
A logical investigation of heterogeneous reasoning with graphs

in elementary economics

(Extended version)

Ryo Takemura
Nihon University, Japan.

takemura.ryo@nihon-u.ac.jp

Abstract

Heterogeneous reasoning, which combines various sentential, diagrammatic, and graph-
ical representations, is a salient component of logic, mathematics, and computer science.
Another remarkable field in which it is applied is economics. In economics, various func-
tions such as supply and demand functions are represented by graphs, which are used
to explain and derive economic laws. In this paper, we apply proof-theoretic techniques
developed in previous studies to heterogeneous reasoning with graphs in elementary eco-
nomics. We apply the natural deduction-style formalization to heterogeneous reasoning
with graphs. We also present a proof-theoretic analysis of free rides, and analyze the ef-
ficiency of heterogeneous reasoning with graphs. We further discuss abductive reasoning
in elementary economics in the context of heterogeneous reasoning.
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1 Introduction

In general, reasoning is carried out by combining various sentential, diagrammatic, and graph-
ical representations according to the given situation. Such reasoning is called heterogeneous
reasoning, and its importance has been known since the earliest research on diagrammatic
reasoning. Barwise and Etchemendy introduced a heterogeneous system combining graphi-
cal representations and first-order formulas in a block world [3, 1]. Heterogeneous systems
based on Venn, Euler, and spider diagrams and first-order formulas have also been formalized,
and their implementations have been developed, e.g., [6, 17, 23]. We studied heterogeneous
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reasoning with correspondence tables to solve certain scheduling problems in [20, 21]. Fur-
thermore, the computational architecture of heterogeneous reasoning was investigated in [2],
and a general framework for a heterogeneous reasoning theorem prover was studied in [24].
See [1] for early examples of heterogeneous systems.

Heterogeneous reasoning is a salient component of logic, mathematics, and computer sci-
ence. Another remarkable field it applies to is economics. When one opens an economics
textbook, one finds a number of graphs representing various mathematical functions in eco-
nomics such as supply and demand functions. This may be because graphs make economic
laws and theory visually accessible to novices and students who are not comfortable with
mathematics.

In this paper, we apply the proof-theoretic techniques developed in our previous stud-
ies [20, 21, 19] to heterogeneous reasoning with graphs in elementary economics. We apply
the natural deduction-style formalization, which makes it possible to apply well-developed
proof-theoretic techniques to the analysis of heterogeneous reasoning with graphs. We also
apply the proof-theoretic analysis of free rides developed in [19], and analyze the efficiency
of heterogeneous reasoning with graphs. We further discuss abductive reasoning in elemen-
tary economics. Abduction is not restricted to economic reasoning, but appears throughout
scientific reasoning. It was first formalized by the philosopher Charles Sanders Peirce in the
19th century, and is distinct from other types of reasoning, i.e., deduction and induction.
Peirce defined abduction as the inference process of finding a hypothesis that explains a given
observation, and it is often described as “inference to the best explanation.” Abduction has
been discussed by philosophers and logicians, and has been extensively studied in the liter-
ature on artificial intelligence (see, for example, [13, 4] for surveys of abduction in artificial
intelligence). In the context of heterogeneous reasoning, we are able to formalize abductive
reasoning in elementary economics in the style we employ in our actual reasoning.

Economic reasoning similar to that discussed here has been investigated in the framework
of qualitative reasoning, e.g., [5, 9]. The study of qualitative reasoning originally evolved from
the investigation of physical reasoning, where qualitative information is exploited without ex-
act quantitative information or precise values (see [7]). Basic economic concepts such as the
law of demand, which states that ‘a higher price leads to a smaller quantity demanded,’ are
usually expressed in abstract qualitative forms without specifying any precise mathematical
function. Thus, economic reasoning has been investigated as an application of qualitative
reasoning. Additionally, diagrammatic reasoning does not generally need exact values or
quantitative information, and is therefore also compatible with qualitative reasoning. Thus,
the relationship between the two has been examined [22, 18, 8], and qualitative spatial rea-
soning has recently been investigated within the framework of the region connection calculus
(RCC) [12, 14]. Furthermore, from a cognitive science viewpoint, the CaMeRa (computa-
tional model of multiple representations) approach to heterogeneous reasoning with graphs
in elementary economics has been proposed by [18]. In this article, each step of economic
reasoning with graphs, as formalized by qualitative reasoning studies, is associated with the
cognitive steps in their model. We extend their framework and investigate heterogeneous
reasoning in economics from the viewpoint of logic.

In Section 2, we introduce an example of economic reasoning with graphs, and then, we
investigate the structure of such reasoning. In Section 3, we formalize our heterogeneous logic
with graphs in elementary economics HLGe, and we demonstrate its soundness. We further
investigate some properties of HLGe, and analyze free rides in the system. Finally, in Section
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4, we discuss abductive reasoning in elementary economics is formalized by slightly modifying
our HLGe.

2 Reasoning with graphs in economics

2.1 Example

Let us examine the following example of reasoning with graphs in elementary economics,
which is a slight modification of an example given in [10] written by Krugman and Wells.

Example 2.1 ([10] p.94) When a new, faster computer chip is introduced, (1) demand for
computers using the older, slower chips decreases. (This graphically corresponds to a leftward
shift of the demand curve from the original D1 to D2, which we express as D2 ← D1.)
Simultaneously, (2) computer makers increase their production of computers containing the
old chips in order to clear out their stocks of old chips. (Graphically, this corresponds to a
rightward shift of the supply curve from the original S1 to S2; S1 → S2.) Furthermore, (3) it
is widely known that there is only a minor change in the new computer chip, and it does not
make computers dramatically faster. That is, the decrease in demand is small relative to the
increase in supply. What happens to the equilibrium price and quantity of computers?

Relationships between quantity demanded and price, as well as between quantity supplied
and price, are represented mathematically by functions of price, i.e., a demand function and
a supply function, respectively. In economics, graphs of these demand and supply functions
are conventionally drawn in a two-dimensional plane, where the vertical axis represents price
and the horizontal axis represents quantity demanded or supplied. (Note that this is not
consistent with mathematical convention, where the horizontal axis normally represents the
independent variable, i.e., price.) The law of demand says that a higher price leads to a
smaller quantity demanded; hence, demand curves generally slope downward. Similarly, the
law of supply says that a higher price leads to a larger quantity supplied, and so supply curves
generally slope upward.

In the above example, there are no concrete demand and supply functions. Note that it
is impossible to draw an “arbitrary” curve, since a drawn curve is more or less specific, and
it may show something not derived in general. (This property of diagrams is called over-
specificity by Shimojima [15].) Hence, we draw demand and supply curves in the simplest
manner, i.e., as straight lines with slopes of −1 and 1, respectively, as in the following G1.
We assume that G1 represents the initial state of the given market, and its equilibrium is
m1(q1, p1).
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From premise (1), the quantity demanded in this market decreases, and the original demand
curve D1 shifts to D2, as in G2. From premise (2), the quantity supplied increases, and the
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supply curve S1 shifts to S2, as in G3. Although we do not know how much D1 (resp. S1)
shifts to D2 (resp. S2), we can infer from premise (3) that the horizontal shift of the supply
curve is greater than that between D1 and D2, as expressed in G3. These shifts in the demand
and supply curves lead to the new equilibrium m2(q2, p2). By comparing m2 and the original
m1, we find q1 < q2 and p1 > p2, i.e., the equilibrium quantity rises and the equilibrium
price falls. Note that we obtain this result without loss of generality, even if we do not know
the exact shifts in the demand and supply curves, if the ordering condition (3) holds, and if
typical curves of slopes ±1 are assumed.

Remark 2.2 Without condition (3) on the horizontal width of the shifts, the relation between
q1 and q2 is not uniquely determined by the shift widths of the supply and demand curves,
although p1 > p2 generally holds. (Cf. Example 3.11.)

Remark 2.3 In general, what is derived about p and q depends on shift sizes and slopes of
demand and supply curves. However, it is shown that if we restrict demand and supply curves
to be straight lines whose absolute values of slopes are equal, then what is derived depends
only on shift sizes of the curves. Thus, strictly speaking, we solved the above question in
Example 2.1 graphically, under the following additional assumption:
(4) Demand/supply decreases/increases linearly in the same rate.

2.2 Structure of reasoning with graphs in economics

Based on the previous example, let us investigate the structure of reasoning with graphs in
elementary economics. The reasoning in Example 2.1 goes as follows.

1. An appropriate graph is given, which describes the initial state of a market.

2. We shift a curve based on the given premise, which represents an increase or decrease in
demand or supply. This step may be repeated several times. This shifting operation
may be considered as the addition of a new curve, since it is convenient to keep the
original curve to compare equilibriums at a later point.

3. With this shift in a curve, a new intersection (equilibrium) arises between the demand
and supply curves.

4. We compare the new intersection and the original one, and read off the changes in price
and quantity.

Let us compare the above graphical reasoning with algebraic reasoning, where we solve
simultaneous equations describing given demand and supply functions.

1. Let the given demand function D1 be y = −x + γ, and the supply function S1 be
y = x+ δ, where γ, δ are real numbers.

Note that, in accordance with our graphs in elementary economics, we assume slopes of
D1 and S1 be −1 and 1, respectively.

(In fact, the above D1 (and S1) is the inverse of the demand function from the viewpoint
of economics, since y represents price and x represents quantity demanded. However,
in our simple and typical setting, there is technically no difference between a demand
function and its inverse, i.e., we can freely replace x and y.)
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2. For some real numbers α > 0 and β > 0 such that α < β, D2 can be expressed as
y = −x+ γ − α, and S2 as y = x+ δ − β.

3. By solving the simultaneous equations D1 and S1, we find q1 = γ−δ
2 and p1 = γ+δ

2 ,
which represent the original equilibrium quantity and price.

4. Similarly, by solving D2 and S2, we find q2 = γ−δ−α+β
2 and p2 = γ+δ−α−β

2 , which
represent the new equilibrium quantity and price.

5. By comparing the equilibrium quantities, we find that q1− q2 = α−β
2 < 0 (since α < β),

and hence, we have q1 < q2.

6. By comparing the equilibrium prices, we find p1 − p2 = α+β
2 > 0, i.e., p1 > p2.

Although the above calculation is not difficult, it is slightly cumbersome compared with
our graphical reasoning, where no mathematical knowledge is required. Furthermore, if we
formalize it in the framework of mathematical logic, a considerable number of steps are
required. (See, for example, [11] for a formalization of arithmetic.)

Economic reasoning similar to our example has been studied in the framework of qual-
itative reasoning, e.g., [5, 9]. Qualitative reasoning studies investigate reasoning based on
qualitative information, instead of precise quantitative information [7]. In qualitative rea-
soning studies, with the aim of implementation, economic reasoning “without graphs” is
investigated. In [5] (among others), economic laws such as “a higher price leads to a smaller
(resp. larger) quantity demanded (resp. supplied)” and “an increase in demand raises an
excess demand” are formalized as causal relations. Based on such statements, economic rea-
soning is then formalized exactly as one traces the points of intersection between demand and
supply curves in a graph. Thus, the reasoning formalized in qualitative reasoning studies is
considered as another symbolic or linguistic counterpart of our graphical reasoning.

In some aspects, the economic reasoning we investigate here is an extension of previous
research, where either the demand or supply curve is allowed to shift just once. Such an
analysis has been extended to a more complicated, multivariable setting in [5]. However, we
concentrate on analyzing the basic demand and supply market, but allow simultaneous shifts
of the demand and supply curves as in Example 2.1.

3 Heterogeneous logic with graphs in economics HLGe

3.1 Syntax and semantics

In this section, we introduce heterogeneous logic with graphs in elementary economics, HLGe.
In this paper, we assume that demand and supply curves are straight lines, and their slopes
are −1 and 1, respectively. Then, as seen in the previous example, exactly what can be derived
depends on the size of the shift in a demand or supply curve. Hence, we assume the shift size
is specified when we consider the shift in a curve. However, in our qualitative framework,
the exact value of the shift is not as significant as the relation between the magnitude of the
shifts. Thus, we do not express the shift size as an exact numeral, but as a constant a that
represents some real number. A formula such as C

a−→ C ′ then means “the curve C shifts
rightward to C ′ with shift width a.”

For our heterogeneous system HLGe, we use the following symbols with subscripts when
necessary:
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• Logical connectives: &,∨,⇒,⇔,¬, ∀, ∃
• Constants for widths: a, b, c

• Constants for coordinates: p, q, r

• Variables for coordinates: x, y

• Curves: D,S,C,B

We also use typical mathematical function symbols such as + and −, and predicate symbols
such as = and <.

Among the usual mathematical formulas, we distinguish the following special formulas in
HLGe. A demand (resp. Supply) curve is written as D(x) = −x+ r (resp. S(x) = x+ r)
for some r. When (q, p) is an intersection point or equilibrium of C and C ′, we write
C ∩ C ′(q) = p. We define shift formulas as follows:

• D a−→ D′ := ∀x(D(x) = −x+ r ⇔ D′(x) = −x+ r + a)

• D′ a←− D := ∀x(D(x) = −x+ r ⇔ D′(x) = −x+ r − a)
Similarly for S

a−→ S′ and S′ a←− S.

We denote formulas by φ,ψ.
We define graphs in elementary economic reasoning as follows.

Definition 3.1 (Graph) A graph in HLGe consists of the following items:

• The first quadrant of the xy-coordinate space.

• Straight lines of slope 1, called supply curves and named S, S′, S1, . . . ; and of slope
−1, called demand curves and named D,D′, D1, . . . .

When we do not distinguish between supply and demand, we denote a curve by C,C ′, C1, . . . .

• Every point of intersection of straight lines is accompanied by its coordinates.

Although we consider only straight lines, we call them curves following the convention of
economics. In principle, every point of intersection is accompanied by its coordinates, but we
sometimes omit them to avoid visual complexity.

We define the width between two lines in a given graph.

Definition 3.2 (Width) Let Ci and Cj be a pair of lines that are parallel in a graph. Let
qi (and qj) be the intersection point of Ci (resp. Cj) and the vertical axis when Ci (resp. Cj)
is extended as necessary. We define the width w(Ci, Cj) between Ci and Cj as |qi − qj |.
When G is a graph, by w(G), we denote the set of all widths in G.

Obviously, we have w(C,C ′) = a for C
a−→ C ′. Note that the above width is not the

geometrical distance between two lines, but it is the difference between the y-intercepts of
the given lines. In this paper, we do not consider the arithmetic of widths; hence, we do not
consider widths such as a× b and 1

2a for widths a, b.

In contrast to a graph drawn as a diagram, we consider the type of a graph, which is a
symbolic specification. The type of a graph also defines what kind of information we can
extract from it; cf. our inference rule Observe in Definition 3.10. As in graph theory, we
usually do not distinguish between a drawn graph and its type, and denote both of them by
G.
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Definition 3.3 (Type) The type of a graph G is (C, lw, E , lp, lq), where:

• C is two sequences Di → Dj → · · · → Dn; Sk → Sl → · · · → Sm of demand curves and
supply curves in G, respectively, which are ordered from left to right as they are in the
drawn graph G.

• By allowing equality, i.e., some elements are equal, lw is the linearly ordered set w(Ci, Cj) <
· · · < w(Ck, Cl) < · · · of all widths in G.

• E is the set of points of intersection in G of the form Di ∩ Sj(qk) = pk.

• lp is the linearly ordered set pi < pj < · · · of all y-coordinates of intersections.
• lq is the linearly ordered set qi < qj < · · · of all x-coordinates of intersections.

Actually, the sequence C, and the linear ordering of widths lw, and intersections E , which
define their coordinates as well, are sufficient to specify a graph. (Cf. Definition 3.8 for our
interpretation of graphs.)

Example 3.4 The type of G in the following Example 3.6 is as follows:

• C = D1 → D2 ; S1 → S2

• lw = w(D1, D2) < w(S1, S2)

• E = {D1 ∩ S1(q1) = p1, D2 ∩ S1(q2) = p2, D1 ∩ S2(q3) = p3, D2 ∩ S2(q4) = p4}
• lp = p3 < p4 < p1 < p2

• lq = q1 < q2 < q3 < q4

Based on types of graphs, we define the equivalence between graphs. Note that points of
intersection are determined when curves are given. Furthermore, in our qualitative framework,
the exact width values, as well as the xy-coordinates of the intersections, are not significant,
whereas the ordering relation among them is important. Thus, we regard two graphs as being
equivalent when their arrangement of curves and their ordering relation among widths are
equivalent.

Definition 3.5 Two graphs G = (C, lw, E , lp, lq) and G′ = (C′, l′w, E ′, l′p, l′q) are equivalent,
written as G = G′, if C = C′ and lw = l′w.

Note that if C = C′, then lw and l′w consist of the same widths w(Ci, Cj), although the
values of w(Ci, Cj) of lw and of l′w may be different. Thus, lw = l′w means that the ordering
relation, not the exact value, is the same among the widths of lw and l′w.

Example 3.6 (Equivalence) The following graphs G and G′ are equivalent, since we have
C = C′ = D1 → D2;S1 → S2, and lw = l′w = w(D1, D2) < w(S1, S2) even though the value of
w(D1, D2) in G is smaller than that in G′.
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The translation of our graphs into first-order formulas is straightforward based on the
type of graph.

Definition 3.7 (Translation of graphs) A graph G of (C, lw, E , lp, lq) is translated into a
conjunctive formula

∧
C &

∧
l2 &

∧
E &

∧
lp &

∧
lq, where

∧
X denotes the conjunction of all

corresponding formulas contained in the set X.

For the set-theoretical semantics of HLGe, it is sufficient to employ a domain of real
numbers in which arithmetic operations such as + and − are defined. Hence, we provide
the real closed field R with the ordering relation < as our model. In the following, we
implicitly assume an interpretation, and do not distinguish between a symbol, say C, and
its interpretation, fC . Formulas of HLGe are interpreted as usual. For example, a formula
expressing an intersection C ∩ C ′(q1) = p1 is interpreted in a model M as follows.

M |= C ∩ C ′(q1) = p1 if and only if (q1, p1) ∈ C ∩ C ′.

Graphs in HLGe are interpreted as follows.

Definition 3.8 (Interpretation of graphs) Let M be a model. Let G be a graph of
(C, lw, E , lp, lq), where C = D1 → D2 → · · ·Dn; S1 → S2 → · · ·Sm, and lw = w(C1, C2) <
w(C3, C4) < · · · < w(Ck, Cl). Then, M |= G if and only if

• M |= D1
w(D1,D2)−−−−−−→ D2 & · · ·&Dn−1

w(Dn−1,Dn)−−−−−−−−→ Dn; and

• M |= S1
w(S1,S2)−−−−−→ S2 & · · ·& Sm−1

w(Sm−1,Sm)−−−−−−−−→ Sm; and

• M |= w(C1, C2) < w(C3, C4) < · · · < w(Ck, Cl); and

• M |= E , that is, M |= C ∩ C ′(q) = p for all C ∩ C ′(q) = p ∈ E .

Example 3.9 For example, we can consider the following semantic consequence, which cor-
responds to Example 2.1:

D
a−→ D′ , S′ b←− S , a < b , D ∩ S(q1) = p1 , D

′ ∩ S′(q2) = p2 |= p1>p2 & q1<q2

3.2 Inference rules of HLGe

We introduce inference rules for HLGe that are defined as an extension of natural deduction
for the usual mathematics. We assume the usual axioms of the real closed field, and of
the ordering <. Furthermore, we assume the following axioms of our elementary economic
reasoning.

• We consider only the first quadrant of the xy-coordinate space, that is, every curve is
restricted to the first quadrant.

• We assume that there always exists an intersection point in the first quadrant of the
xy-coordinate space, for any pair of curves that are not parallel.

• We assume the following form of graphs as axioms, which
is a graphical representation of the formula: there exists
two linear functions D(x) = −x + p1 and S(x) = x + p2
for some p1 and p2 such that D ∩ S(q) = p with q, p ≥ 0. -
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The inference rules for HLGe consist of the usual natural deduction rules for first-order
formulas and rules for graphs. Cf. [20]. We now define our inference rules for graphs in
HLGe. According to Plummer-Etchemendy [2], inference rules characteristic of heterogeneous
systems are generally called transfer rules, and allow the transfer of information from one form
of representation to another. Typical rules in Hyperproof [3, 1] are Apply (from sentences to
a diagram) and Observe (from a diagram to sentences). Our Apply has the following form:

G C
a−→ C ′ l
G′ or

G C ′ a←− C l
G′

where G′ is obtained from a given graph G by adding a new curve, say C ′, and l specifies a
linear ordering of all widths (including a) in G′. We read this rule as: “we apply C

a−→ C ′

to amplify G to G′,” or “we extend G to G′ by adding the new information of C
a−→ C ′ (or

C ′ a←− C) to G.”
Our Apply can only be used when all of the ordering relations between the shift width of

an additional curve and the widths already in G are specified by the above l. Thus, when the
relations are not fully specified in the given premise, we need to enumerate all possible cases.
(See the following rule of Cases.)

Definition 3.10 Inference rules for graphs of HLGe consist of the following Apply and Ob-
serve.

Apply: Let G be a graph, that contains a curve C but does not contain C ′. Let C
a−→ C ′ be a

shift formula. Let l be an ordering condition that specifies a linear ordering of all widths
in w(G) + C ′ = w(G) ∪ {w(C ′, B) | B is a curve parallel to C (including C) in G}:

G C
a−→ C ′ l
G′ Apply

where G′ is obtained from G by adding the curve C ′ so that (1) C ′ is parallel to C; (2)
C ′ is orthogonal to every curve that is orthogonal to C; (3) the width between C ′ and
C is a; (4) the widths including a satisfy l.

Similarly for C ′ a←− C.
Observe: From a given graph G, we can extract, as a conclusion, any corresponding formula

contained in the type of G.

When the given ordering condition l does not fully specify a linear ordering among w(G)+
C ′, we cannot apply Apply. In such a case, we enumerate all possible linear orderings of
w(G) + C ′ and apply the ∨-elimination rule (∨E) of natural deduction: Let {l1, . . . , ln} be
the enumeration of all possible linear orderings of w(G) +C ′ that satisfies the given l. (Note
that the widths w(G) is already linearly ordered, since all shift widths are fixed in a given
graph G. Thus, we can obtain l1, . . . , ln by applying the usual insertion sort algorithm.) Since
l1 ∨ · · · ∨ ln is provable from l, we divide the case according to l1, . . . , ln by using ∨E, and
then, apply Apply in every case as follows:
Cases:

l
l1 ∨ · · · ∨ ln

G C
a−→ C ′ [l1]

m

G1
Apply

....
G′/ψ · · ·

G C
a−→ C ′ [ln]

m

Gn
Apply

....
G′/ψ

G′/ψ
∨E,m
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where G′/ψ denotes that either a graph G′ or a first-order formula ψ is obtained, and [li]
m

denotes the assumption li is closed as usual in natural deduction. A double line is an abbre-
viation of some applications of rules. By regarding the above part of a proof as an inference
rule, we call it the rule of Cases.

In an application of Apply, we assume that there always exists an intersection between the
additional curve and every orthogonal curve already appearing in a given premise graph. This
is feasible, as we can always arrange the positions of curves by retaining ordering relations
among widths under the equivalence of graphs in our qualitative framework.

The notion of proof in HLGe is defined inductively, as in natural deduction. We use the
symbol ⊢ to denote the provability relation in HLGe.

Example 3.11 (A proof in HLGe) Fig. 1 is an example of a proof in HLGe of the following
consequence, which describes the situation of Example 2.1 without the condition (3) describing
the shift widths of supply and demand curves.

D2
a←− D1 , S1

b−→ S2 , D1 ∩ S1(p1) = q1 , D2 ∩ S2(p2) = q2 ⊢ p1 > p2

In addition to the above example, the following are also provable in HLGe for example:

• D1
a−→ D2 ⊢ p1 < p2 & q1 < q2;

• D1
a−→ D2 , S1

b−→ S2 ⊢ q1 < q2;

• D1
a−→ D2 , S1

b−→ S2 , a < b ⊢ p1 > p2 & q1 < q2,

and so on.

We now show that HLGe can handle simultaneous curve shifts even though Apply and
Cases are applied in order during a proof.

Proposition 3.12 (Simultaneous) Consider a graph G in which D1, S1 appear but D2, S2
do not. Then, the same set of graphs is obtained from G in the following two cases:

1. We first apply Apply (or Cases) to D1
a−→ D2, and then to S1

b−→ S2;

2. We first apply Apply (or Cases) to S1
b−→ S2, and then to D1

a−→ D2.

Proof. We denote by (G + D2) + S2 the set of graphs obtained by the above case (1), and
by (G + S2) + D2 those obtained by (2). In either case, we obtain graphs consisting of the
same curves. Thus, it is sufficient to show that orderings of widths of (G + D2) + S2 and
of (G + S2) +D2 are equivalent. Let L(w(G) + C) be the enumeration of all possible linear
orderings of w(G)+C that satisfies the given ordering conditions in premises. Then, we show
L(w(G+D2) + S2) = L(w(G+ S2) +D2), which is obtained by returning to the definition.

Since w(G) + D2 = w(G) ∪ {w(D2, B) | B ∈ G}, we have w(G + D2) + S2 = w(G) ∪
{w(D2, A) | A ∈ G} ∪ {w(S2, B) | B ∈ G+D2} = w(G) ∪ {w(D2, A) | A ∈ G} ∪ {w(S2, B) |
B ∈ G} ∪ {w(S2, D2)}.

Similarly, since w(G) + S2 = w(G) ∪ {w(S2, B) | B ∈ G}, we have w(G + S2) + D2 =
w(G) ∪ {w(S2, B) | B ∈ G} ∪ {w(D2, A) | A ∈ G + S2} = w(G) ∪ {w(S2, B) | B ∈ G} ∪
{w(D2, A) | A ∈ G} ∪ {w(D2, S2)}.

Therefore, we have L(w(G+D2) + S2) = L(w(G+ S2) +D2).

We now establish the soundness theorem for HLGe. After dividing several cases, this is
proved in a similar way to that described in Section 2.2 by algebraic calculation.
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Theorem 3.13 (Soundness) Let S be a set of shift formulas; E be a set of intersections; O
be a set of ordering conditions among widths; and A be a conjunction of formulas comparing
x- and y-coordinates. If S, E ,O ⊢ A (provable), then S, E ,O |= A (semantically valid).

Proof. The theorem is shown by induction on the length of proofs in the usual manner. We
show the following case for Apply (the other cases are similar):

G D
a−→ D′ l
G′ Apply

whereD appears in G andD′ does not, and l ∈ L(w(G)+D′). AssumeM |= G&(D
a−→ D′)&l.

We show M |= G′. Let the type of G be (C, lw, E , lp, lq), and that of G′ be (C′, l′w, E ′, l′p, l′q).
Since M |= G & (D

a−→ D′) & l, we have M |= C′ and M |= l′w. We now show that M |= E ′,
that is, we can define every new intersection (pi, qi) in M after the addition of the curve D′,
and M |= l′p and M |= l′q, that is, if pi < pj holds in G′, then we also have pi < pj in M
semantically.

Let D ∩ S(q1) = p1 already exist in G, and D′ ∩ S′(q2) = p2 be a new intersection point
for some S′ in G. Let D be y = −x+α and S be y = x+β. We divide the cases according to

S
w(S,S′)−−−−−→ S′, S′ w(S,S′)←−−−−− S, or S = S′ in G. Here, we assume S

w(S,S′)−−−−−→ S′. The other cases
are proved in a similar way. Then, D′ is y = −x+α+w(D,D′) and S′ is y = x+β−w(S, S′).

We further divide the cases according to w(D,D′) <
w(S, S′), w(D,D′) = w(S, S′), or w(D,D′) > w(S, S′).
Here, we show the case w(D,D′) < w(S, S′). The other
cases follow in a similar manner. Thus, we consider the fol-
lowing case, in which there may appear a number of other
curves, though we omit them in the graph.
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By solving the simultaneous equations D : y = −x+α and S : y = x+β, we find q1 =
α−β
2

and p1 = α+β
2 . Similarly, by solving the simultaneous equations D′ : y = −x+ α+ w(D,D′)

and S′ : y = x+β−w(S, S′), we find q2 =
α−β+w(D,D′)+w(S,S′)

2 and p2 =
α+β+w(D,D′)−w(S,S′)

2 .
This shows that the new intersection point (q2, p2) is well defined in the given model M .

By comparing q1, q2 and p1, p2, respectively, we have q2 − q1 = w(D,D′)+w(S,S′)
2 > 0, that

is, q1 < q2, and p2 − p1 = w(D,D′)−w(S,S′)
2 < 0 since w(D,D′) < w(S, S′), that is, p1 > p2.

3.3 Free rides in HLGe

The free ride property is one of the most basic properties of diagrammatic systems that
provides an account of the inferential efficacy of diagrams. By adding a certain piece of infor-
mation to a diagram, the resulting diagram somehow comes to present pieces of information
not contained in the given premise diagrams. Shimojima [15, 16] called this phenomenon free
ride. By slightly extending the notion, we refer to diagrammatic objects, or the translated
formulas thereof, as free rides if they do not appear in the given premise diagrams or sen-
tences, but (automatically) appear in the conclusion after adding pieces of information to the
given premise diagrams. The notion of free rides enables us to analyze the effectiveness of
each inference rule. (Cf. [19, 21].)

As discussed in Section 2.2, our inference with graphs is conducted as follows: (1) a graph
including supply and demand curves is given; (2) we shift a curve by adding a new curve; (3)
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new intersection points arise; (4) we compare a new intersection point and an original one,
and read off changes in price and quantity. Thus, free rides in our graphical inference are
new points of intersection as well as their accompanying coordinates. We can understand this
more clearly by analyzing our inference rule Apply:

G C
a−→ C ′ l
G′ Apply

where C appears in G but C ′ does not. We compare the types, or translated formulas, of
graphs of premises and the conclusion. Let G = (C, lw, E , lp, lq). Then, G′ is (C′, l′w, E ′, l′p, l′q),
where:

• C′ = C ∪ {C → C ′},
• l′w = l,

• E ′ = E ∪ {C ′ ∩B(q) = p | B is orthogonal to C in G},
• l′p is the linear ordering of lp ∪ {p | C ′ ∩B(q) = p ∈ E ′},
• l′q is the linear ordering of lq ∪ {q | C ′ ∩B(q) = p ∈ E ′}.

Observe that C′ and l′w are already given in the premises of Apply. In particular, the
position of C ′ is specified by the given l (= l′w). On the other hand, the differences between
E ′ and E , l′p and lp, and l

′
q and lq, respectively are free rides of Apply, as they do not appear

in the premises. In particular, note that the conclusion graph G′ automatically obtains the
linear orderings l′p and l′q of the y- and x-coordinates of the intersection points.

4 Abduction in economic reasoning

Our HLGe can be applied to formalize another type of reasoning, namely, abductive reasoning.
Let us consider the following example similar to Example 2.1, but remove condition (3) on
the shift widths of the supply and demand curves.

Example 4.1 When a new, faster computer chip is introduced, (1) demand for computers
using the older, slower chips decreases (i.e., D2

a←− D1). Simultaneously, (2) computer makers
increase their production of computers containing the old chips in order to clear out their

stocks of old chips (i.e., S1
b−→ S2). (3) Demand/supply decreases/increases linearly in the

same rate. When the equilibrium quantity falls in response to these events, what possible
explanations are there for this change?

Let D1∩S1(q1) = p1 and D2∩S2(q2) = p2. First, note that we cannot prove q1 > q2 under the
given premises (1) and (2), as observed in Example 3.11. Thus, our task in this question is to

find a possible explanation H such that D2
a←− D1, S1

b−→ S2, D1 ∩ S1(q1) = p1, D2 ∩ S2(q2) =
p2,H ⊢ q1 > q2 holds. In Example 3.11, the two given premises (1) and (2) provide three
graphs, according to whether a < b, a = b, or a > b, as shown in Fig.1. Among these three
graphs, we find a graph (the third one) in which q1 > q2 holds. Thus, we know that q1 > q2
holds when a > b holds for the shift widths of the demand and supply curves. Hence, we can
propose a > b as a possible explanation H.

This type of reasoning is called abduction, and frequently appears in scientific reasoning.
Abduction has been extensively studied in the literature on artificial intelligence AI. In the
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framework of AI, abduction is usually formalized as the task of finding a hypothesis (or
explanation) H that explains a given observation O under a theory (or premises) T such that
O is a logical consequence of T and H, i.e., T,H ⊢ O, and T,H are consistent. Usually, it
is assumed that without H, we cannot prove O, i.e., T ̸⊢ O. Furthermore, restrictions such
as “minimality” are imposed on H so that it represents “the best explanation” of the given
observation O.

To solve abductive problems, the usual strategy such as resolution and proof-search to
construct deductive proofs are applied. (See, for example, [13, 4] for surveys of abduction in
AI.) Our strategy in this paper can be considered as a kind of model enumeration. This is
because our inference in HLGe is rather model theoretic. Our inference using graphs essentially
corresponds to model construction by regarding our graph as a certain kind of representative
model. When there is insufficient information on the shift widths of the supply and demand
curves, we enumerate all possible cases (i.e., models) by using Cases. We can then determine
the required explanation from among these cases, as seen in the above example. To describe
our abductive reasoning more formally, we modify Cases as follows:

AbCases

l
l1 ∨ · · · ∨ ln

G C
a−→ C ′ li

Gi
Apply

Gi
AbCases

where li is one of the linear orderings of l1, . . . , ln, and the underline indicates a proposed
explanation.

Similarly for C ′ a←− C.

In contrast to Cases, it is not necessary to consider all cases of l1, . . . , ln, but it is sufficient
to find a single case in which the given conclusion holds.

We formalize our procedure as follows. Let S, E ,O be given premises, and A be a given
conclusion or observation. Our task is to find an explanation H such that S, E ,O,H ⊢ A
holds, where we restrict H to be an ordering condition on the shift widths.

1. We construct a proof of S, E ,O ⊢ A by using AbCases as well as our Apply, Observe and
Cases for HLGe.

2. Among the applications of AbCases, we choose a linear ordering li that has the maximal
length, and set H = li.

Although our inference rules are not effective, especially when there are a number of
possible cases to consider, we can use HLGe to formalize abductive reasoning in elementary
economics in the style we employ in our actual reasoning.

5 Conclusion and future work

We have formalized heterogeneous logic with graphs in elementary economics, HLGe, by ex-
tending the usual natural deduction system. This makes it possible to apply well-developed
proof-theoretic techniques such as normalization and structural analysis of proofs to the anal-
ysis of heterogeneous reasoning with graphs. We proved the soundness of HLGe, and analyzed
its efficiency by applying a proof-theoretic analysis of free rides developed in [19]. Further-
more, we discussed the way in which abductive reasoning in elementary economics can also
be formalized in HLGe by slightly modifying our Cases.
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The completeness of the whole HLGe is not so interesting, since it already holds without
graphs. An interesting problem is the characterization (through a completeness theorem) of
the purely graphical fragment of HLGe, where symbolic or linguistic inferences are excluded,
as we investigated for heterogeneous logic with tables in [21]. We leave such an investigation
for future work.

We concentrated on a competitive market described by supply and demand models. How-
ever, extending our HLGe would enable the investigation of economic reasoning with graphs
employed in various other analyses, such as a consumer’s optimal consumption analysis and
IS-LM analysis in macroeconomics. This is because the structures of reasoning with graphs
in these instances are essentially the same as the reasoning investigated in this paper.
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