
Defeasible Inheritance Networks and Linear Logic:

Horn Fragments and Proof Nets

Ryo Takemura

Nihon University, Japan.
takemura.ryo@nihon-u.ac.jp

May 6, 2012

Abstract

Based on a remark of Girard (1992) and a formalization given by Fouqueré and
Vauzeilles (1994), we investigate a formalization of defeasible inheritance reasoning in
terms of linear logic. We show a correspondence between defeasible inheritance networks,
a Horn fragment of linear logic, and proof nets for linear logic. In particular, we show a
structural correspondence between defeasible inheritance networks and proof nets for our
fragment of linear logic.

Contents

1 Introduction 1

2 Defeasible inheritance networks 3

3 A Horn fragment of linear logic and defeasible inheritance networks 5
3.1 Intuitionistic linear logic IMLL and its Horn fragment . 6
3.2 Translation of DI-nets into a Horn fragment of IMLL . 8

4 Proof nets for linear logic and defeasible inheritance networks 13
4.1 Proof nets for IMLL (Essential nets) . 13
4.2 Transformation of proof nets into DI-nets . 15

5 Conclusion and future work 18

1 Introduction

Linear logic was introduced in [Girard 1987], and its theoretical studies have been much
developed in the last couple of decades. Recently, it has been further applied to studies not
only in computer science but also in various areas such as quantum physics and molecular
biology. Linear logical structure is considered a refined basic logical structure for traditional
logic such as classical logic and intuitionistic logic. In particular, it is well known that the
duality principle of classical logic and the constructive nature of intuitionistic logic, which are
considered to be incompatible in the traditional framework, are compatible in the basic logical
structure that is revealed by linear logic. Thus, linear logic has provided new insight into
various issues discussed in the framework of traditional logic such as relationships between
intuitionistic logic and classical logic, and between syntax and semantics.

1

In linear logic, the traditional logical structure of propositions and connectives is di-
vided into two parts: “linear” and “stable,” cf. [Okada 2008]. Traditional logic, such as
classical and intuitionistic logic, is captured in the stable part with the use of exponen-
tial modality operators “!” and “?.” In contrast, the implication −◦, called linear implica-
tion, in the linear part naturally captures the notion of state transition, which is known
to be difficult to formalize in traditional logic. Thus, the basic part of linear logic has
been applied in studying state transition systems, AI planning, etc. See, for example,
[Kanovich-Vauzeilles 2001, Masseron-Tollu-Vauzeilles 1993, Pfenning 2008]. By decompos-
ing the traditional logical structure, linear logic provides a framework in that various logical
systems, studied in terms of traditional logic, are uniformly characterized as its subsystems.
Furthermore, for such a variety of subsystems, efficient proof-search/proof-construction strate-
gies and their computational complexities have been extensively studied, and various logic
programming languages have been developed. See, e.g., [Lincoln 1995, Miller 1995] for sur-
veys. Also, in view of the semantics, various models have been proposed for linear logic. In
particular, not only traditional models that characterize the notion of provability but also
models at a profounder level that characterize the notion of proofs and also of computation
have been developed in the framework of linear logic.

Among these various characteristics and applications of linear logic, we focus here on its
wealth of expressive power. By decomposing the traditional logical structure, even the most
basic part of linear logic, there are almost twice as many logical connectives as those in tra-
ditional logic. This means that we are able to express more subtle differences in meaning of
sentences by linear logic than by traditional logic. In particular, we are able to formalize var-
ious negations in linear logic without adding nor modifying inference rules. For example, the
most basic linear negation, expressed by the symbol ()⊥, is not necessarily characterized in
terms of the contradiction, but is characterized in terms of the De Morgan duality. The intu-
itionistic negation ¬A, which means “the contradiction is derived from A”, can be expressed
as !A−◦0 in linear logic. The negation in classical logic, which is characterized by the boolean
complement, also can be expressed as ?(A⊥). Cf. [Girard 1987]. Furthermore, we are able to
express a negation meaning the lack of a property A as A−◦ 1, in which 1 is a propositional
constant of linear logic that is neutral with respect to the (multiplicative) conjunction, i.e.,
“1 ‘and’ A” is equivalent to “A.” This negation expressing the lack of a property is remarked
on in [Girard 1992], and formalized in [Fouqueré-Vauzeilles 1993, Fouqueré-Vauzeilles 1994]
to apply linear logic to the study of defeasible inheritance reasoning.

In the system of [Fouqueré-Vauzeilles 1994], defeasible inheritance networks, which are
called taxonomic networks with exceptions, are characterized in a fragment of intuitionistic
multiplicative exponential linear logic called taxonomic linear theories. We observe that in
the system, each atomic formula is triplicated with the use of + and − signs: an unsigned
usual atom A, a positive-signed atom A+, and a negative signed atom A−. Although the
negative-sign can be considered informally to express a certain kind of negation, it is not
exactly so as remarked in [Fouqueré-Vauzeilles 1994]. Furthermore, the relationship between
an unsigned atom A and a positive-signed atom A+ is not clear. Thus, it seems to be difficult
to give semantic meaning for these +,− signs, and they seem to be just an ad hoc syntactic
convention.

In this paper, we characterize the defeasible inheritance networks of [Horty 1994] by a
well-established fragment of linear logic, that is, by a “Horn fragment” of linear logic, which
is extensively studied in [Kanovich 1992, Kanovich 1994], without changing the language and
inference rules but just restricting the language of linear logic. It is, of course, not possible

2

in traditional classical logic, and linear logic works effectively for that purpose. Further-
more, characterizing defeasible inheritance networks by only restricting the language of linear
logic, we are able to apply well-developed studies of linear logic such as semantic frameworks
straightforwardly to the study of defeasible inheritance reasoning. Compared with the system
of [Fouqueré-Vauzeilles 1994], our system is simple with respect to the following points: (1)
our atoms are those of the usual linear logic without introducing any syntactic decorations; (2)
our system is a fragment of the most basic “exponential-free” linear logic, i.e., multiplicative
linear logic.

Defeasible inheritance reasoning is regarded as a type of nonmonotonic reasoning, which
is formalized, for example, by using [Reiter 1980]’s Default logic. The author aims to apply
linear logical studies not only to defeasible inheritance reasoning but also to more general
nonmonotonic logic. As a first step toward to this end, we investigate a relationship among
defeasible inheritance networks, a Horn fragment of linear logic, and proof nets for linear logic
(or essential nets of [Lamarche 1994]). In particular, we show a structural correspondence
between defeasible inheritance networks and proof nets for our fragment of linear logic. Proof
nets, which were introduced in [Girard 1987] as a graph-theoretical representation of logical
proofs, are extensively studied and applied to theory of computation, and hence we are able
to apply such results to the study of defeasible inheritance reasoning.

The rest of this paper is organized as follows. In Section 2, we review the defeasible
inheritance network and define our notion of reachability in a network. In Section 3, we review
the most basic Horn fragment of linear logic, and give a translation of defeasible inheritance
networks into our Horn fragment. In Section 4, we briefly review proof nets for intuitionistic
multiplicative linear logic. We then show that there is a structural correspondence between
our proof nets and defeasible inheritance networks, by giving a transformation of the proof
nets. In Section 5, we summarize our results, and discuss future work.

2 Defeasible inheritance networks

In this section, we review the defeasible inheritance network of [Horty 1994], and we define
our notion of reachability in a network.

Definition 2.1 (Defeasible inheritance network) A defeasible inheritance network
(or, DI-net for short) is a labeled finite directed acyclic graph D = (D,→, ̸→), where:

• D is a nonempty set of labeled nodes,

• → is a directed edge called defeasible edge,

• ̸→ is a directed edge called defeasible negative edge.

We usually do not distinguish a node and its label, and we refer to a node by its label.

We give an informal interpretation of a DI-net. a→ b is read as “typical a is b” or, “it is
most natural to suppose that a is b.” → is interpreted as a reflexive and transitive relation:
we have “typical a is a,” and we obtain “typical a is c” when there exists edges a → b and
b→ c.

a ̸→ b is read as “typical a is not b” or, “it is most natural to suppose that a is not b.”
In contrast to → above, ̸→ is not transitive in general: we do not generally have “typical a
is not c,” from edges a ̸→ b and b ̸→ c. Note also that we have “typical a is not c” from

3

a→ b and b ̸→ c, but we do not generally have it from a ̸→ b and b→ c. For example, from
“penguins do not fly” and “flying things have wings,” we do not have “penguins do not have
wings.”

Definition 2.2 (Path) We define a path in a DI-net as a sequence of different (labels of)
nodes connected by →-edges and ̸→-edges. We denote a path consisting only of →-edges by
a ↠ b.
We define the length of a path as the number of nodes that constitute the path.

To define the notion of reachability, let us consider the following well-known example of
Tweety.

Example 2.3 (Tweety) Assume first that we know “Tweety (t) is a bird (b),” “Birds (b)
fly (f),” and “Flying things have wings (w).” Those facts are represented by the following
DI-net.

b -t - f - w

Then, further assume that we obtain the following facts: “Tweety is a penguin (p)”, “Penguins
are birds,” and “Penguins do not fly.”

b -t - f - w

p

�
�

��3
?
Q
Q
QQs

�

Observe that, in the above DI-net D, we have “Tweety flies” and “Tweety does not fly.”
In such a case, we say that the node f is conflicting with respect to t, and we assume that
nothing can be implied about t (Tweety) with respect to f (flying things), i.e., we cannot say
anything about whether Tweety can fly or not. In other words, Tweety lacks certitude with
property of “fly,” i.e., Tweety has neither the property “fly” nor its negation “not fly.”

Definition 2.4 (Conflicting node) When we have a ↠ b, and we have a ̸→ b or a ↠ c ̸→ b
for some c in a DI-net, we say that b is a conflicting node with respect to a.

How about the property of “has wings (w)” in the above DI-net D? For our characteriza-
tion of DI-nets in linear logic, we assume that “Tweety has wings” holds. This is because we
are able to consider that the property “has wings” is inherited from the property “is a bird”
via the property “fly”, even if the property “fly” turns out to be in conflict.

Although our assumption may obtain some understanding in the above example, it may
be more appropriate to assume that if Tweety does not have the property “fly” then so does
any property that is inherited from “fly.” For example, if we replace the above property “has
wings” by “takes flight,” it is natural to conclude “Tweety does not take flight.” In fact,
[Fouqueré-Vauzeilles 1994] adopted such an interpretation in their basic system, and hence,
Tweety does not have properties “fly” or “has wings.” We may call such interpretations of
DI-nets “strict” interpretation, and our interpretation “weak.”

In general, when we have the following form of DI-net,

a j
*�

b - c

4

it seems to be difficult, without considering each concrete situation, to decide between a
implies c holds (weak) and not (strict). This difficulty is avoided in the study of defeasible
inheritance reasoning or default logic with the use of the essentially model-theoretic notion
of extension. However, instead of using such a model-theoretic notion, we can assume, when
a does not imply c (i.e., a ̸→ c) actually holds, that it is given in the set of assumptions from
the beginning. On the other hand, when a implies c (i.e., a → c) actually holds, although
we need to add it to the assumptions under the strict interpretation, we do not need such an
arrangement under the weak interpretation. Thus, the weak interpretation is more economical
than the strict interpretation, and hence, we study the weak interpretation in this paper. In
Section 5, we briefly discuss how our characterization of DI-nets may be extended to those
DI-nets with strict interpretation.

Based on the above example, we formally define our notion of reachability in a DI-net as
follows.

Definition 2.5 (Reachability) Let D = (D,→, ̸→) be a DI-net. Let D be the set {a | a ∈
D} of overlined labels of nodes of D. For each node a ∈ D, we define a set reach(a) ⊆ D∪D
of labels and overlined labels those are reachable from a as follows:

1. a ∈ reach(a)

2. If a ↠ b in D, and if there is no path such that a ↠ c ̸→ b for some c or a ̸→ b in D,
then b ∈ reach(a).

3. If a ↠ c ̸→ b for some c or a ̸→ b in D, and if there is no path such that a ↠ b in D,
then b ∈ reach(a).

When reach(a) = {b1, . . . , bn, c1, . . . , cm}, it is interpreted as “a has properties b1 and
. . . and bn, and not c1 and . . . and not cm.”

Example 2.6 (Reachability) For example, in Example 2.3 of Tweety, reach(t) = {t, p, b, w},
and hence “Tweety is a penguin, is a bird, and has wings.”
In the following Fig. 1, we have reach(a) = {a, c}. In Fig. 2, g is not reachable from d and
reach(d) = {d, e, f}.

a j
*�

b - c

Fig. 1

d - e -� f - g

Fig. 2

3 A Horn fragment of linear logic and defeasible inheritance
networks

Linear logical structure is considered a refined basic logical structure for traditional logic such
as classical logic and intuitionistic logic. In linear logic, the traditional logical structure of
propositions and connectives is divided into a linear part and a stable part, cf. [Okada 2008].
Although a formula in linear logic has various informal interpretations, we may interpret

5

it to denote a changeable state. Then, a traditional proposition may be regarded as an
unchangeable state, and it is characterized in the stable part of linear logic with the use
of exponential modality operators “!” and “?.” With this decomposition of propositions in
linear logic, logical connectives are also decomposed into two parts. See [Okada 2008] for a
philosophical explanation. In particular, the implication A −◦ B, called linear implication,
in the linear part can be naturally read as “the state A changes the state B” (and after
B is realized, A disappears and does not hold any more). Thus, the linear implication
naturally captures the notion of state transition, which is known to be difficult to formalize
in traditional logic. [Girard 1987] is the main reference for linear logic, but introductions
may be found, for example, in [Girard 1995], and for more comprehensive introductions, see
[Curien 2005, Troelstra 1992]. For philosophical aspects of linear logic, see [Okada 2008].

In Section 3.1, we briefly review the syntax of intuitionistic multiplicative linear logic
IMLL, in which formulas are constructed by ⊗ (the multiplicative conjunction), −◦ (the linear
implication), and 1 (a propositional constant). IMLL is a fragment of classical multiplicative
linear logic MLL (consisting of the above connectives and ⊥), that is, inference rules of IMLL is
obtained by those of MLL by restricting each sequent to have at most one formula on the con-
clusion side of the sequent. Based on the cut-elimination theorem, IMLL is equivalent to MLL
in our fragment: a Horn sequent is provable in IMLL if and only if it is provable in MLL. This
is because each cut-free proof of MLL for a given Horn sequent is exactly that of IMLL, since
our fragment does not contain the usual negation ()⊥ (nor the constant 0). (See, for example,
[Kanovich 1994], whose discussion is naturally extended to our fragment.) Hence we identify
them, and instead of classical MLL, we here introduce the simpler intuitionistic IMLL. We fur-
ther review the most basic Horn fragment of linear logic, for which properties, computational
complexity, and applications are extensively studied in [Kanovich 1992, Kanovich 1994]. In
Section 3.2, we give a translation of DI-nets into our Horn fragment.

3.1 Intuitionistic linear logic IMLL and its Horn fragment

Definition 3.1 (Formulas and inference rules of IMLL) Formulas of IMLL, i.e., the {⊗,−◦,1}-
fragment of LL and the sequent calculus inference rules of IMLL are defined as in Table 1. We
assume that a sequence of formulas Γ is a multiset, and hence, the exchange rule is assumed
implicit in the above inference rules. We usually will omit the overline above the ax- and
1-rules.

A,B ::= 1 a A⊗B A−◦B

A ⊢ A
ax

Γ ⊢ A A,∆ ⊢ C

Γ,∆ ⊢ C
cut ⊢ 1

1
Γ ⊢ C

1,Γ ⊢ C
1L

A,B,Γ ⊢ C

A⊗B,Γ ⊢ C
⊗L Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A⊗B
⊗R

Γ ⊢ A B,∆ ⊢ C

A−◦B,Γ,∆ ⊢ C
−◦L

A,Γ ⊢ B

Γ ⊢ A−◦B −◦R

Table 1 Formulas and inference rules of IMLL

We extend slightly the most basic Horn fragment of [Kanovich 1994], including only the
above connectives, by introducing negative atoms of the form a := a−◦ 1 (cf. [Girard 1992]).
It is well known that the usual intuitionistic negation ¬a is defined as a → ⊥, which means

6

“the contradiction is derived from a.” Hence, with this negation, we have:

a ∧ (a→ ⊥) ∧ b =⇒ ⊥∧ b⇔ ⊥

On the other hand, with our negation a−◦ 1, we have:

a⊗ (a−◦ 1)⊗ b =⇒ 1⊗ b⇔ b

since 1 is neutral with respect to the multiplicative conjunction ⊗. Thus, a −◦ 1 cancels a
without leading to the contradiction, and we may say that the negation a−◦1 expresses “the
lack of the property a.”

Definition 3.2 (Literal) Our positive and negative atoms, and literals are defined as fol-
lows.

• Positive atoms are a, b, c,

• A negative atom is defined as a := a−◦ 1,

where 1 is a constant of linear logic which is the unit of the ⊗ connective, i.e., A⊗ 1 =
1⊗A = A.

We assume that the constant 1 appears only in the above form a−◦ 1.

• Positive atoms and negative atoms are collectively called literals, and a literal is de-
noted by L,M,N, Multisets of literals, such as L1 · · ·Ln (which is also written as
L1, . . . , Ln particularly when it appears on the left-hand side of a sequent), are denoted
by L⃗, N⃗ , M⃗ ,

In particular, a multiset L · · ·L of n literals formed from the same literal L is denoted
by Ln.

Under associativity and commutativity of the ⊗ connective, we identify the multiset of
literals L1 · · ·Ln (or L1, . . . , Ln) and the tensor product L1 ⊗ · · · ⊗ Ln. Thus we do not
explicitly treat the ⊗ connective in what follows.

Definition 3.3 (Program formula and Horn sequent) A formula of the form L⃗ −◦ M⃗
is called a program formula, and a set of program formulas, called a program set, is
denoted by P,Q,P1,P2,
For a program set P, and multiset of literals L⃗ and M⃗ , a sequent of the form P, L⃗ ⊢ M⃗ is
called a Horn sequent.

Note that our negative atom a may occur in any position in a Horn sequent generally.
However, as we will find later in Definition 3.5 and Theorem 4.3, occurrences of a are restricted
to the succedent of a program formula, and to the conclusion side of a Horn sequent.

Example 3.4 (Sequent calculus proof) We have the following sequent calculus proof of
the Horn sequent t, t−◦ tp, p−◦ pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw, which corresponds to the
DI-net D in Example 2.3 of Tweety. The sequent expresses that under the knowledge of the

7

program set, we know that “Tweety is a penguin, is a bird, and has wings.”

t ⊢ t

p ⊢ p

b ⊢ b

f ⊢ f

p ⊢ p

f ⊢ f

t, b, w, p ⊢ tpbw

t, b, w, p,1 ⊢ tpbw

t, b, fw, p, f ⊢ tpbw
(Here, f := f −◦ 1)

t, p, b, fw, p−◦ pf ⊢ tpbw

t, p, bf, f −◦ fw, p−◦ pf ⊢ tpbw

t, pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw

tp, p−◦ pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw

t, t−◦ tp, p−◦ pb, b−◦ bf, f −◦ fw, p−◦ pf ⊢ tpbw

Note that since we identify the multiset t, b, w, p and the formula tpbw (≡ t⊗ p⊗ b⊗w), the
top-sequent is obtained by the ax-rule.

3.2 Translation of DI-nets into a Horn fragment of IMLL

In this section, we give a translation of DI-nets into our Horn fragment of linear logic. We
first give our definition of the translation of DI-nets. Then, the soundness of the translation
(Theorem 3.9) will be demonstrated later, after we introduce natural deduction-style inference
rules for DI-nets.

Definition 3.5 (Translation of DI-nets) When D is a DI-net, we define a program set
D∗ as follows:

• Each node a of the DI-net D is translated into an atom a of IMLL.

• a−◦ ab ∈ D∗ if and only if there is an edge a→ b in D.

• a−◦ ab ∈ D∗ if and only if there is an edge a ̸→ b in D.

• For each node a ∈ D,

a · · · a︸ ︷︷ ︸
in→(a)

−◦a ∈ D∗, if the indegree in→(a) ≥ 2, and

a · · · a︸ ︷︷ ︸
in̸→(a)

−◦a ∈ D∗, if the indegree in ̸→(a) ≥ 2.

Here, the indegree in→(a) (resp. in̸→(a)) of a is the number of edges of the form
c→ a (resp. c ̸→ a).

We call the above formula of the form Ln −◦ L a contraction formula.

To prove the soundness of our translation of DI-nets, we introduce natural deduction-style
inference rules. Traditional natural deduction-style rules are not very often applied to linear
logic, since the description of structural rules of sequent calculus becomes somewhat compli-
cated. However, as seen in Section 2, natural reading of DI-nets corresponds to transitive (or
inheritance) reasoning on properties, and such reasoning is more intuitively characterized by
inference rules of natural deduction than those of sequent calculus. Thus, we here introduce
our natural deduction as an intermediary between DI-nets and sequent calculus. These nat-
ural deduction-style inference rules make our translation of DI-nets considerably clear and
intuitive.

8

Based on the above translation of DI-nets, we observe that program formulas are restricted
to either form a −◦ aL (with a ̸≡ L) or Ln −◦ L. Thus, instead of introducing natural
deduction-style inference rules for the full Horn-fragment, we introduce it only sufficient for
the translation of DI-nets.

Definition 3.6 (Natural deduction-style inference rules for DI-nets)

a−◦ a ax

....
a−◦ L⃗c c−◦ cM

a−◦ L⃗cM
trans

....
a−◦ L⃗Mn Mn −◦M

a−◦ L⃗M
contr

....
a−◦ L⃗cc
a−◦ L⃗

cancel

Note that one of the upper formulas in the rules of trans, contr is restricted to be an
open assumption, which is not derived from other formulas, and hence, our natural deduction
proofs are just chains of inference rules.

We say that a−◦L⃗ is provable from a program set P, when there exists a natural deduction
proof of a−◦ L⃗ from open assumptions P, for which each program is used exactly once.

We show that the above natural deduction-style inference rules are simulated by IMLL
sequent calculus rules.

Proposition 3.7 If a formula a−◦L⃗ is provable from a program set P with natural deduction-
style inference rules, then the Horn sequent a,P ⊢ L⃗ is provable in IMLL.

Proof. By the induction on the construction of natural deduction proof of a−◦ L⃗ from P.

1. When a−◦ a is provable by the ax-rule, a ⊢ a is also obtained by the ax-rule in IMLL.

2. When P = {a−◦ L⃗} and it forms a proof, the Horn sequent a, a−◦ L⃗ ⊢ L⃗ is provable in
IMLL as follows:

a ⊢ a L⃗ ⊢ L⃗

a, a−◦ L⃗ ⊢ L⃗
−◦L

Although the same applies to the case of P = {Ln −◦ L}, it does not appear in our
translation of DI-nets.

3. When a−◦ L⃗cM is provable by the following application of the trans-rule:

Q....
a−◦ L⃗c c−◦ cM

a−◦ L⃗cM
trans

This proof is transformed into an IMLL-proof as follows:

.... IH

a,Q ⊢ L⃗c

c ⊢ c L⃗, cM ⊢ L⃗cM

L⃗, c, c−◦ cM ⊢ L⃗cM
−◦L

a,Q, c−◦ cM ⊢ L⃗cM
cut

9

4. When a−◦ L⃗M is provable by the following application of the contr-rule:

Q....
a−◦ L⃗Mn Mn −◦M

a−◦ L⃗M
contr

This proof is transformed into an IMLL-proof as follows:

.... IH

a,Q ⊢ L⃗Mn

Mn ⊢Mn L⃗,M ⊢ L⃗M

L⃗,Mn,Mn −◦M ⊢ L⃗M
−◦L

a,Q,Mn −◦M ⊢ L⃗M
cut

5. When a−◦ L⃗ is obtained by the following application of the cancel-rule:

P....
a−◦ L⃗cc
a−◦ L⃗

cancel

This proof is transformed into an IMLL-proof as follows:

.... IH

a,P ⊢ L⃗cc

c ⊢ c

L⃗ ⊢ L⃗

1, L⃗ ⊢ L⃗
1L

L⃗, c, c ⊢ L⃗
−◦L

a,P ⊢ L⃗
cut

Before we prove the soundness of our translation, we explain how to construct a natural
deduction proof from a given DI-net by the following example.

Example 3.8 (Translation of DI-nets) Let us consider the DI-net D of Example 2.3 of
Tweety. For simplicity, we omit the node w.

We first introduce a weaker notion of semi-reachability than reachability that is obtained
by regarding conflicting nodes as also reachable. (See the definition given in the proof of
Theorem 3.9 below.) We denote by semireach(a) the set of nodes semi-reachable from a
node a. For example, in Example 2.3 of Tweety, we have semireach(t) = {t, p, b, f, f , w}.
For Figs. 1 and 2 of Example 2.6, we have semireach(a) = {a, b, b, c} and semireach(d) =
{d, e, f}, respectively. Thus, we have reach(a) ⊆ semireach(a), and reach(a) is obtained
from semireach(a) by taking all conflicting nodes away.

Then, the DI-net D is translated as follows. For nodes p and b that are reachable in one
step from t, we have t−◦ tb, t−◦ tp ∈ D∗ by the definition of translation of DI-nets. Thus by
combining these formulas with the use of the trans-rule, we obtain the following proof:

t−◦ tb t−◦ tp
t−◦ tpb trans

10

Next, for each node b, f, f that is reachable in two steps from t, there exists an edge from a
node that is reachable in one step from t. In this case, we have b → f , p → b, and p ̸→ f in
D, and hence we have b−◦ bf, p−◦ pb, p −◦ pf ∈ D∗ by our translation. Thus, by combining
these formulas one by one with the above proof, we obtain the following proof:

....
t−◦ tpb b−◦ bf

t−◦ tpbf trans
p−◦ pb

t−◦ tpbbf trans
p−◦ pf

t−◦ tpfbbf
trans

For the node f that is reachable in three steps from t, we have b → f in D. However, the
fact that there exists an edge from b to f is already reflected in the above proof. That is, the
trans-rule is already applied to the formula b−◦ bf , and hence, we do not repeat this.

In the above proof, the last formula t−◦ tpfbbf contains a repetition of b. For this node b
with in→(b) = 2, we have b2 −◦ b ∈ D∗ by definition, and hence, by applying the contr-rule,
we obtain t−◦ tpfbf .

Thus resultant formula t −◦ tpfbf still contains conflicting f and f . Hence, by applying
the cancel-rule at the end, we obtain the following proof of t−◦ tpb.

t−◦ tb t−◦ tp
t−◦ tpb trans

b−◦ bf
t−◦ tpbf trans

p−◦ pb
t−◦ tpbbf trans

p−◦ pf
t−◦ tpfbbf

trans
bb−◦ b

t−◦ tpfbf
contr

t−◦ tpb cancel

As we have already seen, the above proof is translated into a sequent calculus proof of IMLL.
Then, by applying the cut-elimination theorem of IMLL, we obtain the proof of Example 3.4
(without the atom w).

Now, let us prove the following theorem by formalizing the above example of construction
of a natural deduction proof from a given DI-net.

Theorem 3.9 (Translation of DI-nets) Let D be a DI-net. For each node a of D, if
reach(a) = {L1, . . . , Ln}, then the Horn sequent a,P ⊢ L1 · · ·Ln is provable in IMLL for
some P ⊆ D∗.

Proof. We show the theorem by translating a given DI-net D into a natural deduction proof.
Then, by translating it into a sequent calculus proof of IMLL, we obtain the theorem.

We first introduce the notion of semi-reachability as follows:

Definition (Semi-reachability): For each node a of D, the set of nodes semireach(a) is defined
as follows:

1. a ∈ semireach(a).

2. If a ↠ b in D, then b ∈ semireach(a).

11

3. If a ↠ c ̸→ b for some c or a ̸→ b in D, then b ∈ semireach(a).

When L ∈ semireach(a), we say that L is semi-reachable from a.
By definition, we have reach(a) ⊆ semireach(a), and reach(a) is obtained from semireach(a)

by taking all conflicting nodes away.
We show the following slightly weaker lemma than the theorem, in which reach(a) of the

theorem is replaced by semireach(a), and from which the theorem is easily obtained.
For a set S, we denote by [S] a multiset consists of all elements of S by allowing some

repetitions.
Lemma: For each node a of D, a formula a −◦ [semireach(a)] is provable from D∗ with a
natural deduction proof.

We observe that the set semireach(a) is expressed by the following union of not necessarily
disjoint subsets:

semireach(a) = semireach1(a) ∪ semireach2(a) ∪ · · · ∪ semireachk(a),

where semireachi(a) is the set of nodes to which a is semireachable by a path of length i, in
other words, the set of nodes that are semireachable from a in i− 1 steps. Then, we show the
above lemma by induction on k.
(Base step) When k = 1, semireach1(a) = {a}, and a−◦ a is an axiom.
(Induction step) When k > 1, let semireachk+1(a) = {L1, . . . , Ll}. By the induction
hypothesis, we have a −◦ [

∪
1≤i≤k semireachi(a)] is provable from D∗, and we show that

a−◦ [
∪

1≤i≤k semireachi(a)] · L1 · · ·Ll is provable from D∗.
Note that for each c ∈ semireachk+1(a) (resp. c ∈ semireachk+1(a)), we have b → c

(resp. b ̸→ c) in D for some b ∈ semireachk(a). Thus, by the definition of translation, we
have b−◦bc ∈ D∗ (resp. b−◦bc ∈ D∗). If it has already been applied in the former construction
of the proof, there is no more to be done. Otherwise, by applying the trans-rule to b −◦ bc
(resp. b−◦ bc), we have the following proof (the case of b−◦ bc is similar):

....
a−◦ [

∪
1≤i≤k semireachi(a)] b−◦ bc

a−◦ [
∪

1≤i≤k semireachi(a)] · c
trans

In this way, we have a−◦ [
∪

1≤i≤k semireachi(a)] · L1 · · ·Ll from D∗. □
By the above lemma, the theorem is obtained by applying the appropriate contr and

cancel-rules as follows.
Note that [semireach(a)] of the above lemma may contain some repetitions of literals.

When L is such a repeated literal, we have in→(L) ≥ 2 or in ̸→(L) ≥ 2 in D. For example,
when we have b → L ← c in D for some b, c ∈ semireach(a) (i.e., a case in→(L) = 2), we
obtain the following inference:

....
a−◦ [semireach(a)] b−◦ bL

a−◦ [semireach(a)] · L c−◦ cL
a−◦ [semireach(a)] · LL

In such a case, by the definition of translation, we have Lj −◦ L ∈ D∗ with j = in→(L) or
= in ̸→(L), and hence, we are able to apply the contr-rule and to eliminate repetitions of

12

literals. Thus, when semireach(a) = {L1, . . . , Lm}, the formula a −◦ L1 · · ·Lm is provable
from D∗.

As we have already seen, reach(a) is obtained by taking away all conflicting nodes of
semireach(a). Let Li, Lj ∈ semireach(a) be conflicting nodes. Then we are able to apply
the following form of the cancel-rule:

a−◦ L1 · · ·Ll · LiLj

a−◦ L1 · · ·Ll
cancel

In this way, we are able to eliminate all conflicting literals, and to obtain a−◦ L1 · · ·Ln from
D∗.

It may be worth pointing that, as it is seen in the above proof, the order of applications
of natural deduction style inference rules is important: we first apply the trans-rule, then the
contr-rule, and then the cancel-rule.

4 Proof nets for linear logic and defeasible inheritance net-
works

Proof nets, a graph-theoretical representation of logical proofs, were introduced in [Girard 1987]
as natural deduction for classical linear logic, as contrasted with sequent calculus that is sen-
sitive to usually inessential details such as irrelevant orders of applications of inference rules.
By ignoring such inessential details, proof nets reveal the essence of structures of proofs. For
example, the computational nature of proofs such as normalization and confluency are made
clear by proof nets, and a criterion of equivalence between proofs is given in terms of proof
nets.

Proof nets are defined as a correct subclass of undirected graphs called proof-structures,
in which nodes are formulas and the way of linking those nodes by edges is defined as links
(see Fig. 3 below). Proof nets are defined graph-theoretically, and hence, we are able to
apply graph-theoretical methods and techniques to the study of proofs. In particular, the
non-sequential nature of graphical proof nets is applied to the analysis of the concurrent
computation, for example.

Proof nets for intuitionistic IMLL is obtained from those for classical MLL under the
identification between A −◦ B and A⊥...

............
.................................. B, where

...
............
.................................. is the multiplicative disjunction of

MLL. While well-known correctness conditions of proof nets for classical MLL is given in
[Danos-Regnier 1989], for intuitionistic IMLL, appropriate conditions are given in [Lamarche 1994]
with the use of directed graphs. [Lamarche 1994] called his proof nets for intuitionistic IMLL
essential nets. See, e.g., [Lamarche 1994, Moot 2004] for proof nets for IMLL.

In Section 4.1, we briefly review proof nets for IMLL. Our definition mainly follows
[Moot 2004]. In Section 4.2, we show that there is a structural correspondence between
our proof nets and DI-nets, by giving a transformation of the proof nets.

4.1 Proof nets for IMLL (Essential nets)

Each formula of IMLL is assigned with input (i) and output (o) polarities, and these are
written as Ai, Bi, Ci, . . . and Ao, Bo, Co, . . . , respectively. Proof nets for IMLL consist of the
following (polarized) links of Fig. 3 that connect (polarized) formulas.

13

Ai Ao

ax-link

Ai Ao

cut-link

Ai Bi

(A⊗B)i
@@ ��

input ⊗-link

Ao Bi

(A−◦B)i
@@ ��

input −◦-link

Ao Bo

(A⊗B)o
@@ ��

output ⊗-link

Ai Bo

(A−◦B)o
@@ ��

output −◦-link

Fig. 3 (Polarized) links

A link has its premises at the top and its conclusions at the bottom. ax-link has no premises
and two conclusions. cut-link has two premises and no conclusion. Each of the input/output
⊗/−◦-link has two premises and one conclusion.

A proof-structure is a collection of links that satisfies the following conditions:

1. Every formula is the conclusion of exactly one link;

2. Every formula is the premise of at most one link;

3. Formulas that are not the premise of a link are called the conclusions of the proof-
structure. A proof-structure has exactly one ‘output’ conclusion.

Note that there are several conclusions in a proof-structure in general. Based on the above
condition (3), we may call ‘input’ conclusions “premises” of the proof-structure.

A proof-structure is called a proof net when it satisfies certain correctness conditions. For
the proof nets for classical MLL, several correctness conditions are proposed such as Girard’s
long trip condition ([Girard 1987]) and Danos-Regnier condition ([Danos-Regnier 1989]). For
the proof nets for intuitionistic IMLL, there is the following correctness condition (cf. [Lamarche 1994,
Moot 2004]).

We first introduce the following directions for edges of links as in Fig. 4, and we call such
links directed links.

Ai Ao
?

Ai Ao

6

Ai Bi

(A⊗B)i
@@I ���

Ao Bi

(A−◦B)i

-

���
Ao Bo

(A⊗B)o
@@R ��	

Ai Bo

(A−◦B)o
��	

Fig. 4 Directed links

We call a proof-structure for which all links are directed a correction graph.
A proof-structure is correct, i.e., a proof net, if its correction graph satisfies the following

correctness conditions:

1. It is acyclic.

2. Every path from the input conclusions (i.e., premises) of the graph reaches the (unique)
output conclusion of the graph.

3. Every path from the input premise of an output −◦-link passes through the output
conclusion of the link.

The above condition (3) does not play an essential role in our Horn fragment.
For our DI-net, we have negative atoms of the form a := a−◦1, and hence it seems that we

need a link for the constant 1. However in our fragment, based on the definition of translation

14

of DI-nets, occurrences of 1 are restricted in a given Horn sequent, and hence, in a cut-free
sequent calculus proof of the Horn sequent, inference rules for 1 appear only in the following
form on the left. (We omit the trivial case of axiom.)

a ⊢ a

L⃗,P ⊢ M⃗

1, L⃗,P ⊢ M⃗
1L

P, L⃗, a, a ⊢ M⃗
−◦L

...
↑
P

...
↑
L⃗ ai

...
↓
M⃗

ao 1i

ai

-

���

?

The sequent calculus proof corresponds to the correction graph on the right above. Hence, in
our fragment, by introducing the following form of axiom link by abbreviating the above part
of proof nets, we are able to regard a as a kind of atom without decomposing it to a and 1.
Thus, with the help of the new axiom link, we are able to regard our proof nets as the usual
most basic nets without a link for 1, and the results for them such as sequentialization (cf.
the following Proposition 4.1) are immediately applied to our proof nets.

ai ai
?

Let Γ ⊢ C be a sequent of IMLL. When π is a proof net for which input conclusions (i.e.,
premises) are just formulas of Γ, and for which the unique output conclusion is C, we say
that π is a proof net for Γ ⊢ C.

As an immediate consequence of the theorem given in [Lamarche 1994], we have the
following proposition.

Proposition 4.1 If a Horn sequent P, L⃗ ⊢ M⃗ is provable in IMLL, then there is a proof net
for the sequent.

Example 4.2 (Correction graph) We have a correction graph in Fig. 5 for Example 2.3
of Tweety.

↓
to biti

(t−◦ tb)i

-

���

↓
to tipi

(t−◦ tp)i

-

���

↓
bo bif i

(b−◦ bf)i

-

���

↓
po bipi

(p−◦ pb)i

-

���

↓
po

↓
f
i
pi

(p−◦ pf)i

-

���

↓
bo
↓
bo bi

(bb−◦ b)i

-

���

|
ti

↓
bo
↓
po
↓
to

(t−◦ tpb)o
��	

Fig. 5 A correction graph

4.2 Transformation of proof nets into DI-nets

In this section, we give a transformation of our proof nets into DI-nets.

Theorem 4.3 (Transformation of proof nets) Let P be a program set consisting of for-
mulas of the forms b −◦ bL with b ̸≡ L and Ln −◦ L. Let a,M1, . . . ,Mm be different literals.
A proof net for P ⊢ a−◦ aM1 · · ·Mm is transformed into a DI-net D = (D,→, ̸→) such that:

15

• The domain is D = {c | c or c appears in the sequent P ⊢ a−◦ aM1 · · ·Mm}
• The translation D∗ = P, that is,

– b→ c in D if and only if b−◦ bc ∈ P
– b ̸→ c in D if and only if b−◦ bc ∈ P

• reach(a) = {a,M1, . . . ,Mm}

Proof. Let π be a proof net of P ⊢ a−◦ aM⃗ . Then, its correction graph is a directed acyclic
graph, in which ai is an initial node, and (a−◦ aM⃗)o and conflicting nodes of the form c are
the terminals. We transform the correction graph into the required DI-net.

We observe that our correction graph for the above sequent in general consists of the
following parts (cf. Example 4.2):

• The terminal part that consists of the unique output conclusion (a−◦aM⃗)o of the proof
net and its related formulas ai and aoM⃗o.

• A transition part that consists of a program formula of the form (c−◦cL)i and its related
formulas co and ciLi.

• A contraction part that consists of a program formula of the form (Ln −◦ L)i and its
related formulas Lo · · ·Lo and Li.

• A cancel part in which there is a link between conflicting nodes ci and ci.

We transform each part as follows.

(1) Terminal part: This part takes the form appearing on the left of the following diagram
in Fig. 6. Here, the leftmost ai is an initial node of the given correction graph. This
terminal part is transformed into the form on the right as follows: By ignoring the i, o-
polarities, and by deleting the conclusion formula a−◦M1 · · ·Mm as well as its incident
edge, we obtain a graph, in which each Mi is a terminal of the graph.

(2) Transition part: This part takes the form appearing on the left in Fig. 6. By ignoring
the i, o-polarities, by deleting the program formula c−◦ cL as well as its incident edge,

and by dividing the edge of c → cL into the formc

c

L-�
�3 , we obtain the intermediate

graph. We finally obtain an edge c → L on the right, by contracting all nodes of the
same label.

(3) Contraction part: This part takes the form appearing on the left in Fig. 6. For the
simplicity, we consider a contraction formula of the form c2 −◦ c. The same applies to
the general case. By ignoring the i, o-polarities, by deleting the program formula cc−◦ c
as well as its incident edge, and by identifying the duplicated nodes cc, we obtain the
intermediate graph. We finally obtain the node c and its incident edges on the right,
by contracting all nodes of the same label.

(4) Cancel part: This part takes the form appearing at the upper left in Fig. 6. By ignoring
the i, o-polarities, by deleting the program formulas c−◦ cL and b−◦ bL as well as their
incident edges, and by dividing the edges of c → cL and b → bL, we obtain the graph
at the upper right. Then, by replacing the node L and its incident edge of b→ L to L

16

(1) Terminal part: ...
↑
ai

...
↓
Mo

1 · · ·

...
↓

Mo
m

(a−◦M1 · · ·Mm)o
��	 ▷

...
↑
a

...
↓
M1 . . .

...
↓

Mm

(2) Transition part: ...
↓
co

...
↑
ci

...
↑
Li

(c−◦ cL)i

-

��� ▷ · · · → c

c→ · · ·
L→ · · ·-�

�3 ▷ · · · → c L→ · · ·-�
�3

. .
.

(3) Contraction part:

· · · → co

...
↓
co

...
↑
ci

(cc−◦ c)i

-

��� ▷ · · · →

...
↓
c c→ · · ·- ▷ · · · →

...
↓
c→ · · ·

(4) Cancel part:

...
↓
co

...
↑
ciLi

(c−◦ cL)i

-

���

...
↓
bo

...
↑
bi
↓
L
i

(b−◦ bL)i

-

��� ▷ · · · → c

...
↑
c

L-�
�3 -

...
↑
b

L b← · · ·�Q
Qk ▷

· · · → c

...
↑
c

L-�
�3 -

...
↑
b

L b← · · ·�̸Q
Qk ▷ · · · →

...
↑
c −→ L ̸←−

...
↑
b ← · · ·

Fig. 6 Transformation of proof nets

and b ̸→ L, respectively, we obtain the graph at the lower left. We finally obtain the
graph at the lower right that contains a conflicting node L, by contracting all nodes of
the same label.

It is clear that the above transformations of a given correction graph maintain the di-
rectedness and acyclicity of the graph. Furthermore, it does not change the fact that a is
the initial node (it is unique since all input program formulas are deleted) and aM⃗ as well
as some conflicting nodes are the terminals of the graph. Since such conflicting nodes are
not reachable by definition, and since the initial node a reaches all of a,M1, . . . ,Mm by the
correctness condition (2) of the graph, we have reach(a) = {a,M1, . . . ,Mm}. Therefore, we
obtain the required DI-net by the above transformation.

Observe that our transformation does not contain any non-trivial rewriting, and hence, it
shows that a correction graph of a proof net and a DI-net share essentially the same structure.

Example 4.4 (Transformation) The correction graph given in Example 4.2 is transformed
as follows. (For accessibility purposes, we keep the i, o-polarities for the graph on the left.)

17

ti → to → bi → bo → bi→��
ti
��
to→ pi → po → pi → po → pi → po��

ti��
to

?
bi
?

bobo → bi → bo

Z
Z
ZZ~

f
i

@Rf i : ▷ b -t - f

p

�
�
��3

?
Q
Q
QQs

�

Fig. 7 Transformation of the correction graph of Example 4.2

5 Conclusion and future work

Towards a characterization of defeasible inheritance reasoning and more generally of nonmono-
tonic reasoning, we investigated in this paper a relationship between defeasible inheritance
networks, a Horn fragment of linear logic, and proof nets (essential nets) for linear logic. We
obtained the following equivalence:

Corollary 5.1 Let P be a program set that consists of formulas of the forms b −◦ bL with
b ̸≡ L and Ln −◦ L. Let a,M1, . . . ,Mm be different literals. The following are equivalent:

1. There exists a proof net for the Horn sequent a,P ⊢ aM1 · · ·Mm.

2. The Horn sequent a,P ⊢ aM1 · · ·Mm is provable in IMLL.

3. There exists a DI-net D such that D∗ = P and reach(a) = {a,M1, . . . ,Mm}.

Proof. (3 ⇒ 2) is obtained by Theorem 3.9. (2 ⇒ 1) is obtained by [Lamarche 1994]. (1 ⇒
3) is obtained by Theorem 4.3.

Thus, we characterized the notion of reachability from a node in a DI-net by the prov-
ability of the corresponding Horn sequent in IMLL. Furthermore, we showed that there is a
structural correspondence between DI-nets and proof nets. Our result is important in view
of implementation of defeasible inheritance reasoning, since various logic programmings are
developed for linear logic, and our exponential-free Horn fragment is the most basic one of
them.

As we pointed out after Example 2.3 of Section 2, our characterization of DI-nets in
the Horn fragment of linear logic is based on a weaker interpretation of DI-nets than that
of [Fouqueré-Vauzeilles 1994]. To extend our results to include the strict interpretation of
DI-nets, when we cancel a conflicting literals, say f and f , we need to cancel all nodes
that inherit from f or f at the same time. Although it is generally difficult to capture
inheritance or consequence relationships among formulas at the level of formulas, in our simple
framework of defeasible inheritance, i.e., only transitive inheritance relationships between
atoms are concerned, such transitive relationships seem to be captured with an appropriate
use of parentheses. This is illustrated by the following example of a natural deduction proof
of Example 2.3 of Tweety. (For simplicity, we skip the node t below.)

p−◦ (pb) b−◦ (bf)
p−◦ (p(bf)) trans

f −◦ (fw)
p−◦ (p(b(fw))) trans

p−◦ (pf)
p−◦ ((pf)(b(fw)))

trans

p−◦ (pb) cancel

18

Note that in the above example, the inheritance relation is naturally captured by parentheses.
For example, in the formula p −◦ ((pf)(b(fw))), the parentheses of (fw) indicates that w
inherit from f ; the outermost parentheses of (b(fw)) indicates that fw inherit from b; and
(pf) indicates that f inherit from p. In the above application of the cancel-rule, at the same
time when we cancel f and f , we also cancel w that is in the scope of the parentheses of f ,
i.e., that inherit from f . Thus, in such a system, we need (1) to keep structures of parentheses
strictly, and (2) to cancel several atoms at the same time. (1) suggests non-associative linear
logic, and (2) suggests a subsystem of affine linear logic, in which the weakening rule is allowed
for only atoms, i.e., (pf)−◦p is derivable from p−◦p, and (b(fw))−◦b is derivable from b−◦b.
We leave a detailed discussion and formalization thereof as future work.

In this paper, we only considered two types of edges in our DI-nets: the defeasible edge (→)
and the defeasible negative edge (̸→). However, as discussed in [Horty 1994], we are able to
introduce another type of edges to DI-nets such as the “strict edge” (⇒), which corresponds to
the usual implication admitting no exceptions. If we regard it as an intuitionistic implication,
we may be able to characterize it by the formula !a −◦ b in linear logic with the use of the
exponential operator. We also leave such an extension as future work.

Mainly for reasons of space, we are not able to discuss semantics for our defeasible in-
heritance reasoning. Note however that our system is one of the simplest fragments of linear
logic, i.e., we have only restricted the language of linear logic. Hence, we are able to straight-
forwardly apply semantics of linear logic such as phase semantics (cf. [Okada 2008]) to our
defeasible inheritance reasoning. We will discuss this on another occasion.

References

[Curien 2005] Pierre-Louis Curien, Introduction to linear logic and ludics, part I, and part II, Advances in
Mathematics (China) 34 (5), 513-544, 2005, and 35 (1), 1-44, 2006.

[Danos-Regnier 1989] Vincent Danos and Laurent Regnier, The structure of multiplicatives, Archive for Math-
ematical Logic, 28, 181-203, 1989.

[Fouqueré-Vauzeilles 1993] Christophe Fouqueré, Jacqueline Vauzeilles, Taxonomic Linear Theories, Proceed-
ings of Symbolic and Quantitative Approaches to Reasoning and Uncertainty, European Conference, EC-
SQARU’93, M. Clarke, R. Kruse, S. Moral (Eds.), Lecture Notes in Computer Science, 747, 121-128, 1993.

[Fouqueré-Vauzeilles 1994] Christophe Fouqueré, Jacqueline Vauzeilles, Linear Logic and Exceptions, Journal
of Logic and Computation, 4 (6), 859-876, 1994.

[Girard 1987] Jean-Yves Girard, Linear Logic, Theoretical Computer Science, 50, 1-102, 1987.

[Girard 1992] Jean-Yves Girard, Logic and Exceptions: A Few Remarks, Journal of Logic and Computation,
2 (2), 111-118, 1992.

[Girard 1995] Jean-Yves Girard, Linear Logic: its syntax and semantics, in Advances in Linear Logic, Girard,
Lafont, Regnier, eds., Cambridge University Press, 1995.

[Horty 1994] John F. Horty, Some direct theories of nonmonotonic inheritance, D. Gabbay, C. Hogger, J.A.
Robinson editors, Handbook of logic in artificial intelligence and logic programming (vol. 3), Oxford Uni-
versity Press, 111-187, 1994.

[Kanovich 1992] Max I. Kanovich, Horn Programming in Linear Logic is NP-complete, Proceedings of 7th
Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, 200-210, 1992.

[Kanovich 1994] Max I. Kanovich, The Complexity of Horn Fragments of Linear Logic, Annals of Pure and
Applied Logic, 69 (2-3), 195-241, 1994.

19

[Kanovich-Vauzeilles 2001] Max I. Kanovich, Jacqueline Vauzeilles, The classical AI planning problems in the
mirror of Horn linear logic: semantics, expressibility, complexity, Mathematical Structures in Computer
Science, 11(6), 689-716, 2001.

[Lamarche 1994] François Lamarche, Proof Nets for Intuitionistic Linear Logic I: Essential Nets, Technical
report, Imperial College, 1994.

[Lincoln 1995] Patrick Lincoln, Deciding provability of linear logic formulas, Proceedings of the Workshop on
Advances in Linear Logic, J.-Y. Girard, Y. Lafont, and L. Regnier (eds.), Cambridge University Press,
197-210, 1995.

[Masseron-Tollu-Vauzeilles 1993] M. Masseron, Christophe Tollu, Jacqueline Vauzeilles, Generating Plans in
Linear Logic I. Actions as Proofs, Theoretical Computer Science, 113(2), 349-370, 1993.

[Miller 1995] Dale Miller, A Survey of Linear Logic Programming, Computational Logic: The Newsletter of
the European Network in Computational Logic, Volume 2, No. 2, December 1995, pp. 63-67.

[Moot 2004] Richard Moot, Graph Algorithms for Improving Type-Logical Proof Search, Proceedings of Cat-
egorial Grammars 2004, 13-28, 2004.

[Okada 2008] Mitsuhiro Okada, Some remarks on linear logic, in M. van Atten, P. Boldini, M. Bourdeau,
and G. Heinzmann, editors, One Hundred Years of Intuitionism (1907-2007): The Cerisy Conference,
Publications of the Henri Poincaré Archives, 280-300, 2008.

[Pfenning 2008] Frank Pfenning, On Linear Inference, Short expository note, 2008.

[Reiter 1980] Raymond Reiter, A Logic for Default Reasoning, Artificial Intelligence, 13(1-2), 81-132, 1980.

[Troelstra 1992] Anne S. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes, vol. 29, Stanford, 1992.

20

