.

In this article, instead of an investigation of Arrow’s impossibility result, we give a further
analysis of the relationship between majority voting and logical reasoning. Majority voting
itself has also been studied extensively, and many variants thereof, such as quota rules ([11])
and scoring rules ([9]), have been investigated, cf. [34]. Various procedures to construct con-
sistent collective judgments using majority voting have also been proposed, cf. [20, 17, 34].
Among them, we investigate, from a proof-theoretical viewpoint, the well-known restriction
on majority voting; the premise-based approach and the conclusion-based approach. In these
approaches, majority voting is used only for predetermined premises and conclusions, respec-
tively. See, for example, [17, 12, 35].
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To this purpose, in Section 2, we introduce logic with groups Lg, which gives a basis
for our logic with majority voting. We introduce the syntax of Lg in the style of Gentzen’s
sequent calculus, where every sequent is indexed by a group of individuals. If we ignore the
indexes of sequents, then all inference rules, other than non-logical axioms, of Lg are the rules
of the usual sequent calculus for classical logic. Non-logical axioms of Lg are atoms or their
negation with groups whose members accept them. Thus, the non-logical axioms in Lg are
not formulas considered to be true or accepted by all members but just the starting points
for construct a proof. We also introduce the semantics for Lg, based on the idea of the phase
semantics of linear logic ([15, 31]). In our semantics, every formula is interpreted as certain
set of groups whose members accept the formula. Our semantics also can be regarded as
a kind of Kripke semantics by considering every group as a possible world. We investigate
well-established logical theorems for Lg, that is, the cut-elimination theorem and the semantic
completeness theorem.

In Section 3, we extend Lg to logic with majority voting Lv by introducing an inference
rule representing majority voting. We seek to determine collective judgment by constructing
a proof for the formula in question. That is, every collectively accepted formula is a formula
that is provable in our logic with majority voting. Thus, our approach can be called the
proof-based approach, where every proof can be considered to support the accepted formula.
However, as shown by the discursive paradox, Lv itself is inconsistent, and we cannot adopt
Lv as a logical system for constructing collective judgments. Thus, based on the premise-
based and conclusion-based approaches in the literature of judgment aggregation theory, we
introduce systems of logic with majority voting for axioms Lva, where majority voting can
only be applied to non-logical axioms of Lg as premises, and logic with majority voting for
conclusions Lvc, where majority voting can only be applied to the conclusion of a proof in Lg.
We define corrective judgments based on Lva and Lvc by constructing proofs in the respective
systems. Our approach, based on Lva, may be considered to be a particular case of the
premise-based approach, where predetermined premises are only atoms or their negation as
non-logical axioms. By contrast, our approach, based on Lvc, may be considered to be an
extension of the usual conclusion-based approach, where we first construct a proof and then
apply majority voting, instead of immediately voting for the predetermined conclusion. We
show that collective judgments based on Lva and Lvc are complete and consistent.

2 Logic with groups Lg

In this section, we introduce our logic with groups Lg, which is the underlying logic for our logic
with majority voting. In Section 2.1, we introduce basic concepts in judgment aggregation
theory. In Section 2.2, we introduce sequent calculus for Lg, and we investigate some syntactic
properties of Lg in Section 2.3. We further investigate the cut-elimination theorem of Lg, and
we show the consistency of Lg in Section 2.4. In Section 2.5, we introduce the semantics of
Lg and prove the soundness theorem. In Section 2.6, we prove the completeness theorem for
Lg with respect to our semantics.

2.1 Judgment aggregation

In this article, we introduce propositional logic as the underlying logic for judgment aggrega-
tion theory. See, e.g., [10, 20, 22, 17] for judgment aggregation theory.
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Definition 2.1 (Formulas) Formulas, denoted by φ,ψ, σ, . . . , are defined inductively as
follows.

φ,ψ ::= P φ ∧ ψ φ→ ψ φ ∨ ψ ¬φ

where atoms are denoted by P,Q,R, . . . . We call every atom and its negation literals.

Definition 2.2 (Judgment aggregation)

� We denote n individuals by 1, 2, 3, . . . , n, and the set of all individuals by N . We assume
that, when not specified explicitly, the cardinality |N | is always n with n ≥ 3. To ensure
that majority voting always works we further assume that n is odd.

� An agenda A consists of formulas that are

1. closed under the negation: φ ∈ A implies ¬φ ∈ A, and

2. closed under atoms: for any φ ∈ A, every atom P constitutes φ is contained in A.

In an agenda A, we identify ¬¬φ and φ.

� Each judgment set Ji ⊆ A for i ∈ N is a set of formulas accepted by the member i of
N such that:

1. Ji contains exactly one of φ or ¬φ for every φ ∈ A, and

2. Ji is consistent.

� A sequence (J1, J2, . . . , Jn) of judgment sets of all i ∈ N is called a profile. A profile is
denoted by J⃗ , J⃗∗, . . . .

� An aggregation rule or aggregation function F is a function from the set of profiles
to the set of judgment sets.

F defines a collective judgment F (J⃗) based on the profile J⃗ (i.e., individuals’ judg-
ments).

The second condition of the agenda, i.e., the closure under atoms, is not a standard con-
dition, and it makes possible to introduce atoms and their negation as non-logical axioms
in our system. This condition is introduced, for example, in [33, 7, 25] to investigate con-
ditions on the impossibility theorem. In particular, [7, 25] suggest that by restricting the
independence condition or the unanimity condition to atoms and their negation, a consistent
collective judgement is obtained with an appropriate majority voting rule.

Example 2.3 (Agenda and judgment set) The agenda of Example 1.1 isA = {P,¬P,Q,¬Q,P →
Q,¬(P → Q)}, and the judgment sets are J1 = {P,Q, P → Q}，J2 = {¬P,¬Q,P → Q}，
and J3 = {P,¬Q,¬(P → Q)}.

By G, we denote the set of all groups over N , i.e., G = P(N), where P(N) is the power set
of N . By G(φ), we denote all groups that accept φ; i.e., G(φ) = {α | φ ∈ Ji for any i ∈ α}.
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2.2 Sequent calculus for Lg

We introduce our logic with groups Lg in the style of the sequent calculus of Gentzen [14]. In
the sequent calculus, the basic component is a sequence of formulas called a sequent instead
of a formula. A sequent has the form φ1, . . . , φk ⊢ ψ1, . . . , ψl, which can be identified with the
formula φ1∧· · ·∧φk → ψ1∨· · ·∨ψl. Although φ1, . . . , φk or ψ1, . . . , ψl is normally defined as
a “sequence” of formulas, we define it as a “multiset” of formulas, that is, a finite sequence,
modulo the ordering of occurrences of formulas. For example, we identify the following two
sequents: φ,φ, ψ ⊢ σ, δ and φ,ψ, φ ⊢ δ, σ. Although the one is obtained from the other
normally by an inference rule called exchange-rule, we do not include the rule in our calculus
by considering multisets of formulas. See [39, 26] for the sequent calculus.

In our Lg, every sequent is indexed by a group α, β, . . . of N . We define our sequent
calculus for Lg under the given agenda A and profile J⃗ .

Definition 2.4 (Sequent) Multisets of formulas separated by the symbol ⊢α with α ∈ G of
the following form is called a sequent.

φ1, . . . , φk ⊢α ψ1, . . . , ψl

We call the multiset on the left of the ⊢α the antecedent, and the multiset on the right is the
succedent of the sequent. (Subsets of) antecedent or succedent in a sequent are collectively
called the context, and are denoted by a Greek capital letter Γ,∆,Σ,Λ, . . . .

The above sequent means that the members of group α accept “ψ1 or · · · or ψl is a logical
consequence of φ1 and · · · and φk.” Both the antecedent and succedent of a sequent may be
empty, and a sequent φ1, . . . , φk ⊢α with the empty succedent means that the members of α
accept “φ1, . . . , φk imply a contradiction.” When both antecedent and succedent are empty,
the sequent ⊢α means that the members of α are in contradiction.

Inference rules of our sequent calculus have the following forms:

Σ ⊢β Λ

Γ ⊢α ∆
rule

or

Σ ⊢β Λ Π ⊢γ Θ

Γ ⊢α ∆
rule

The above expression means that we can infer the lower sequent Γ ⊢α ∆ by the rule from the
upper sequents Σ ⊢β Λ and Π ⊢γ Θ.

Definition 2.5 (Inference rules of Lg) Let an agenda A and a profile J⃗ be given. Then,
inference rules of Lg are divided into three groups: (1) the axioms; (2) the logical rules for
∧,→,¬,∨, which are directly related to logical connectives in question; (3) the structural
rules, which are not directly related to logical connectives.

Axioms

� Logical axioms are the following form of sequents for any atom P :

P ⊢N P

� Non logical axioms are the following forms of sequents for every atom P :
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• ⊢α P where α = {i ∈ N | P ∈ Ji}
• P ⊢α where α = {i ∈ N | ¬P ∈ Ji}
• ⊢∅

Logical rules

� ∧-rules

φ1,Γ ⊢α ∆

φ1 ∧ φ2,Γ ⊢α ∆
∧L1

φ2,Γ ⊢α ∆

φ1 ∧ φ2,Γ ⊢α ∆
∧L2

Γ ⊢α ∆, φ Σ ⊢β Λ, ψ

Γ,Σ ⊢α∩β ∆,Λ, φ ∧ ψ ∧R

� →-rules
Γ ⊢α ∆, φ ψ,Σ ⊢β Λ

φ→ ψ,Γ,Σ ⊢α∩β ∆,Λ
→ L

φ,Γ ⊢α ∆, ψ

Γ ⊢α ∆, φ→ ψ
→ R

� ¬-rules
Γ ⊢α ∆, φ

¬φ,Γ ⊢α ∆
¬L

φ,Γ ⊢α ∆

Γ ⊢α ∆,¬φ ¬R

� ∨-rules

Γ ⊢α ∆, φ1

Γ ⊢α ∆, φ1 ∨ φ2
∨R

Γ ⊢α ∆, φ2

Γ ⊢α ∆, φ1 ∨ φ2
∨R

φ,Γ ⊢α ∆ ψ,Γ ⊢α ∆

φ ∨ ψ,Γ ⊢α ∆
∨L

Structural rules

� w (Weakening)- and c (Contraction)-rules

Γ ⊢α ∆
φ,Γ ⊢α ∆

wL
Γ ⊢α ∆

Γ ⊢α ∆, φ
wR

φ,φ,Γ ⊢α ∆

φ,Γ ⊢α ∆
cL

Γ ⊢α ∆, φ, φ

Γ ⊢α ∆, φ
cR

� cut-rule
Γ ⊢α ∆, φ φ,Σ ⊢β Λ

Γ,Σ ⊢α∩β ∆,Λ
cut

� mer (Merge)-rule
Γ ⊢α ∆ Σ ⊢β Λ

Γ,Σ ⊢α∪β ∆,Λ
mer

� sub (Subgroup)-rule: When β ⊆ α,

Γ ⊢α ∆
Γ ⊢β ∆

sub

Our non-logical axioms are not formulas considered to be true or accepted by all members
but are starting points to construct a proof. As it is the case in the usual sequent calculus,
we do not need to restrict logical axioms to consist only of atomic formulas, cf. Proposition
2.10. However, our restriction on non-logical axioms to consist only of atomic formulas is
essential to prove the cut-elimination theorem, because the theorem does not generally hold
in a system with non-logical axioms consisting of compound formulas. Cf. e.g., [28, 39, 5, 6].
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We also introduce the empty sequent with the empty group ⊢∅ as our non-logical axiom.
This axiom is introduced mainly because of sub-rule and of the set-theoretical properties of
∅. See Proposition 2.13.

If we ignore inessential context Γ of ∧L1-rule, the rule means that when the members of
α accept “φ1 implies ∆,” they also accept “φ1 ∧ φ2 implies ∆.” ∧L2-rule is similar. ∧R-rule
means that when the members of α accept “Γ implies φ” and the members of β accept “Σ
implies ψ,” the common members α ∩ β accept “Γ and Σ imply φ ∧ ψ.”

As for ∨L-rule, we require group α to be shared in the lower sequent and the upper
sequents. We may formulate the rule by making the intersection of groups α∩ β as the other
two premise rules. However, if we formulate ∨L-rule by unifying two different groups α ∪ β,
then such a rule is shown to be unsound with respect to our semantics. See Remark 2.34.

mer-rule and sub-rule are original structural rules of this article. mer-rule means that
when the members of α accept “Γ implies ∆” and the members of β accept “Σ implies Λ,”
every member belongs to α or β; i.e., α ∪ β accepts “Γ and Σ implies ∆ or Λ.” sub-rule
means that when the members of α accept “Γ implies ∆,” the members of subgroup β of α
also accept it.

In our sequent calculus, a proof is a tree consisting of applications of inference rules whose
leaves are logical or non-logical axioms as seen in the following Example 2.6. See [39] for a
formal definition. A proof is denoted by π, π1, π2, . . . . In our proof, when α = {1, 2, 3}, by
abbreviating the brackets { and } as well as the comma, we express Γ ⊢α ∆ as Γ ⊢123 ∆.

Example 2.6 (Proof in Lg) Let N = {1, 2, 3}, and P ⊢3 and Q ⊢2 be non-logical axioms.

P ⊢3

P ∧Q ⊢3
∧L1

⊢3 ¬(P ∧Q)
¬R

Q ⊢2

P ∧Q ⊢2
∧L2

⊢2 ¬(P ∧Q)
¬R

⊢23 ¬(P ∧Q),¬(P ∧Q)
mer

⊢23 ¬(P ∧Q)
cR

We refer the above proof as “a proof of ⊢23 ¬(P ∧ Q),” which is the lowermost sequent
called the end-sequent, or the conclusion, of the proof. We consider non-logical axioms as
the premises of the proof. In what follows, to avoid notational complexity in the proof, we
omit the names of rules such as ∧L1 and ¬R, above. However, we do indicate the names of
mer- and sub-rules, as they are original rules in this article. Some repeated applications of
inference rules are expressed by a double line, as follows.

Σ ⊢β Λ

Γ ⊢α ∆

Definition 2.7 (Provability) When there exists a proof of Γ ⊢α ∆, we say that Γ ⊢α ∆ is
provable.

In particular, when Γ ⊢N ∆ is provable, it is a logical consequence accepted by all members
of N .

Definition 2.8 (Consistency) When ⊢N is provable in a system, we say the system is
inconsistent. Otherwise, the system is consistent.
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Note that when ⊢N is provable in a system, i.e., in an inconsistent system, any sequent
Γ ⊢α ∆ is provable by applying w-rule and sub-rule.

Remark 2.9 (Mingle) Ourmer-rule has essentially the same form as the rule calledmingle
(cf. e.g., [30, 19, 38]). However, mingle is introduced in a different context, such as substruc-
tural logics, where structural rules are restricted to analyze usual classical or intuitionistic
logic. Thus, in this article, we call our rule mer-rule.

2.3 Some properties of Lg

Let us investigate some syntactic properties of Lg.

Although we restrict our logical axioms to consist only of atomic formulas, this holds for
any complex formula.

Proposition 2.10 φ ⊢N φ is provable for any formula φ.

Proof. By induction on φ. For example, when φ ≡ φ1 ∧ φ2, the sequent φ1 ∧ φ2 ⊢N φ1 ∧ φ2

is provable by the induction hypotheses for φ1 ⊢N φ1 and φ2 ⊢N φ2 as follows.

φ1 ⊢N φ1

φ1 ∧ φ2 ⊢N φ1

φ2 ⊢N φ2

φ1 ∧ φ2 ⊢N φ2

φ1 ∧ φ2, φ1 ∧ φ2 ⊢N∩N φ1 ∧ φ2

φ1 ∧ φ2 ⊢N φ1 ∧ φ2

Although we formulate our mer-rule by merging groups α and β as well as contexts, we
can formulate it by restricting contexts to be shared in the upper sequents.

Proposition 2.11 (mer-rule) The following mer′-rule is equivalent to our mer-rule.

Γ ⊢α ∆ Γ ⊢β ∆

Γ ⊢α∪β ∆ mer′

Proof. mer′-rule is simulated by mer-rule as follows.

Γ ⊢α ∆ Γ ⊢β ∆

Γ,Γ ⊢α∪β ∆,∆
mer

Γ ⊢α∪β ∆
c

The above double line expresses several applications of c-rule.

Conversely, mer-rule is simulated by mer′-rule as follows.

Γ ⊢α ∆

Γ,Σ ⊢α ∆,Λ
w

Σ ⊢β Λ

Γ,Σ ⊢β ∆,Λ
w

Γ,Σ ⊢α∪β ∆,Λ mer′
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It is well-known that the same applies to other rules ∧R,→ L,∨L with the use of the
structural rules w- and c-rules. That is, these rules are equivalent to the following rules,
respectively. See [39, 26].

Γ ⊢α ∆, φ Γ ⊢β ∆, ψ

Γ ⊢α∩β ∆, φ ∧ ψ ∧R′
Γ ⊢α ∆, φ ψ,Γ ⊢β ∆

φ→ ψ,Γ ⊢α∩β ∆ → L′ φ,Γ ⊢α ∆ ψ,Σ ⊢α Λ

φ ∨ ψ,Γ,Σ ⊢α ∆,Λ ∨L′

In what follows, thus, we sometimes use the above rules interchangeably.

One of the remarkable rules in Lg is mer-rule, which makes it possible to merge given
groups. For example, assume ⊢α φ and ⊢−α ψ are provable, where −α is the complement of
α, and hence, we have α∪−α = N . Then, ⊢N φ∨ψ is provable by using mer-rule as follows.

⊢α φ

⊢α φ ∨ ψ ∨R
⊢−α ψ

⊢−α φ ∨ ψ ∨R

⊢N φ ∨ ψ,φ ∨ ψ mer

⊢N φ ∨ ψ cR

Thus, without logical axioms, a sequent with the whole group N may be provable.

The following proposition says that we can rearrange the order of application of sub-rule.

Proposition 2.12 (sub-rule) Applications of sub-rule are permutable.

Proof. We show some cases, and other cases are similar. We first show that sub-rule can be
moved upward. The following proofs on the left are transformed into the proofs on the right,
with the same end-sequents.

.... π1
Γ ⊢α ∆, φ

.... π2
Σ ⊢β Λ, ψ

Γ,Σ ⊢α∩β ∆,Λ, φ ∧ ψ ∧R

Γ,Σ ⊢γ ∆,Λ, φ ∧ ψ sub ▷

.... π1
Γ ⊢α ∆, φ

Γ ⊢γ ∆, φ
sub

.... π2
Σ ⊢β Λ, ψ

Σ ⊢γ Λ, ψ
sub

Γ,Σ ⊢γ ∆,Λ, φ ∧ ψ ∧R

where γ ⊆ α ∩ β ⊆ α, β.

.... π1
Γ ⊢α ∆

.... π2
Σ ⊢β Λ

Γ,Σ ⊢α∪β ∆,Λ
mer

Γ,Σ ⊢γ ∆,Λ
sub ▷

.... π1
Γ ⊢α ∆
Γ ⊢α∩γ ∆

sub

.... π2
Σ ⊢β Λ

Σ ⊢β∩γ Λ
sub

Γ,Σ ⊢γ ∆,Λ
mer

where (α ∩ γ) ∪ (β ∩ γ) = (α ∪ β) ∩ γ = γ because γ ⊆ α ∪ β.
Conversely, sub-rule can be moved downward as follows.

.... π1
Γ ⊢α ∆, φ

Γ ⊢α′ ∆, φ
sub

.... π2
φ,Σ ⊢β Λ

Γ,Σ ⊢α′∩β ∆,Λ
cut ▷

.... π1
Γ ⊢α ∆, φ

.... π2
φ,Σ ⊢β Λ

Γ,Σ ⊢α∩β ∆,Λ
cut

Γ,Σ ⊢α′∩β ∆,Λ
sub
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.... π1
Γ ⊢α ∆
Γ ⊢α′ ∆

sub

.... π2
Σ ⊢β Λ

Γ,Σ ⊢α′∪β ∆,Λ
mer ▷

.... π1
Γ ⊢α ∆

.... π2
Σ ⊢β Λ

Γ,Σ ⊢α∪β ∆,Λ
mer

Γ,Σ ⊢α′∪β ∆,Λ
sub

Thus, applications of sub-rule in a proof can be collected in either the upper part or the
lower part of the proof. Hence, applications of sub-rule are inessential for investigation of the
structure of a proof.

Proposition 2.13 (⊢∅) Any sequent Γ ⊢∅ ∆ with the empty group ∅ is provable in Lg.

Proof. Starting from the axiom ⊢∅, we can obtain any sequent with the empty group by
applying wR- and wL-rules as follows.

⊢∅

⊢∅ ∆
wR

Γ ⊢∅ ∆
wL

Because any sequent Γ ⊢∅ ∆ is provable with the empty group ∅, it is difficult to give
an informal interpretation of the sequent. Although we may exclude the empty group by
restricting sub-rule with β ̸= ∅, this makes our syntax and semantics much more complicated,
as well as the cut-elimination (see Remark 2.16) and completeness theorems (see Remark
2.44). Thus, we keep the empty group and the non-logical axiom ⊢∅ in this article.

When a sequent Γ ⊢ ∆ is provable in the usual classical logical system, by replacing every
sequent Σ ⊢ Λ in the proof to Σ ⊢N Λ, we obtain a proof of Γ ⊢N ∆ in Lg. This is formally
proved by induction on the length of given proof. Thus, by introducing the non-logical axioms,
Lg can be considered as an extension of the usual classical logic.

Proposition 2.14 (Classical logic) If Γ ⊢ ∆ is provable in classical logic, then Γ ⊢N ∆ is
provable in Lg.

2.4 Cut-elimination and consistency of Lg

The cut-elimination theorem, more widely called the proof normalization theorem, is one
of the most basic theorems in proof theory. It says that any proof is transformed into a
normal proof, i.e., a cut-free proof in the sequent calculus, with the same conclusion. The
theorem has various corollaries such as the consistency of the system, and makes various proof-
theoretical analyses possible, such as the analysis of the structure of proofs. See [26, 39]. Let
us investigate the cut-elimination theorem of our Lg.

Proposition 2.15 (Cut-elimination) If Γ ⊢α ∆ is provable, then it is provable without
cut-rule.

To prove our cut-elimination theorem, the standard method of cut-elimination is applied.
See, for example, [16, 14]. Instead of giving a detailed proof of the theorem, we here present an
idea to prove the cut-elimination theorem, through which we show that the indexes of groups
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do not cause any trouble. In the following discussion, to make the idea of cut-elimination
explicit, we exclude c-rule, as it requires more sophisticated method than the naive one
explained in what follows. We describe this in the end of the explanation.

(1) Let us consider the following (part of) proof, where cut-rule is applied once.

.... π1
Γ ⊢α ∆, φ

.... π2
φ,Σ ⊢β Λ

Γ,Σ ⊢α∩β ∆,Λ
cut

When the last rule of π1 or π2 is not a rule for the cut-formula φ, by permuting the given
cut-rule and the last rule of π1 or π2, we move the application of cut-rule upward until the
last rules of π1 and π2 become the rules for the cut-formula φ. For example, let us examine
the following cases.

(∧R) When the last rule of π2 is not a rule for φ, but ∧R-rule introduces σ1 ∧ σ2 as in the
following proof on the left, where we omit inessential contexts, this proof is transformed into
the following proof on the right by permuting the cut-rule and the ∧R-rule.

.... π1
Γ ⊢α φ

.... π21
φ,Σ1 ⊢β1 σ1

.... π22
Σ2 ⊢β2 σ2

φ,Σ1,Σ2 ⊢β1∩β2 σ1 ∧ σ2
∧R

Γ,Σ1,Σ2 ⊢α∩β1∩β2 σ1 ∧ σ2
cut ▷

.... π1
Γ ⊢α φ

.... π21
φ,Σ1 ⊢β1 σ1

Γ,Σ1 ⊢α∩β1 σ1
cut

.... π22
Σ2 ⊢β2 σ2

Γ,Σ1,Σ2 ⊢α∩β1∩β2 σ1 ∧ σ2
∧R

The same transformation is applied to other rules than ∧R-rule, when it is not a rule for
the cut-formula φ. We further examine the cases of mer-rule and sub-rule, which are original
rules in this article.

(mer) When the last rule of π2 is mer-rule, as in the following proof on the left, we transform
it into the following proof on the right.

.... π1
Γ ⊢α φ

.... π21
φ,Σ1 ⊢β1 Λ1

.... π22
Σ2 ⊢β2 Λ2

φ,Σ1,Σ2 ⊢β1∪β2 Λ1,Λ2
mer

Γ,Σ1,Σ2 ⊢α∩(β1∪β2) Λ1,Λ2
cut ▷

.... π1
Γ ⊢α φ

.... π21
φ,Σ1 ⊢β1 Λ1

Γ,Σ1 ⊢α∩β1 Λ1
cut

.... π22
Σ2 ⊢β2 Λ2

Γ,Σ1,Σ2 ⊢(α∩β1)∪β2
Λ1,Λ2

mer

Γ,Σ1,Σ2 ⊢α∩(β1∪β2) Λ1,Λ2
sub

where α ∩ (β1 ∪ β2) ⊆ (α ∪ β2) ∩ (β1 ∪ β2) = (α ∩ β1) ∪ β2.
(sub) When the last rule of π2 is sub-rule, as in the following proof on the left, we transform
it into the following proof on the right.

.... π1
Γ ⊢α φ

.... π21
φ,Σ ⊢γ Λ

φ,Σ ⊢β Λ
sub

Γ,Σ ⊢α∩β Λ
cut ▷

.... π1
Γ ⊢α φ

.... π21
φ,Σ ⊢γ Λ

Γ,Σ ⊢α∩γ Λ
cut

Γ,Σ ⊢α∩β Λ
sub

where β ⊆ γ, and hence, α ∩ β ⊆ α ∩ γ.
Similarly for π1.

(2) When both of the last rules of π1 and π2 introduce the cut-formula φ, by transforming
the given proof, we reduce the complexity of the cut-formula.
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(∧R-∧L) For example, when the cut-formula is φ1∧φ2, and the last rule of π1 is ∧R-rule and
of π2 is ∧L-rule introducing φ1 ∧φ2, we reduce the complexity of the cut-formula to φ1 with
the following transformation.

.... π11
Γ1 ⊢α1 φ1

.... π12
Γ2 ⊢α2 φ2

Γ1,Γ2 ⊢α1∩α2 φ1 ∧ φ2
∧R

.... π21
φ1,Σ ⊢β Λ

φ1 ∧ φ2,Σ ⊢β Λ
∧L

Γ1,Γ2,Σ ⊢α1∩α2∩β Λ
cut ▷

.... π11
Γ1 ⊢α1 φ1

.... π21
φ1,Σ ⊢β Λ

Γ1,Σ ⊢α1∩β Λ
cut

Γ1,Γ2,Σ ⊢α1∩β Λ
wL

Γ1,Γ2,Σ ⊢α1∩α2∩β Λ
sub

The same transformation, reducing the complexity of the cut-formula, is applied to other
combinations of rules than ∧R-∧L above.

(wL) When the cut-formula φ is introduced by wL-rule in π2, we can eliminate the cut-rule
with the following transformation.

.... π1
Γ ⊢α ∆, φ

.... π21
Σ ⊢β Λ

φ,Σ ⊢β Λ
wL

Γ,Σ ⊢α∩β ∆,Λ
cut ▷

.... π21
Σ ⊢β Λ

Γ,Σ ⊢β ∆,Λ
w

Γ,Σ ⊢α∩β ∆,Λ
sub

(3) When the given cut-formula is an atomic formula P , and the last rules of π1 and π2 are
rules for P , we are able to eliminate the given cut-rule with the following transformation.

(logical axiom) When the last rule of π2 is the logical axiom for P , by applying the following
transformation, we obtain a proof without cut-rule.

.... π1
Γ ⊢α ∆, P P ⊢N P

Γ ⊢α ∆, P
cut ▷

.... π1
Γ ⊢α ∆, P

(non-logical axiom) When the last rule of π2 is the non-logical axiom for P as in the following
proof, we divide this case depending on the last rule of π1.

.... π1
Γ ⊢α ∆, P P ⊢β

Γ ⊢α∩β ∆
cut

• When the last rule of π1 is a logical axiom for P , we are able to eliminate the cut-rule as
follows.

P ⊢α P P ⊢β

P ⊢α∩β
cut ▷

P ⊢β

P ⊢α∩β
sub

• When the last rule of π1 is a non-logical axiom for P , we are able to eliminate the cut-rule
as follows.

⊢α P P ⊢β

⊢α∩β
cut ▷ ⊢α∩β

where α ∩ β = ∅ by the definition of J⃗ , and hence ⊢α∩β, i.e., ⊢∅ is the non-logical axiom.
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• When the last rule of π1 is wR, we are able to eliminate the cut-rule as follows.
.... π11

Γ ⊢α ∆
Γ ⊢α ∆, P

wR
P ⊢β

Γ ⊢α∩β ∆
cut ▷

.... π11
Γ ⊢α ∆
Γ ⊢α∩β ∆

sub

In this way, by induction on the complexity of the cut-formula and on the distance from
the place where the cut-formula is introduced, the cut-elimination theorem is proved.

Remark 2.16 (⊢∅) Note that ⊢∅ is required to be a non-logical axiom in our proof of the
cut-elimination theorem, when we eliminate cut-rule between two non-logical axioms ⊢α P
and P ⊢β.

In the above explanation, we have excluded c-rule. For example, when the last rule of
π2 is cL-rule for the cut-formula φ as in the following proof, the above naive transformation
does not work.

.... π1
Γ ⊢α ∆, φ

.... π2
φ,φ,Σ ⊢β Λ

φ,Σ ⊢β Λ
cL

Γ,Σ ⊢α∩β ∆,Λ
cut ▷

.... π1
Γ ⊢α ∆, φ

.... π1
Γ ⊢α ∆, φ

.... π2
φ,φ,Σ ⊢β Λ

φ,Γ,Σ ⊢α∩β ∆,Λ
cut

Γ,Γ,Σ ⊢α∩(α∩β) ∆,∆,Λ
cut

Γ,Σ ⊢α∩β ∆,Λ
c

This is because the cut-rule is duplicated without reducing the complexity of the cut-formula,
and it is difficult to determine the distance between the lower cut-rule and the place where
the cut-formula is introduced.

Thus, to deal with the case of c-rule, cut-rule is slightly generalized to the rule called
multicut-, or mix-rule, which can eliminate multiple cut-formulas simultaneously. Then, the
multicut-elimination theorem, which implies the cut-elimination, is proved by applying es-
sentially the same transformations of given proofs as above. The same applies to our Lg, and
see, for example, [16, 14] for a detailed proof. To deal with c-rule, there are other methods;
for example, it is possible to modify the whole system so that c-rule is contained in other
inference rules implicitly. See [39] for such approaches.

One of the main consequences of the cut-elimination theorem is the following subformula
property.

Proposition 2.17 (Subformula property) If Γ ⊢α ∆ is provable, then there exists a proof
of Γ ⊢α ∆ that contains only the subformulas of formulas from Γ and ∆.

Proof. If Γ ⊢α ∆ is provable, by the cut-elimination theorem, it is provable without cut-rule.
Other than cut-rule, the upper sequents of every inference rule contain only subformulas of
formulas contained in the lower sequent.

By the subformula property, Lg is syntactically shown to be consistent.

Proposition 2.18 (Consistency) Lg is consistent. That is, ⊢N is not provable in Lg.

Proof. If ⊢N is provable, by the subformula property, there exists a proof that does not
contain any formula. However, this is impossible because all axioms, other than ⊢∅ that is
not equivalent to ⊢N , contain a formula.
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2.5 Semantics of Lg

Our semantics is constructed based on the idea of the phase semantics of linear logic, cf. [15,
31]. Girad explains the idea of phase semantics in [15] as follows. The semantic counterpart
of a formula is a fact, and it is regarded as a set of tasks to verify the fact. These tasks can be
seen as phases between a fact and its verification. This idea can be applied to our semantics
of Lg. Our semantics is defined in terms of groups over N (instead of tasks). Every formula
is interpreted as certain set of groups whose members accept the formula. A formula is true
if the whole group N accepts the formula.

Let us first introduce the closure conditions that the interpretation of every formula should
satisfy.

Definition 2.19 (Closure condition) X ⊆ P(N) is said to be:

1. ⊆-closed if α ∈ X and β ⊆ α imply β ∈ X;

2. ∪-closed if α, β ∈ X implies α ∪ β ∈ X.

We next define a special set of groups denoted by ⊥ as follows.

Definition 2.20 (⊥) We define ⊥ ⊆ P(N) so that it is ⊆-closed and ∪-closed, and N ̸∈ ⊥.

⊥ is intended to represent the absurdity, and hence, to avoid an inconsistent model, where
all formulas are true, we assume N ̸∈ ⊥ in the above definition. (Cf. Definition 2.29.)

Depending on concrete construction of ⊥, different set-theoretical structures are induced,
where formulas are interpreted. Cf. Example 2.30.

The set-theoretical operations corresponding to the connectives are defined as follows.

Definition 2.21 (Operations) For any X,Y ⊆ P(N), operations ∧,→,¬ and ∨ are defined
as follows.

� X ∧ Y = {α ∩ β | α ∈ X,β ∈ Y }
� X → Y = {α | X ∧ {α} ⊆ Y }
� ¬X = X → ⊥ = {α | X ∧ {α} ⊆ ⊥}
� X ∨ Y = ¬¬(X ∪ Y )

We usually write X ∧ {α} as X ∧ α by abbreviating { and } for simplicity.
It is shown that X ∧ Y and the usual intersection X ∩ Y are equivalent for any ⊆-closed

X and Y .

Lemma 2.22 (∧ and ∩) X ∧ Y = X ∩ Y for any ⊆-closed X and Y .

Proof. Let α ∈ X∧Y . Then α = α1∩α2 such that α1 ∈ X and α2 ∈ Y by definition. Because
X and Y are ⊆-closed, we have α1 ∩ α2 ∈ X and α1 ∩ α2 ∈ Y , that is, α ∈ X ∩ Y .

Conversely, let α ∈ X ∩ Y . Then α ∈ X and α ∈ Y , and hence, α = α ∩ α ∈ X ∧ Y .

By the above lemma, the usual properties of ∩ also hold for ∧ when we consider ⊆-closed
sets. In the following discussion, we apply such properties without explicitly referring to the
above lemma.

Let us investigate some properties of ¬.
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Lemma 2.23 For any X,Y ⊆ P(N),

1. X ⊆ ¬¬X

2. ¬¬¬X = ¬X

3. If X ⊆ Y then ¬Y ⊆ ¬X

4. ⊥ ⊆ ¬X

5. ¬¬⊥ = ⊥

Proof. (1) By the definition of ¬, we have X ∧ ¬X ⊆ ⊥. Hence, again by the definition of
¬, we have X ⊆ ¬¬X. (3) Let α ∈ ¬Y , that is, α ∧ Y ⊆ ⊥. Because X ⊆ Y , we have
α ∧X ⊆ ⊥, that is α ∈ ¬X. (2) is obtained from (1) and (3). (4) Because ⊥ ⊆ ⊥, we have
⊥∧X ⊆ ⊥, that is, ⊥ ⊆ ¬X. (5) ⊥ ⊆ ¬¬⊥ is obtained from (1). To show ¬¬⊥ ⊆ ⊥, assume
α ∈ ¬¬⊥, that is, α ∧ ¬⊥ ⊆ ⊥. Because N ∈ ¬⊥, which is equivalent to ⊥ ⊆ ⊥, we have
α = α ∩N ∈ ⊥.

Definition 2.24 (Closed set) X ⊆ P(N) is said to be ¬¬-closed if ¬¬X = X.
X ⊆ P(N) is said to be closed if it is (1) ⊆-closed, (2) ∪-closed, and (3) ¬¬-closed.

In particular, ∪-closedness is required to show the soundness of mer-rule.

Lemma 2.25

1. X ∧ Y ⊆ Z implies X ∧ ¬Z ⊆ ¬Y .

2. X ∧ Y ⊆ Z implies ¬¬X ∧ Y ⊆ Z for any ¬¬-closed Z.

3. X ∨ Y = ¬X → Y for any ¬¬-closed Y .

Proof. (1) Because Z ∧ ¬Z ⊆ ⊥, X ∧ Y ⊆ Z implies (X ∧ Y ) ∧ ¬Z ⊆ ⊥. Thus, by the
definition of ¬, we have X ∧ ¬Z ⊆ ¬Y .

(2) From X ∧ Y ⊆ X ∧ Y , by applying (1) twice, we obtain ¬¬X ∧ Y ⊆ ¬¬(X ∧ Y ). On the
other hand, from X ∧Y ⊆ Z, we have ¬¬(X ∧Y ) ⊆ ¬¬Z = Z because Z is ¬¬-closed. Thus,
we have ¬¬X ∧ Y ⊆ Z.

(3) We first show ¬¬(¬X → Y ) ⊆ ¬X → Y for any ¬¬-closed Y . From ¬X∧(¬X → Y ) ⊆ Y ,
by applying (2), we obtain ¬X ∧ ¬¬(¬X → Y ) ⊆ Y , and hence, we have ¬¬(¬X → Y ) ⊆
¬X → Y . We now show X ∨ Y ⊆ ¬X → Y . By definition, we have X ∧ ¬X ⊆ ⊥, and by
Lemma 2.23(4), we have ⊥ ⊆ ¬¬Y = Y . Thus, we have X ∧ ¬X ⊆ Y , and hence, we have
X ⊆ ¬X → Y . Thus, together with the fact Y ∧ ¬X ⊆ Y , which implies Y ⊆ ¬X → Y ,
we obtain X ∪ Y ⊆ ¬X → Y . Hence, we have X ∨ Y = ¬¬(X ∪ Y ) ⊆ ¬¬(¬X → Y ) ⊆
¬X → Y . For the other direction, we show ¬X → Y ⊆ X ∨ Y . From X ⊆ X ∨ Y ,
we have ¬(X ∨ Y ) ⊆ ¬X, which implies ¬(X ∨ Y ) ∧ (¬X → Y ) ⊆ ¬X ∧ (¬X → Y ).
Because ¬X ∧ (¬X → Y ) ⊆ Y ⊆ X ∨ Y , we have ¬(X ∨ Y ) ∧ (¬X → Y ) ⊆ X ∨ Y ,
and hence, ¬(X ∨ Y ) ∧ ¬(X ∨ Y ) ∧ (¬X → Y ) ⊆ ⊥. By the idempotency of ∧, we have
¬(X ∨ Y ) ∧ (¬X → Y ) ⊆ ⊥, which implies ¬X → Y ⊆ ¬¬(X ∨ Y ) = X ∨ Y .

Lemma 2.26 (Closed set) ¬X,X ∧Y, X → Y, X ∨Y are all closed, for any closed X and
Y .
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Proof. To show that ¬X is closed, (1) assume α ∈ ¬X and β ⊆ α. By definition, α ∈ ¬X
means α ∧ X ⊆ ⊥, that is, for any γ ∈ X, α ∩ γ ∈ ⊥. Then, because β ⊆ α, we have
β ∩γ ⊆ α∩γ ∈ ⊥. Because ⊥ is ⊆-closed, we have β ∩γ ∈ ⊥ for any γ ∈ X, that is, β ∈ ¬X.
(2) Assume α, β ∈ ¬X. We show α ∪ β ∈ ¬X, that is, (α ∪ β) ∧X ⊆ ⊥. By definition, we
have α ∧X ⊆ ⊥ and β ∧X ⊆ ⊥. Hence, for any γ ∈ X, we have α ∩ γ, β ∩ γ ∈ ⊥. Because
⊥ is ∪-closed, we have (α ∩ γ) ∪ (β ∩ γ) = (α ∪ β) ∩ γ ∈ ⊥. (3) The ¬¬-closedness of ¬X is
obtained by Lemma 2.23.

To show X ∧ Y is closed, (1) assume α ∈ X ∧ Y and β ⊆ α. Then, α = α1 ∩ α2 such that
α1 ∈ X and α2 ∈ Y . Because β ⊆ α = α1∩α2, we have β ⊆ α1 ∈ X and β ⊆ α2 ∈ Y . Because
X and Y are ⊆-closed, we have β ∈ X and β ∈ Y , and hence, we have β = β∩β ∈ X ∧Y . (2)
Assume α, β ∈ X ∧Y . Then, we have α, β ∈ X and α, β ∈ Y . Because X and Y are ∪-closed,
we have α∪β ∈ X and α∪β ∈ Y , which imply α∪β ∈ X ∧Y . (3) To show the ¬¬-closedness
of X ∧ Y , we use the following calculation. X ∧ Y ⊆ X implies ¬¬(X ∧ Y ) ⊆ ¬¬X, where
¬¬X = X because X is ¬¬-closed. Similarly, we have ¬¬(X ∧ Y ) ⊆ Y . Hence, we have
¬¬(X ∧ Y ) ⊆ X ∧ Y .

To show that X → Y is closed, (1) assume α ∈ X → Y and β ⊆ α. By α ∈ X → Y ,
for any γ ∈ X, we have γ ∩ α ∈ Y . Because β ⊆ α, we have γ ∩ β ⊆ γ ∩ α ∈ Y , and hence,
we have γ ∩ β ∈ Y because Y is ⊆-closed. Thus, β ∈ X → Y . (2) Assume α, β ∈ X → Y .
We show α ∪ β ∈ X → Y , that is, for any γ ∈ X, (α ∪ β) ∩ γ ∈ Y . α ∈ X → Y and
γ ∈ X imply α ∩ γ ∈ Y , and similarly, β ∈ X → Y and γ ∈ X imply β ∩ γ ∈ Y . Because
Y is ∪-closed, we have (α ∪ β) ∩ γ = (α ∩ γ) ∪ (β ∩ γ) ∈ Y . (3) To show the ¬¬-closedness
of X → Y , we calculate the following. By Lemma 2.25(2), X ∧ (X → Y ) ⊆ Y implies
X ∧ ¬¬(X → Y ) ⊆ ¬¬Y , where ¬¬Y = Y because Y is ¬¬-closed. Thus, by the definition
of →, we have ¬¬(X → Y ) ⊆ X → Y .

Because X∨Y = ¬¬(X∪Y ), (1) ⊆-closedness and (2) ∪-closedness of X∨Y are obtained
by the same way as those of ¬X above. (3) The ¬¬-closedness of X ∨Y is immediate because
it is defined as¬¬(X ∪ Y ).

Every formula is interpreted by a closed set.

Definition 2.27 (Model) Let agenda A and profile J⃗ be given. Let ⊥ be fixed. Then, ∗ is
an interpretation function from the set of formulas to the set of closed sets over N , defined
as follows.

� P ∗ = ¬¬G(P ) = ¬¬{α | P ∈ Ji for any i ∈ α}
� (φ ∧ ψ)∗ = φ∗ ∧ ψ∗

� (φ→ ψ)∗ = φ∗ → ψ∗

� (¬φ)∗ = ¬φ∗ = φ∗ → ⊥
� (φ ∨ ψ)∗ = φ∗ ∨ ψ∗

We call a pair (⊥, ∗) a model.

The intended interpretation of an atom P is G(P ), i.e., the set of groups whose members
accept P . However, G(P ) itself is not closed, and hence, we define P ∗ by using the ¬¬-closure.
Cf. Remark 2.40.

The interpretation of any formula is shown to be a closed set by Lemma 2.26.
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Lemma 2.28 (Interpretation) φ∗ is closed for any formula φ.

Definition 2.29 (Truth)

� φ is true in a model (⊥, ∗) if N ∈ φ∗.

� φ is valid if it is true in any model.

Example 2.30 (Model) Let N = {1, 2, 3}, ⊥ = {∅}, P ∗ = P({1, 3}) = {∅, {1}, {3}, {1, 3}},
Q∗ = P({1}) = {∅, {1}}. Cf. Example 1.1. In this model, ¬P ∗ = {∅, {2}} and ¬¬P ∗ =
{∅, {1}, {3}, {1, 3}} = P ∗. Note that ¬P ∗ and the complement of P ∗ are not equivalent.
Furthermore, N ̸∈ P ∗ and N ̸∈ ¬P ∗, and hence, neither P or ¬P is true in this model. This
model is applied in Examples 3.10 and 3.18.

Note that ⊥ cannot be restricted to the above set {∅} to prove our completeness theorem
of Lg. See our canonical model given in Definition 2.36.

For an interpretation of the sequent Γ ⊢α ∆, where Γ ≡ φ1, . . . , φk and ∆ ≡ ψ1, . . . , ψl,
by Γ∗ we denote φ∗

1 ∧ · · · ∧ φ∗
k, and by ∆∗ we denote ψ∗

1 ∨ · · · ∨ ψ∗
l . To avoid the notational

complexity, we simply write Γ∗ and ∆∗ without mentioning the corresponding connective ∧
or ∨, which is clear from the context. When given sequent is of the form Γ ⊢α , the right-hand
side of the sequent, i.e., the empty context is interpreted as ⊥.

We implicitly use Lemma 2.25 to prove the soundness theorem, in particular to prove the
soundness of the right rules.

Lemma 2.31 (Soundness) If Γ ⊢α ∆ is provable, then α ∈ Γ∗ → ∆∗ in any model (⊥, ∗).

Proof. We show the lemma by induction on the length of the given proof as usual.

• When the given Γ ⊢α ∆ is a logical axiom of the form P ⊢N P , we have N ∈ P ∗ → P ∗,
because it is equivalent to P ∗ ⊆ P ∗.

• When the given Γ ⊢α ∆ is a non-logical axiom of the form ⊢∅, we have ∅ ∈ ⊥ because ⊥ is
⊆-closed.

• When the given Γ ⊢α ∆ is a non-logical axiom of the form ⊢α P , α ∈ P ∗ is obtained by
the definition of the interpretation of atoms.

• When the given Γ ⊢α ∆ is a non-logical axiom of the form P ⊢α, we show α ∧ P ∗ ⊆ ⊥.
Note that G(¬P ) ∧ G(P ) = {∅} ⊆ ⊥. Thus, G(¬P ) ∧ ¬¬G(P ) ⊆ ⊥ by Lemma 2.25 (2), that
is, G(¬P ) ∧ P ∗ ⊆ ⊥. Because P ⊢α is a non-logical axiom, we have α ∈ G(¬P ), and hence,
we have α ∧ P ∗ ⊆ ⊥.

The induction step is divided into the following cases, depending on the last rule applied
in the given proof. By Lemma 2.25, to show X ⊆ Y ∨Z especially in the right rules, we show
X ∧ ¬Y ⊆ Z.

• When
Γ ⊢α ∆, φ Σ ⊢β Λ, ψ

Γ,Σ ⊢α∩β ∆,Λ, φ ∧ ψ ∧R , we show Γ∗ ∧Σ∗ ∧ (α∩β)∧¬∆∗ ∧¬Λ∗ ⊆ φ∗ ∧ψ∗, that

is, γ ∩ σ ∩ (α ∩ β) ∩ δ ∩ λ ∈ φ∗ ∧ ψ∗ for any γ ∈ Γ∗, σ ∈ Σ∗, δ ∈ ¬∆∗, and λ ∈ ¬Λ∗. This is
obtained by the induction hypotheses γ ∩ α ∩ δ ∈ φ∗ and σ ∩ β ∩ λ ∈ ψ∗, as well as by the
definition of ∧.

• When
φ,Γ ⊢α ∆

φ ∧ ψ,Γ ⊢α ∆
∧L1 , we show τ ∩ γ ∩ α ∈ ∆∗ for any τ ∈ φ∗ ∧ ψ∗, γ ∈ Γ∗. Because

τ ∈ φ∗ ∧ ψ∗ implies τ ∈ φ∗, by the induction hypothesis, we have τ ∩ γ ∩ α ∈ ∆∗.
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• When
φ,Γ ⊢α ∆, ψ

Γ ⊢α ∆, φ→ ψ
→ R , we show Γ∗ ∧ α ∧ ¬∆∗ ⊆ φ∗ → ψ∗, which is immediately

obtained from the induction hypothesis φ∗ ∧ Γ∗ ∧ α ∧ ¬∆∗ ⊆ ψ∗ by the definition of →.

• When
Γ ⊢α ∆, φ ψ,Σ ⊢β Λ

φ→ ψ,Γ,Σ ⊢α∩β ∆,Λ
→ L , we show τ∩γ∩σ∩(α∩β)∩δ ∈ Λ∗ for any τ ∈ φ∗ → ψ∗,

γ ∈ Γ∗, σ ∈ Σ∗, and δ ∈ ¬∆∗. τ ∈ φ∗ → ψ∗ implies τ ∧φ∗ ⊆ ψ∗ and, because γ∩α∩δ ∈ φ∗ by
the induction hypothesis, we have τ ∩γ ∩α∩ δ ∈ ψ∗. Furthermore, because ψ∗∧ (σ∩β) ⊆ Λ∗

by the induction hypothesis, we have τ ∩ γ ∩ α ∩ δ ∩ σ ∩ β ∈ Λ∗.

• When
Γ ⊢α ∆, φ

Γ ⊢α ∆, φ ∨ ψ ∨R , we show, for any γ ∈ Γ∗ and δ ∈ ¬∆∗, γ ∩ α ∩ δ ∈ φ∗ ∨ ψ∗.

This is obtained from the induction hypothesis γ ∩ α ∩ δ ∈ φ∗ and the fact φ∗ ⊆ φ∗ ∨ ψ∗.

• When
φ,Γ ⊢α ∆ ψ,Γ ⊢α ∆

φ ∨ ψ,Γ ⊢α ∆
∨L , we first show τ ∩ γ ∩ α ∈ ∆∗ for any τ ∈ φ∗ ∪ ψ∗ and

γ ∈ Γ∗. Whichever τ ∈ φ∗ or τ ∈ ψ∗, we obtain τ ∩ γ ∩ α ∈ ∆∗ by the induction hypotheses.
Thus, we obtain (φ∗∪ψ∗)∧Γ∗∧α ⊆ ∆∗, which implies ¬¬(φ∗∪ψ∗)∧Γ∗∧α ⊆ ∆∗ by Lemma
2.25.

• When
φ,Γ ⊢α ∆

Γ ⊢α ∆,¬φ ¬R, we show Γ∗∧α∧¬∆∗ ⊆ ¬φ∗, which is obtained from the induction

hypothesis φ∗ ∧ Γ∗ ∧ α ⊆ ∆∗.

• When
Γ ⊢α ∆, φ

¬φ,Γ ⊢α ∆
¬L, we show ¬φ∗ ∧ Γ∗ ∧ α ⊆ ∆∗, which is immediately obtained from

the induction hypothesis.

• When
Γ ⊢α ∆

Γ ⊢α ∆, φ
wR , we show γ ∩ α ∩ δ ∈ φ∗ for any γ ∈ Γ∗ and δ ∈ ¬∆∗. This is

obtained by the induction hypothesis γ ∩ α ∈ ∆∗, which is equivalent to γ ∩ α ∧ ¬∆∗ ⊆ ⊥,
and the fact ⊥ ⊆ φ∗ (Lemma 2.23 (4)).

• When
Γ ⊢α ∆
φ,Γ ⊢α ∆

wL , we show τ ∩γ∩α ∈ ∆∗ for any τ ∈ φ∗ and γ ∈ Γ∗. This is obtained

from τ ∩ γ ∩ α ⊆ γ ∩ α ∈ ∆∗ by the induction hypothesis and by the ⊆-closedness of ∆∗.

• When
φ,φ,Γ ⊢α ∆

φ,Γ ⊢α ∆
cL , we show φ∗ ∧ Γ∗ ∧ α ⊆ ∆∗, which is obtained from the fact

φ∗ = φ∗ ∧ φ∗ and the induction hypothesis.

• When
Γ ⊢α ∆, φ, φ

Γ ⊢α ∆, φ
cR, we show Γ∗ ∧ α ∧ ¬∆∗ ⊆ φ∗, which is obtained from the fact

φ∗ = φ∗ ∨ φ∗ and the induction hypothesis.

• When
Γ ⊢α ∆, φ φ,Σ ⊢β Λ

Γ,Σ ⊢α∩β ∆,Λ
cut, we show γ ∩σ∩ (α∩β)∩ δ ∈ Λ∗ for any γ ∈ Γ∗, σ ∈ Σ∗,

δ ∈ ¬∆∗, which is obtained from the induction hypotheses γ∩α∩δ ∈ φ∗ and φ∗∧(σ∩β) ⊆ Λ∗.

• When
Γ ⊢α ∆
Γ ⊢β ∆

sub with β ⊆ α, we show γ ∩ β ∈ ∆∗ for any γ ∈ Γ∗. β ⊆ α implies

γ ∩ β ⊆ γ ∩α. Then, by the induction hypothesis γ ∩α ∈ ∆∗ and by the ⊆-closedness of ∆∗,
we have γ ∩ β ∈ ∆∗.
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• When
Γ ⊢α ∆ Σ ⊢β Λ

Γ,Σ ⊢α∪β ∆,Λ
mer , we show γ ∩ σ ∩ (α ∪ β) ∈ ∆∗ ∨ Λ∗. By the induction

hypothesis, we have γ ∩ α ∈ ∆∗ ⊆ ∆∗ ∨ Λ∗ and σ ∩ β ∈ Λ∗ ⊆ ∆∗ ∨ Λ∗. Because ∆∗ ∨ Λ∗ is
∪-closed, we have (γ ∩ α) ∪ (σ ∩ β) ∈ ∆∗ ∨ Λ∗. Because γ ∩ σ ∩ (α ∪ β) ⊆ (γ ∩ α) ∪ (σ ∩ β),
by the ⊆-closedness of ∆∗ ∨ Λ∗, we have γ ∩ σ ∩ (α ∪ β) ∈ ∆∗ ∨ Λ∗.

As a particular case of the above lemma, when α = N , we obtain the following soundness
theorem.

Theorem 2.32 (Soundness) If φ1, . . . , φk ⊢N ψ1, . . . , ψl is provable, then φ1 ∧ · · · ∧ φk →
ψ1 ∨ · · · ∨ ψl is valid.

The consistency of Lg is also obtained semantically as a corollary of the soundness theorem.

Corollary 2.33 (Consistency) Lg is consistent. That is, ⊢N is not provable in Lg.

Proof. If ⊢N is provable, then we have N ∈ ⊥ in any model (⊥, ∗) by the soundness theorem.
However, this is not the case by the definition of ⊥. Therefore, ⊢N is not provable in Lg.

Remark 2.34 (∨L) Let us consider the following form of the left-rule for ∨:

φ,Γ ⊢α ∆ ψ,Σ ⊢β Λ

φ ∨ ψ,Γ,Σ ⊢α∪β ∆,Λ ∨L′

Although this ∨L′ has the dual form of our ∧R-rule, the rule is unsound. This is because
(φ∗∨ψ∗)∧(α∪β) ⊆ ∆∗∨Λ∗ does not generally follow from φ∗∧α ⊆ ∆∗ and ψ∗∧β ⊆ Λ∗, where
we omit irrelevant contexts Γ,Σ. Furthermore, from the syntactic viewpoint, the inconsistency
⊢N may be provable with the above ∨L′-rule as follows. Let ⊢N P, P ⊢∅, ⊢∅ Q, Q ⊢N are
non-logical axioms:

⊢N P

⊢N P ∨Q ∨R
P ⊢∅ Q ⊢N

P ∨Q ⊢N
∨L′

⊢N
cut

Remark 2.35 (Kripke model) Our model of Lg can be regarded as the usual Kripke model
in the fragment without the disjunction. (Disjunction destroys the simple correspondence.)
Let us consider every group α which belongs to a closed set φ∗ as a possible world. Let
us consider the pair (G,⊆). The ⊆-closedness corresponds to the monotonicity condition in
Kripke semantics, although the order is reversed: α ∈ φ∗ and β ⊆ α imply β ∈ φ∗. Then, for
the interpretation of connectives ∧ and → (¬φ is defined as φ → ⊥), we have the following
correspondence: α ∈ φ∗ ∧ ψ∗ iff α ∈ φ∗ and α ∈ ψ∗, and α ∈ φ∗ → ψ∗ iff for all β ⊆ α,
β ∈ φ∗ implies β ∈ ψ∗. Thus, α ∈ φ∗ in our model of Lg if and only if α |= φ in Kripke
model.

2.6 Semantic completeness of Lg

To prove the semantic completeness theorem, we slightly extend the notion of the model by
introducing indexes of contexts.
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Definition 2.36 (Canonical model) We extend the set of groups G over N to the following
set GC by introducing indexes of contexts.

GC = {αΓ;∆ | α ⊆ N, and Γ,∆ are sets of formulas }

The set-theoretical operations ∩ and ∪ are extended as follows.

αΓ;∆ ∩ βΣ;Λ = (α ∩ β)ΓΣ;∆Λ and αΓ;∆ ∪ βΣ;Λ = (α ∪ β)ΓΣ;∆Λ

where ΓΣ (and ∆Λ) is the abbreviation for the union Γ ∪ Σ (and ∆ ∪ Λ).
The subset relation is also extended as follows.

αΓ;∆ ⊆ βΣ;Λ if (1) α ⊆ β and Γ = Σ and ∆ = Λ or (2) α = β and Γ ⊇ Σ and ∆ ⊇ Λ,

We define ⊥ as follows.

⊥ = {αΓ;∆ | Γ ⊢α ∆ is provable in Lg}

In the canonical model, we further define the set of groups [[φ]] as follows.

[[φ]] = {αΓ;∆ | Γ ⊢α ∆, φ is provable in Lg}

Although, in terms of syntax, the context Γ is a multiset of formulas, in our canonical
model, the context Γ is a set of formulas that makes αΓ;∆ ∩ αΓ;∆ = αΓ;∆ hold.

Strictly speaking, our canonical model is not exactly a model of Lg because the domain
of the canonical model is extended from the simple P(N) by the introduction of the indexes
of contexts. If we define the notion of a general model by introducing a monoid for contexts
from the beginning, or if we define it more abstractly as a certain algebraic structure, we
can avoid the gap between general models and our canonical model. However, this gap exists
mainly in a notational difference, and this approach introduces inessential complication or
abstraction in the semantics of Lg. Thus, at the expense of technical rigor, we maintain our
simple semantics of groups in this article.

We first show that [[φ]] is ¬¬-closed.

Lemma 2.37

1. ¬[[φ]] = [[¬φ]]

2. ¬[[¬φ]] = [[φ]]

3. ¬¬[[φ]] = [[φ]]

Proof. (1) ⇒) Let αΓ;∆ ∈ ¬[[φ]], that is, αΓ;∆ ∧ [[φ]] ⊆ ⊥. Because Nφ;∅ ∈ [[φ]], we have
αΓφ;∆ ∈ ⊥, that is, Γ, φ ⊢α ∆ is provable in Lg. By applying ¬R-rule as follows, we have
Γ ⊢α ∆,¬φ is provable in Lg, that is, αΓ;∆ ∈ [[¬φ]].

Γ, φ ⊢α ∆

Γ ⊢α ∆,¬φ ¬R
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⇐) Let αΓ;∆ ∈ [[¬φ]], that is, Γ ⊢α ∆,¬φ is provable in Lg. We show αΓ;∆ ∈ ¬[[φ]], that is,
αΓ;∆ ∧ [[φ]] ⊆ ⊥. Assume βΣ;Λ ∈ [[φ]], that is, Σ ⊢β Λ, φ is provable. Then, we have:

Γ ⊢α ∆,¬φ
Σ ⊢β Λ, φ

¬φ,Σ ⊢β Λ
¬L

Γ,Σ ⊢α∩β ∆,Λ
cut

Thus, we have (α ∩ β)ΓΣ;∆Λ ∈ ⊥, and hence, we have αΓ;∆ ∧ [[φ]] ⊆ ⊥.
(2) ⇒) Let αΓ;∆ ∈ ¬[[¬φ]], that is, αΓ;∆ ∧ [[¬φ]] ⊆ ⊥. Because N¬φ;∅ ∈ [[¬φ]], we have
αΓ¬φ;∆ ∈ ⊥. Hence, by the following proof, Γ ⊢α ∆, φ is provable, that is, αΓ;∆ ∈ [[φ]].

φ ⊢N φ

⊢N φ,¬φ ¬R
Γ,¬φ ⊢α ∆

Γ ⊢α ∆, φ
cut

⇐) Let αΓ;∆ ∈ [[φ]], that is, Γ ⊢α ∆, φ is provable. We show αΓ;∆ ∈ ¬[[¬φ]], that is, αΓ;∆ ∧
[[¬φ]] ⊆ ⊥. Assume βΣ;Λ ∈ [[¬φ]]. Then by the following proof, we have (α ∩ β)ΓΣ;∆Λ ∈ ⊥.

Σ ⊢β Λ,¬φ
Γ ⊢α ∆, φ

¬φ,Γ ⊢α ∆
¬L

Γ,Σ ⊢α∩β ∆,Λ
cut

(3) By (1), we have ¬[[¬φ]] = ¬¬[[φ]]. Thus, the claim is obtained by (2).

Lemma 2.38 [[φ]] is closed for any formula φ.

Proof. To show the ⊆-closedness of [[φ]], assume αΓ;∆ ∈ [[φ]] and βΣ;Λ ⊆ αΓ;∆. We show
βΣ;Λ ∈ [[φ]], that is, Σ ⊢β Λ, φ is provable. We examine two cases depending on the condition
on βΣ;Λ ⊆ αΓ;∆. (1) When β ⊆ α and Σ = Γ and Λ = ∆, we obtain the claim by applying
sub-rule as follows.

Γ ⊢α ∆, φ

Γ ⊢β ∆, φ
sub

(2) When β = α and Σ ⊇ Γ and Λ ⊇ ∆, we obtain the claim by applying wL- and wR-rules
as follows.

Γ ⊢α ∆, φ

Σ ⊢α Λ, φ
w

To show ∪-closedness, assume αΓ;∆, βΣ;Λ ∈ [[φ]]. Then, αΓ;∆ ∪ βΣ;Λ ∈ [[φ]] is obtained by
applying mer-rule as follows.

Γ ⊢α ∆ Σ ⊢β Λ

Γ,Σ ⊢α∪β ∆,Λ
mer

where αΓ;∆ ∪ βΣ;Λ = (α ∪ β)ΓΣ;∆Λ.
¬¬-closedness is shown in Lemma 2.37 (3).

Note that, in our canonical model, GC(P ) = {α∅;∅ | ⊢α P is an axiom}. Then, every atom
P is interpreted in our canonical model as P ∗ = ¬¬GC(P ) in the same way as in general
models. We show that P ∗ = ¬¬GC(P ) = [[P ]].

Lemma 2.39 ¬¬GC(P ) = [[P ]] for any atom P .

21



Proof. ⇒) We have GC(P ) ⊆ [[P ]] by definition. Hence, we have ¬¬GC(P ) ⊆ [[P ]] because
¬¬[[P ]] = [[P ]].
⇐) We first show ¬GC(P ) ⊆ ¬[[P ]]. Assume αΓ;∆ ∈ ¬GC(P ), that is, αΓ;∆ ∧ GC(P ) ⊆ ⊥. We
show αΓ;∆ ∈ ¬[[P ]], that is, αΓ;∆∧ [[P ]] ⊆ ⊥. Let βΣ;Λ ∈ [[P ]], that is, Σ ⊢β Λ, P is provable. In

Lg, by the definition of individuals’ judgments J⃗ , there exists a group γ such that ⊢γ P and
P ⊢−γ are non-logical axioms, where −γ is the complement of γ. Thus, because γ∅;∅ ∈ GC(P ),
by the assumption αΓ;∆∧GC(P ) ⊆ ⊥, Γ ⊢α∩γ ∆ is provable. Then, Γ,Σ ⊢α∩β ∆,Λ is provable
as follows.

Γ ⊢α∩γ ∆

Σ ⊢β Λ, P P ⊢−γ

Σ ⊢β∩−γ Λ
cut

Γ,Σ ⊢(α∩γ)∪(β∩−γ) ∆,Λ
mer

Γ,Σ ⊢α∩β ∆,Λ
sub

where α ∩ β ⊆ (α ∩ γ) ∪ (β ∩ −γ). Thus, we obtain ¬GC(P ) ⊆ ¬[[P ]], and hence, we have
[[P ]] = ¬¬[[P ]] ⊆ ¬¬GC(P ).

Remark 2.40 (Closure) Note that GC(P ) without the ¬¬-closure is too weak to prove the
completeness of Lg. This is mainly because GC(P ) is not closed under the provability, that
is, even though Γ ⊢α P is provable, P does not necessarily come from the non-logical axiom
for P (i.e., [[P ]] ̸= GC(P )). Thus, we are required to make GC(P ) be closed by using the
¬¬-closure. Similarly for ∨.

The semantic completeness of Lg is obtained from the following main lemma.

Lemma 2.41 φ∗ = [[φ]] for any formula φ.

Proof. We show this lemma by the induction on φ.

• When φ ≡ P , we have P ∗ = [[P ]] by Lemma 2.39.

• When φ ≡ ¬φ1, ¬φ∗
1 = [[¬φ1]] is obtained by Lemma 2.37 (1), where φ∗

1 = [[φ1]] by the
induction hypothesis.

• When φ ≡ φ1∧φ2, we first show φ∗
1∧φ∗

2 ⊆ [[φ1∧φ2]]. Let αΓ;∆ ∈ φ∗
1 and βΣ;Λ ∈ φ∗

2. By the
induction hypothesis, we have αΓ;∆ ∈ [[φ1]] and βΣ;Λ ∈ [[φ2]]. Thus, we obtain (α ∩ β)ΓΣ;∆Λ ∈
[[φ1 ∧ φ2]] by applying ∧R-rule as follows.

Γ ⊢α ∆, φ1 Σ ⊢β Λ, φ2

Γ,Σ ⊢α∩β ∆,Λ, φ1 ∧ φ2
∧R

Next, we show [[φ1 ∧ φ2]] ⊆ φ∗
1 ∧ φ∗

2. Let αΓ;∆ ∈ [[φ1 ∧ φ2]]. Then, Γ ⊢α ∆, φ1 ∧ φ2 is
provable. By using cut-rule, Γ ⊢α ∆, φ1 is provable, and Γ ⊢α ∆, φ2 is provable as follows.

Γ ⊢α ∆, φ1 ∧ φ2

φi ⊢N φi

φ1 ∧ φ2 ⊢N φi
∧L

Γ ⊢α ∆, φi
cut

where i = 1, 2. Thus, by the induction hypothesis, we have αΓ;∆ ∈ [[φ1]] = φ∗
1 and αΓ;∆ ∈

[[φ2]] = φ∗
2, which imply αΓ;∆ ∩ αΓ;∆ = αΓ;∆ ∈ φ∗

1 ∧ φ∗
2.

• When φ ≡ φ1 → φ2, we first show φ∗
1 → φ∗

2 ⊆ [[φ1 → φ2]]. Let αΓ;∆ ∈ φ∗
1 → φ∗

2. Then,
we have φ∗

1 ∧ αΓ;∆ ⊆ φ∗
2. Note that we have Nφ1;∅ ∈ [[φ1]] = φ∗

1 by the induction hypothesis.
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Thus, we have Nφ1;∅ ∩ αΓ;∆ ∈ φ∗
2 = [[φ2]]. Then, we obtain αΓ;∆ ∈ [[φ1 → φ2]] by applying

→ R-rule as follows.
φ1,Γ ⊢N∩α ∆, φ2

Γ ⊢α ∆, φ1 → φ2
→ R

We next show [[φ1 → φ2]] ⊆ φ∗
1 → φ∗

2. Let αΓ;∆ ∈ [[φ1 → φ2]]. Then Γ ⊢α ∆, φ1 → φ2 is
provable. To show φ∗

1 ∧ αΓ;∆ ⊆ φ∗
2, assume βΣ;Λ ∈ φ∗

1. Then, we have (α ∩ β)ΓΣ;∆Λ ∈ φ∗
2 by

using the induction hypothesis as follows.

Γ ⊢α ∆, φ1 → φ2

Σ ⊢β Λ, φ1 φ2 ⊢N φ2

φ1 → φ2,Σ ⊢β Λ, φ2
→ L

Γ,Σ ⊢α∩β ∆,Λ, φ2
cut

• When φ ≡ φ1 ∨ φ2, we first show φ∗
1 ∨ φ∗

2 ⊆ [[φ1 ∨ φ2]]. Assume αΓ;∆ ∈ φ∗
1. Then, by the

induction hypothesis, Γ ⊢α ∆, φ1 is provable, and hence, we have:

Γ ⊢α ∆, φ1

Γ ⊢α ∆, φ1 ∨ φ2
∨R

Thus, we have αΓ;∆ ∈ [[φ1 ∨ φ2]], and hence, we have φ∗
1 ⊆ [[φ1 ∨ φ2]]. Similarly, we have

φ∗
2 ⊆ [[φ1 ∨ φ2]]. Therefore, we have ¬¬(φ∗

1 ∪ φ∗
2) ⊆ [[φ1 ∨ φ2]] by the ¬¬-closedness of

[[φ1 ∨ φ2]].

We next show [[φ1 ∨ φ2]] ⊆ ¬¬(φ∗
1 ∪ φ∗

2), that is, [[φ1 ∨ φ2]] ∧ ¬(φ∗
1 ∪ φ∗

2) ⊆ ⊥. Let αΓ;∆ ∈
[[φ1 ∨ φ2]] and βΣ;Λ ∈ ¬(φ∗

1 ∪ φ∗
2), that is, βΣ;Λ ∧ (φ∗

1 ∪ φ∗
2) ⊆ ⊥. We show (α ∩ β)ΓΣ;∆Λ ∈ ⊥.

Because Nφ1;∅ ∈ [[φ1]] = φ∗
1 and Nφ2;∅ ∈ [[φ2]] = φ∗

2 by the induction hypotheses, we have
βΣφ1;Λ ∈ ⊥ and βΣφ2;Λ ∈ ⊥, respectively. Thus, we have the following proof, which shows
(α ∩ β)ΓΣ;∆Λ ∈ ⊥:

Γ ⊢α ∆, φ1 ∨ φ2

Σ, φ1 ⊢β Λ Σ, φ2 ⊢β Λ

φ1 ∨ φ2,Σ ⊢β Λ
∨L

Γ,Σ ⊢α∩β ∆,Λ
cut

In our canonical model, the whole group N , which is the unit element in general models,
is indexed by contexts. We define the truth in the canonical model in terms of N∅;∅.

Definition 2.42 (True in canonical model) φ is true in the canonical model of Lg if
N∅;∅ ∈ φ∗.

Theorem 2.43 (Semantic completeness of Lg) If φ is valid, then ⊢N φ is provable in
Lg.

Proof. Assume that φ is valid. Then, in particular, φ is true in the canonical model. By
Lemma 2.41, we have N∅;∅ ∈ φ∗ = [[φ]], that is, ⊢N φ is provable in Lg.

Remark 2.44 (⊢∅) Note that the empty set ∅ is a subset of any set, and hence, ∅ is a
member of any closed set. In particular, ∅ ∈ ⊥ always holds, and this means that ⊢∅ should
be a non-logical axiom in our system.
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3 Logic with majority voting Lv

In Section 3.1, we introduce our logic with majority voting Lv, which is shown to be inconsis-
tent. We discuss how we avoid this inconsistency, and based on the well-studied premise-based
and conclusion-based approaches, we introduce logic with majority voting for axioms Lva in
Section 3.2, and logic with majority voting for conclusions Lvc in Section 3.3. We show that
Lva and Lvc are both consistent and syntactically complete, and we discuss the discursive
paradox in terms of Lva and Lvc.

3.1 Majority voting

We introduce the system Lv by introducing an inference rule representing majority voting to
Lg.

Definition 3.1 (Lv) Logic with majority voting Lv is obtained by introducing the following
mv-rule to Lg.

mv-rule: When |α| > n
2 ,

Γ ⊢α ∆
Γ ⊢N ∆

mv

Unfortunately, Lv may be inconsistent, which is shown by the discursive paradox of Ex-
ample 1.1.

Example 3.2 (Discursive paradox in Lv) We have the following proof of ⊢N in Lv with
the given J⃗ as in Example 1.1. Here, the non-logical axioms are as follows: ⊢13 P, P ⊢2

, ⊢1 Q, Q ⊢23.

Q ⊢23

⊢23 ¬Q
⊢N ¬Q mv

P ⊢2 ⊢1 Q

P ⊢12 Q
mer

⊢12 P → Q

⊢N P → Q
mv

⊢13 P
⊢N P

mv
P ⊢N P

Q ⊢N Q

Q,¬Q ⊢N

P, P → Q,¬Q ⊢N

P → Q,¬Q ⊢N
cut

¬Q ⊢N
cut

⊢N
cut

The right upper part derives P, P → Q,¬Q ⊢N , which means P, P → Q,¬Q are inconsistent.
Then, together with ⊢N P , ⊢N P → Q, and ⊢N ¬Q (these are obtained by mv-rule), the
inconsistency ⊢N is provable in Lv with the given J⃗ .

The discursive paradox shows that a collective judgment based on majority voting may be
inconsistent from the viewpoint of the standard classical logic. There are various approaches
that can be taken to avoid the paradox. Two of the most popular such approaches are
the premise-based approach and the conclusion-based approach. See, for example, [12, 35,
17] for these approaches. In the premise-based approach, we first take majority voting on
predetermined “premises,” and then, we collectively accept the conclusions obtained by logical
reasoning from the collectively accepted premises. In Example 1.1, if we regard P and P → Q
as premises, then these are collectively accepted by majority voting, and Q, as the logical
consequence thereof, is also accepted collectively. In the conclusion-based approach, every
member conducts logical reasoning separately and implicitly, and then, we take majority
voting on the predetermined “conclusions” to decide the collective judgment. In Example 1.1,
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if we regard Q as a conclusion, then it is rejected (and hence, ¬Q is accepted) by majority
voting.

Although consistent collective judgments are obtained by these approaches, there are
difficulties thereof, cf. [11, 17]. In particular, we need to determine in advance which formulas
are premises and which are conclusions, and what is collectively accepted depends on the
choice of the premises and conclusions. For example, in Example 1.1, by the premise-based
approach, if we fix P and P → Q as the premises, then the collective judgment is {P, P →
Q,Q}. By contrast, if we fix P and Q as the premises, then the collective judgment is
{P,¬Q,¬(P → Q)}. In the conclusion-based approach, a collective judgment is not complete
with respect to a given agenda in general. Thus, [35] investigated a procedure for making a
collective judgment complete by the conclusion-based approach.

In this article, we determine the collective judgment based on our logic with majority
voting by constructing proofs. Because a proof is considered to provide support to a col-
lectively accepted formula, we may call our approach a proof-based approach. As shown in
Example 3.2, Lv may be inconsistent, and hence, we cannot adopt Lv itself as a logical system
in our approach. Thus, based on the ideas of the premise-based and the conclusion-based
approaches, we introduce logic with majority voting for axioms Lva, where mv-rule can be
applied only to every non-logical axioms (logical axioms are already accepted by all members)
to construct a proof in Lg, and logic with majority voting for conclusions Lvc, where mv-rule
can be applied only to every conclusion of a proof in Lg.

Note that non-logical axioms are generally considered as “premises” in a proof, that is,
they appear at the top of a proof, and they are distinguished from the antecedent in a sequent.
Thus, our approach based on Lva is a particular case of the premise-based approach, where
“premises” are our non-logical axioms restricted to literals. In our Lvc, we construct a proof in
Lg (without mv-rule), and if ⊢α φ is provable with |α| > n

2 , then we accept φ as a collectively
accepted conclusion. Hence, Lvc is different from the usual conclusion-based approach, where
individuals just vote the predetermined conclusions.

In the next sections, we introduce Lva and Lvc, respectively, and then, we investigate their
properties. Lva may be introduced by restricting applications of mv-rule in Lv only to first
steps; i.e., non-logical axioms in a proof. However, instead of introducing mv-rule explicitly,
we introduce Lva by modifying non-logical axioms of Lg. Similarly, although Lvc may be
introduced by restricting applications of mv-rule in Lv to only the last step in a proof, we
introduce Lvc by modifying the notion of validity in Lg without introducingmv-rule explicitly.
This makes Lva and Lvc to be particular systems of Lg, and it is possible to apply syntax and
semantics of Lg directly to Lva and Lvc.

3.2 Lv for axioms: Lva

We first investigate the logic with majority voting for axioms Lva. By contrast to Lg, the
non-logical axioms of Lva are formulas accepted by all members, with the use of majority
voting.

Definition 3.3 (Non-logical axioms of Lva) Lva is obtained from Lg by replacing the
non-logical axioms to the following ones for every atom P :

� ⊢N P when there exists α ∈ G(P ) such that |α| > n
2

� P ⊢N when there exists α ∈ G(¬P ) such that |α| > n
2
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� ⊢∅

Thus, in terms of Lv, the mv-rule has been already applied to all the non-logical axioms
in Lva.

Note that, when ⊢N P is an axiom with α ∈ G(P ) and |α| > n
2 , we do not adopt P ⊢−α,

where −α is the complement of α, as a non-logical axiom, although it is in Lg. We consider
that it makes no sense to keep P ⊢−α as a non-logical axiom when P is collectively accepted
by majority voting. This approach avoids another difficulty pointed out by Nehring [29], see
Remark 3.6. Note also that ⊢∅ P and P ⊢∅ are provable from the axiom ⊢∅.

A model of Lva is obtained from that of Lg by changing the interpretation of atoms.

Definition 3.4 (Model of Lva) The interpretation of every atom P is defined as follows.

� If there exists α ∈ G(P ) such that |α| > n
2 , then P

∗ = G = P(N).

Otherwise, ¬P ∗ = G = P(N), that is, P ∗ = ⊥.

The semantic completeness of Lva is proved with the construction of a canonical model
in exactly the same way as for Lg. Let us check the interpretation of the atoms. When there
exists α ∈ G(P ) such that |α| > n

2 , the sequent ⊢N P is a non-logical axiom. Hence, by
applying w-rule and sub-rule, Γ ⊢α ∆, P is provable in Lva for any contexts Γ and ∆, and for
any group α:

⊢N P

Γ ⊢N ∆, P
w

Γ ⊢α ∆, P
sub

Thus, any αΓ;∆ belongs to [[P ]], that is, [[P ]] = GC = P ∗ (cf. Lemma 2.39). When there exists
no α ∈ G(P ) such that |α| > n

2 , the sequent P ⊢N is a non-logical axiom by the definition

of J⃗ . In this case, we have [[P ]] = ⊥ = P ∗ as follows. Let αΓ;∆ ∈ [[P ]]. Then Γ ⊢α ∆, P is
provable. Hence, by applying cut-rule, Γ ⊢α ∆ is provable, that is, αΓ;∆ ∈ ⊥.

Γ ⊢α ∆, P P ⊢N

Γ ⊢α ∆
cut

Hence, we have [[P ]] ⊆ ⊥. The other direction ⊥ ⊆ [[P ]] is obtained by applying w-rule.
Therefore, we obtain the semantic completeness of Lva from that for Lg (Theorem 2.43).

Theorem 3.5 (Semantic completeness of Lva) Lva is semantically complete with respect
to the models of Lva.

Nehring [29] pointed out the following difficulty of the premise-based approach.

Remark 3.6 (Difficulty in the premise-based approach) LetN = {1, 2, 3}, J1 = {P,Q,¬R,¬((P∧
Q) ∧R)}, J2 = {¬P,Q,R,¬((P ∧Q) ∧R)}, J3 = {P,¬Q,R,¬((P ∧Q) ∧R)}. Let P,Q,R be
premises and (P ∧Q) ∧R be the conclusion.

P Q R (P ∧Q) ∧R
1 T T F F
2 F T T F
3 T F T F

majority T T T F
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Then, because P,Q,R are all accepted by the majority, from the logical viewpoint, (P ∧Q)∧R
should be accepted, even though everyone rejects it. From the proof-theoretic viewpoint, this
difficulty arises from the fact that (P ∧Q) ∧R ⊢123 is provable in Lv as seen in the following
proof on the right.

⊢13 P
⊢N P

mv
⊢12 Q

⊢N Q
mv

⊢N P ∧Q
⊢23 R
⊢N R

mv

⊢N (P ∧Q) ∧R

P ⊢2

P ∧Q ⊢2

(P ∧Q) ∧R ⊢2

Q ⊢3

P ∧Q ⊢3

(P ∧Q) ∧R ⊢3

(P ∧Q) ∧R ⊢23
mer

R ⊢1

(P ∧Q) ∧R ⊢1

(P ∧Q) ∧R ⊢123
mer

Because N = {1, 2, 3}, the provable sequent (P ∧ Q) ∧ R ⊢123 in the proof on the right is
equivalent to the sequent (P ∧ Q) ∧ R ⊢N . Thus, by applying cut-rule to the above two
proofs, the inconsistency ⊢N is provable in Lv. Note that mv-rule is applied only to axioms
in the above proof, and hence, the above difficulty cannot be avoided even by the usual
premise-based approach.

However, in our Lva, (P ∧ Q) ∧ R ⊢123 is not provable, because P ⊢2, Q ⊢3, R ⊢1 are
not non-logical axioms. In terms of semantics, that is, ¬((P ∗ ∧ Q∗) ∧ R∗) ⊆ ⊥ because
N ∈ (P ∗ ∧Q∗) ∧R∗.

In addition to semantic completeness, it is shown that Lva is syntactically complete.

Lemma 3.7 (Syntactic completeness of Lva) In any model (⊥, ∗) of Lva, N ∈ φ∗ or
N ∈ ¬φ∗ for any formula φ.

Proof. We show that N ̸∈ φ∗ implies N ∈ ¬φ∗ in a given model by induction on φ.

• When φ ≡ P , assume N ̸∈ P ∗. Then, by definition, P ∗ ⊆ ⊥, that is N ∈ ¬P ∗.

• When φ ≡ φ1 ∧φ2, assume N ̸∈ φ∗
1 ∧φ∗

2. We show N ∈ ¬(φ1 ∧φ2)
∗, that is, φ∗

1 ∧φ∗
2 ⊆ ⊥.

N ̸∈ φ∗
1 ∧φ∗

2 implies N ̸∈ φ∗
1 or N ̸∈ φ∗

2. When N ̸∈ φ∗
1, by the induction hypothesis, we have

N ∈ ¬φ∗
1, that is, φ

∗
1 ⊆ ⊥, which implies φ∗

1 ∧ φ∗
2 ⊆ ⊥. The same applies to the case N ̸∈ φ∗

2,
and hence, we obtain φ∗

1 ∧ φ∗
2 ⊆ ⊥.

• When φ ≡ φ1 → φ2, assume N ̸∈ φ∗
1 → φ∗

2. Note that, because N ∈ φ∗
1 → φ∗

2 is equivalent
to φ∗

1 ⊆ φ∗
2, N ̸∈ φ∗

1 → φ∗
2 means that there exists β ∈ φ∗

1 such that β ̸∈ φ∗
2.

We first show N ∈ φ∗
1. If N ̸∈ φ∗

1, then N ∈ ¬φ∗
1, i.e., φ∗

1 ⊆ ⊥ by the induction
hypothesis. However, because ⊥ ⊆ φ∗

2, we obtain φ∗
1 ⊆ φ∗

2, which contradicts the assumption
N ̸∈ φ∗

1 → φ∗
2. Hence, we have N ∈ φ∗

1.

N ∈ φ∗
1 implies φ∗

1 → φ∗
2 ⊆ φ∗

2. This is because α ∈ φ∗
1 → φ∗

2 means that α ∧ φ∗
1 ⊆ φ∗

2,
which implies α ∩N = α ∈ φ∗

2 because N ∈ φ∗
1.

Next, we show φ∗
2 ⊆ ⊥. If N ∈ φ∗

2, then, because φ
∗
2 is ⊆-closed, α ∈ φ∗

2 for any α ⊆ N ,
that is, φ∗

1 ⊆ φ∗
2, which contradicts to the assumption N ̸∈ φ∗

1 → φ∗
2. Thus, we have N ̸∈ φ∗

2,
and hence, by the induction hypothesis, we have φ∗

2 ⊆ ⊥.

Therefore, we have φ∗
1 → φ∗

2 ⊆ φ∗
2 ⊆ ⊥, that is, N ∈ ¬(φ1 → φ2)

∗.

• When φ ≡ φ1∨φ2, assume N ̸∈ φ∗
1∨φ∗

2. If N ∈ φ∗
1, then N ∈ φ∗

1∪φ∗
2 ⊆ ¬¬(φ∗

1∪φ∗
2), which

is the contradiction. Thus, N ̸∈ φ∗
1, and hence, by the induction hypothesis, N ∈ ¬φ∗

1, that
is, φ∗

1 ⊆ ⊥. The same applies to φ2, and we have φ∗
2 ⊆ ⊥. Therefore, we have φ∗

1 ∪ φ∗
2 ⊆ ⊥,

which implies ¬¬(φ∗
1 ∪ φ∗

2) ⊆ ⊥ because ⊥ is ¬¬-closed. Thus, we have N ∈ ¬(φ∗
1 ∨ φ∗

2).
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Theorem 3.8 (Syntactic completeness of Lva) In Lva, ⊢N φ is provable or ⊢N ¬φ is
provable for any formula φ.

Proof. By Lemma 3.7, N ∈ φ∗ or N ∈ ¬φ∗ holds in any model (⊥, ∗). In particular, in the
canonical model, we have N∅;∅ ∈ φ∗ = [[φ]] or N∅;∅ ∈ ¬φ∗ = [[¬φ]], that is, ⊢N φ is provable or
⊢N ¬φ is provable in Lva.

The aggregation function F based on Lva, whose completeness is obtained from Theorem
3.8 and consistency is obtained from Proposition 2.18 is defined as follows.

Proposition 3.9 (Collective judgment with Lva) Given A and J⃗ , the collective judg-
ment F (J⃗) based on Lva is defined as follows.

F (J⃗) = {φ ∈ A | ⊢N φ is provable in Lva}

Then, F is complete and consistent.

Let us examine the discursive paradox given in Example 1.1 in our Lva.

Example 3.10 (Discursive paradox in Lva) In Lva, P → Q ⊢N is provable as follows.

⊢13 P
⊢N P

mv
Q ⊢23

Q ⊢N
mv

P → Q ⊢N

Formally speaking, the application of mv-rule in Lva is implicit, and the above proof starts
from the non-logical axioms ⊢N P and Q ⊢N . However, for the sake of clarity, we indicate
them in the first steps of the above proof.

⊢N P → Q is not provable in Lva. Let (⊥, ∗) be the model given in Example 2.30, where
P ∗ = P({1, 3}) and Q∗ = P({1}). N ∈ P ∗ → Q∗ is equivalent to P ∗ ⊆ Q∗, which does not
hold in the model. Hence, N ̸∈ P ∗ → Q∗.

Therefore, the collective judgment based on Lva is F (J⃗) = {P,¬Q,¬(P → Q)}.

Let us investigate the relationship between our semantics of Lva and the usual semantics
of classical logic.

Lemma 3.11 In any model of Lva, the following holds.

1. N ∈ ¬φ∗ if and only if φ∗ = ⊥
2. N ∈ φ∗ ∧ ψ∗ if and only if N ∈ φ∗ and N ∈ ψ∗

3. N ∈ φ∗ → ψ∗ if and only if N ̸∈ φ∗ or N ∈ ψ∗

4. N ∈ φ∗ ∨ ψ∗ if and only if N ∈ φ∗ or N ∈ ψ∗

Proof. (1) is obtained from the definition of ¬. (2) is immediate because ∧ is equivalent to
∩. For (3), assume N ∈ φ∗ → ψ∗, that is, φ∗ ⊆ ψ∗. Then, N ∈ φ∗ implies N ∈ ψ∗, that is,
N ̸∈ φ∗ or N ∈ ψ∗. Conversely, when N ̸∈ φ∗, by Lemma 3.7, we have N ∈ ¬φ∗. Hence,
φ∗ ⊆ ⊥ ⊆ ψ∗, that is, N ∈ φ∗ → ψ∗. When N ∈ ψ∗, because ψ∗ = P(N) in this case, we have
φ∗ ⊆ ψ∗, that is, N ∈ φ∗ → ψ∗. Therefore, in either case, we have N ∈ φ∗ → ψ∗. For (4),
assume N ∈ φ∗∨ψ∗. If N ̸∈ φ∗ and N ̸∈ ψ∗, by Lemma 3.7, we have N ∈ ¬φ∗ and N ∈ ¬ψ∗,
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that is, φ∗ ⊆ ⊥ and ψ∗ ⊆ ⊥. Thus, we have φ∗ ∪ ψ∗ ⊆ ⊥, which implies φ∗ ∨ ψ∗ ⊆ ⊥, which
contradicts to N ∈ φ∗ ∨ ψ∗. Hence, N ∈ φ∗ or N ∈ ψ∗. The converse is immediate.

The above lemma implies that the interpretation of connectives in the semantics of Lva
corresponds to that found in the usual semantics of classical logic, i.e., truth table semantics.
Thus, we have the following proposition.

Proposition 3.12 (Classical logic and Lva) Any collective judgment F (J⃗) based on Lva
is consistent with respect to the semantics of classical logic.

3.3 Lv for conclusions: Lvc

Syntax of Lvc is the same as Lg, but the notion of truth in a model is changed as follows.

Definition 3.13 (Model of Lvc) In a model (⊥, ∗) of Lvc, φ is true if there exists α ∈ φ∗

such that |α| > n
2 .

The truth in the canonical model is also defined in terms of the majority group of the
form α∅;∅. Thus, when φ is valid, it is true in the canonical model, that is, there exists
α∅;∅ ∈ φ∗ = [[φ]] such that |α| > n

2 . Hence, ⊢α φ is provable with |α| > n
2 . Thus, we obtain

the semantic completeness of Lvc.

Theorem 3.14 (Semantic completeness of Lvc) Lvc is semantically complete with respect
to the models of Lvc.

In Lvc, α ∈ φ∗ does not, in general, imply −α ∈ ¬φ∗. For example, in the model of
Example 2.30, {1} ∈ P ∗ but {2, 3} ̸∈ ¬P ∗. However, for the greatest group gα, gα ∈ φ∗

implies −gα ∈ ¬φ∗. This observation implies the syntactic completeness of Lvc as follows.

Lemma 3.15 (Syntactic completeness of Lvc) φ is true or ¬φ is true in any model of
Lvc.

Proof. Because φ∗ is ∪-closed, there exists the greatest group gα in φ∗. For gα ∈ φ∗, we
show −gα ∈ ¬φ∗, that is, for any β ∈ φ∗, −gα ∩ β ∈ ⊥. Let β ∈ φ∗. Then, β ⊆ gα because
gα is the greatest group, and hence, −gα ∩ β = ∅ ∈ ⊥ because −gα ∩ gα = ∅.

Then, for the greatest gα ∈ φ∗, we have:

� φ is true if |gα| > n
2 , and

� ¬φ is true if |gα| < n
2 , because then, | − gα| > n

2 and −gα ∈ ¬φ∗.

From the above lemma, we obtain the syntactic completeness of Lvc by the same argument
for Lva.

Theorem 3.16 (Syntactic completeness of Lvc) In Lvc, there exists α with |α| > n
2 such

that ⊢α φ is provable or ⊢α ¬φ is provable for any formula φ.

The aggregation function F based on Lvc is defined as follows, whose completeness is
obtained from Theorem 3.16, and whose consistency is obtained from Proposition 2.18.
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Proposition 3.17 (Collective judgment with Lvc) Given A and J⃗ , the collective judg-
ment F (J⃗) based on Lvc is defined as follows.

F (J⃗) = {φ ∈ A | ⊢α φ is provable with |α| > n
2 in Lvc}

Then, F is complete and consistent.

Let us examine the discursive paradox of Example 1.1 in our Lvc.

Example 3.18 (Discursive paradox in Lvc) ⊢N P → Q is provable in Lvc as follows.

P ⊢2 ⊢1 Q

P ⊢12 Q
mer

⊢12 P → Q

⊢N P → Q
mv

There is a model such that there exists no α such that |α| > n
2 and α ∈ ¬(P → Q). Let (⊥, ∗)

be a model given in Example 2.30, where ⊥ = {∅}, P ∗ = P({1, 3}) and Q∗ = P({1}). Then,
in this model, we have P ∗ → Q∗ = P({1, 2}) and ¬(P ∗ → Q∗) = P({3}).

Therefore, the collective judgment based on Lvc is F (J⃗) = {P,¬Q,P → Q}.

By contrast to the collective judgment based on Lva (cf. Proposition 3.12), this collective
judgment is “inconsistent” from the viewpoint of the standard “classical logic,” but it is
consistent with respect to our Lvc.

In Lvc, even though P and P → Q are both valid, Q may not be valid. In other words,
even though there exists α ∈ P ∗ and β ∈ (P → Q)∗ such that |α|, |β| > n

2 and α and β are
the greatest groups, it is not necessarily true that |α ∩ β| > n

2 . (In the above Example 3.18,
P ∗ = P({1, 3}) and P ∗ → Q∗ = P({1, 2}), but Q∗ = P({1}). From the syntactic viewpoint,
when ⊢N P and ⊢N P → Q are provable by applying mv-rule at the last steps of their
respective proofs, we cannot obtain ⊢N Q by combining those two proofs, because no rule is
applicable after an application of mv-rule in Lvc. (Note that ⊢N Q is provable, when ⊢N P
and ⊢N P → Q are both provable without mv-rule.)

4 Conclusion and future work

To investigate the relationship between logic and majority voting, we introduced logic with
groups Lg in the style of sequent calculus by augmenting the index of a group to every sequent.
If we ignore the indexes of the groups, we obtain the usual sequent calculus of classical logic.
In relation to groups, mer-rule is a remarkable inference rule that makes it possible to merge
given groups. We showed that the cut-elimination theorem of Lg is proved by the same
way as the usual transformation of given proofs (Proposition 2.15). As a corollary of the
cut-elimination theorem, we showed the consistency of Lg (Proposition 2.18). We further
introduced set-theoretical semantics of Lg. Our semantics is based on the phase semantics of
linear logic, and hence, the usual techniques of linear logic can be straightforwardly applied
to our Lg. Every formula is interpreted as a closed set of groups whose members accept that
formula. We proved the soundness (Theorem 2.32) and semantic completeness (Theorem
2.43) of Lg by applying essentially the same method as that for linear logic. Our simple
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semantics based on groups may be applied to an analysis of Arrow’s impossibility theorem,
which is proved by constructing an ultrafilter consisting of certain set of groups, cf. [17].

By introducing an inference rule representing majority voting to Lg, we introduced logic
with majority voting Lv. By formalizing the discursive paradox, we showed that Lv is in-
consistent, that is, ⊢N is provable in Lv with given individuals’ judgments J⃗ (Example 3.2).
Thus, we introduced logic with majority voting for axioms Lva and logic with majority voting
for conclusions Lvc. Lva is defined by modifying non-logical axioms of Lg, and Lvc is defined
by modifying the notion of validity in Lg. Hence, the syntax and semantics of Lg, as well
as related theorems, are straightforwardly applied to these systems without dealing with the
rule of majority voting directly. Based on these systems, we defined the collective judgment
as the set of formulas provable in Lva and Lvc, respectively. We proved that both Lva and
Lvc are syntactically complete (Theorems 3.7 and 3.16) and consistent. For Lva, we further
showed that any collective judgment based on Lva is consistent with respect to the standard
semantics of classical logic (Proposition 3.12). By contrast, a collective judgment based on
Lvc may be inconsistent from the viewpoint of classical logic (Example 3.18), and hence, we
may consider Lvc as a kind of non-classical logic. We leave a characterization of Lvc by using
an existing logical system as our future work.

To make the construction of collective judgments based on Lva and Lvc effective, a proce-
dure of automated proof-search or theorem proving in Lg is desirable. As shown in Proposition
2.12, our sub-rule does not cause trouble in the proof-search. By contrast, although it is con-
venient to move mer-rule to the upper parts of a proof, it is not simply permutable as seen
in the following example.

Γ ⊢α φ ψ ⊢β ∆

φ→ ψ,Γ ⊢α∩β ∆
→ L

Σ ⊢γ Λ

φ→ ψ,Γ,Σ ⊢(α∩β)∪γ ∆,Λ
mer ▷

Γ ⊢α φ

ψ ⊢β ∆ Σ ⊢γ Λ

ψ,Σ ⊢β∪γ ∆,Λ
mer

φ→ ψ,Γ,Σ ⊢α∩(β∪γ) ∆,Λ
→ L

To move the mer-rule upwards, if we transform the above proof on the left to that on the
right, then we have (α ∩ β) ∪ γ ⊇ α ∩ (β ∪ γ), and hence, the index of the group in the end-
sequent is not retained. Thus, we need more sophisticated methods of proof-search, including
our mer-rule. This investigation is left to future work.

Among various logical approaches to judgment aggregation, let us discuss ones directly
related to our study. Porello [36] analysed the discursive paradox by using the sequent calculus
of linear logic. In his analysis, a sequent has the form α ⊢ φ, where α is a set of individuals
and φ is a formula, and hence, a set of individuals (appears in the antecedent of a sequent)
and formulas (appears in the succedent) are mixed in a sequent. We avoid this difficulty by
introducing a set of individuals as the index of a sequent.

Porello extended his analysis in [37], where he proposed to use different logics to evaluate
the consistency of every individual’s judgment (say, the standard classical logic) and the
consistency of the collective judgment (say, linear logic). Endriss [13] also introduced similar
framework by distinguishing rationality constraints (imposed on every individual’s judgment)
and feasibility constraints (imposed on the collective judgment). Our idea to use Lva and
Lvc is considered to be in their framework. We assume every individual’s judgment set to be
consistent with respect to the standard classical logic, and we evaluate the consistency of the
collective judgment set with respect to Lva and Lvc, respectively.

In the literature of multiple agent systems, Belhadi et al. [3] introduced Multiple agent
logic. Although the system is obtained from their possibilistic logic, the idea of their system
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is essentially the same as our Lg. Every formula has the form (φ, α), where φ is a formula
and α is a set of individuals (agents), and the formula is read as “at least all the agents in
α believe that φ is true.” Although in our Lg, we introduce the index of a group to every
sequent instead of every formula, the idea is the same. However, their system is essentially
based on the resolution calculus, and their system lacks non-logical axioms. Without non-
logical axioms, our Lg is nothing but the usual sequent calculus for classical logic, where every
sequent is indexed by the group N . Thus, the introduction of non-logical axioms is essential
in our Lg, and it makes “premises” in a proof explicit and our analysis on the premise-based
approach smoother. Furthermore, in Multiple agent logic, there is no rule corresponding to
our mer-rule, and hence, the group accepting a conclusion of a proof is the smallest group in
the proof. Thus, it seems difficult to analyse the discursive paradox by using Multiple agent
logic.

Our Lg is quite simple because it is obtained from the usual sequent calculus by augmenting
groups of individuals as indexes to sequents. Hence, by replacing the basic sequent system
to other systems such as intuitionistic and modal logic systems, we can extend our Lg in
various ways. There are some modal logical systems related to our study. For example, to
investigate the role of acceptance of a proposition by agents in institutional contexts, [24, 4]
introduced a modal logic called Acceptance Logic. Furthermore, [18] introduced a sequent
calculus for Acceptance Logic, and formalized the discursive paradox thereof. We may be able
to introduce institutional contexts to our Lg, and then, investigate the relationship between
Acceptance Logic and our Lg. Further, using modal logic, [32] provided a formalization and
analysis on aggregation rules of consensus voting and dictatorship in addition to majority
voting. One advantage of the proof-based, or syntactic, approach is that even if it is difficult
to give a semantic counterpart of a non-deductive rule such as majority voting, we can include
a syntactic inference rule relatively easily. Thus, applying our proof-theoretical approach, we
can investigate other concrete rules beyond majority voting in future work.
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