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Abstract

We investigate an interaction between mathematical logic and economics by
exploring a mathematical model of economic reasoning. To this purpose, we
focus on economic reasoning with linear demand and supply graphs. Linear
graphs have the following advantages: Linear graphs are easily constructed
and reasoning using such graphs can be effectively managed; linear graphs are
qualitatively determinate with respect to our problems. We investigate the
types of problems regarding general demand and supply functions that can be
reduced to linear graphs and discuss abductive reasoning with demand and
supply graphs. Then, we propose a model of economic reasoning by formalizing
reasoning with linear graphs in the framework of natural deduction developed
through proof theory of mathematical logic.
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1. Introduction

When one opens economics textbooks, one finds a number of graphs repre-
senting or illustrating various mathematical functions such as supply and de-
mand functions (for example, [20, 30, 22, 13]). In fact, it is difficult to explain
economics concepts such as law of demand and supply without any graphs or
diagrams. Thus, in actual economic reasoning or problem solving using thus ob-
tained economics concepts, it is natural to employ graphs and diagrams. How-
ever, models of human reasoning that are not restricted to economic reasoning
that have been proposed in various fields have been restricted to models of rea-
soning with linguistic representations such as sentences and symbols. For exam-
ple, models of economic reasoning proposed in qualitative reasoning studies are
models with linguistic or symbolic representation using differential equations,
algebraic calculations, causal relations, and so on ([27, 25, 8, 15]).

Considering actual human reasoning, we usually use not only linguistic or
symbolic representations, but also, graphical or diagrammatic representations.
Based on this observation, diagrammatic reasoning and heterogeneous reason-
ing employing combinations of linguistic and diagrammatic representations have
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been recently investigated from various viewpoints, such as mathematical logic,
computer science, and cognitive science. See, for example, [21, 1, 28]. For eco-
nomic reasoning, Tabachneck-Schijf, Leonardo, and Simon [29] proposed a cog-
nitive model of heterogeneous reasoning called CaMeRa (computational model
of multiple representations) based on cognitive experiments used to compare
linguistic/sentential, mathematical symbolic, and graphical representations.

Among various graphs employed in economics, one of the most basic and
frequently appearing graphs is the demand and supply graph, which also forms
the basis of the CaMeRa model. Although laws of demand and supply generally
hold for any demand and supply functions, it is not possible to draw a graph
of any function. Thus, to illustrate laws of demand and supply by graphs,
there are many different representatives of arbitrary demand and supply graphs
(including linear graphs) in economics text books.

In this article, we focus on linear graphs, whose slopes are ±1 in particular,
and discuss the use of such linear graphs in economic reasoning. As it is often
pointed out, a drawn graph is more or less specific, and it shows something
not logically derived in general. Shimojima [28] called such property of dia-
grammatic representations over-specificity, and analyzed it from a viewpoint of
mathematical logic and cognitive science. Thus, the use of graphs and diagrams
in economics have been restricted to be apparatus of explanation. However,
linear graphs have the following advantages: (1) linear graphs are easily con-
structed and reasoning using such graphs is effectively manageable; (2) they
are qualitatively determinate, that is, which conclusion is qualitatively deduced
from the given premises is uniquely determined with respect to our problems.
We investigate the use of linear graphs in certain types of economic reasoning
by revealing their range of applications, and we propose a model of economic
reasoning with linear graphs.

One of the most effective techniques to construct models of reasoning is that
developed through mathematical logic. Recently, interactions between mathe-
matical logic and economics have been discussed. For example, Kaneko [17, 18]
has investigated these from a rather wide viewpoint. On the one hand, eco-
nomics can provide concrete and actual frameworks of reasoning problems, and
on the other hand, mathematical logic can provide notions and techniques de-
veloped in traditional reasoning studies. One of the most remarkable examples
of such interaction is the application of epistemic logic to game theory. [17]
provides an introduction to economists on game theoretical applications of epis-
temic logic. Recent research has shown that epistemic logic can be applied
to the analysis of common knowledge and an economic agent’s rationality in
game theory. Other than epistemic logic, in research on qualitative reasoning,
for example in [16, 4], the logic programming PROLOG has been traditionally
applied as an implementation of their reasoning models. Furthermore, there
are more recent examples: [10] applies notions and techniques of set-theoretical
model theory to integrate qualitative and quantitative frameworks; [19] sur-
veys applications of theorem provers based on proof theory in mathematical
logic to economics problems; [5] discusses market design from the viewpoint of
computational complexity theory. In this article, by applying proof-theoretical

2



techniques, we propose a model of economic reasoning with graphs. Such a
model may be useful to investigate the notion of rationality in economics, ac-
tual problem solving, decision making, and for teaching economics.

The economic reasoning discussed in this article has been studied within the
framework of qualitative reasoning, e.g., [8, 15]. Qualitative reasoning studies
investigate reasoning based on qualitative information instead of precise quan-
titative information [14]. In qualitative reasoning studies, with the aim of im-
plementation, economic reasoning “without graphs” is investigated. In some
aspects, the economic reasoning we investigate here is an extension of previous
research of qualitative reasoning, where either the demand or supply curve is
allowed to shift just once. Such an analysis has been extended to a more com-
plicated, multivariable setting in [8]. However, we concentrate on analyzing the
basic demand and supply market, but allow simultaneous shifts of the demand
and supply curves as in Example 2.1 below.

In Section 2, by using techniques of differentiation, we specify the range over
which linear demand and supply functions can be effectively applied. Based on
the analysis by differentiation, in Section 3, we discuss the use of linear demand
and supply graphs, and propose a model of economic reasoning with graphs
within the framework of proof theory of mathematical logic.

2. Reduction to linear demand and supply functions

In Section 2.1, we discuss our running example of economic reasoning with
graphs. In Section 2.2, we analyze our reasoning problems by using techniques
of differentiation. By formalizing our problems in Section 2.3, we discuss, in
Sections 2.4 and 2.5, the consequences of the analysis in Section 2.2.

2.1. Example

We begin by investigating the following example given by Krugman and
Wells [20], which is slightly modified.

Example 2.1 ([20] p.94). When a new, faster computer chip is introduced,
(1) demand for computers using the older, slower chips decreases. Simultane-
ously, (2) computer makers increase their production of computers containing
the old chips in order to clear out their stocks of old chips. What happens to
the equilibrium price and quantity of computers?

Relationships between quantity demanded and price, as well as between
quantity supplied and price, are represented mathematically by functions of
price, i.e., a demand function and a supply function, respectively. Then, they
are frequently depicted by graphs. In economics, graphs of demand and supply
functions are conventionally drawn on a two-dimensional plane, where the ver-
tical axis represents price and the horizontal axis represents quantity demanded
or supplied. (This is not consistent with standard mathematical convention,
where the horizontal axis normally represents the independent variable, i.e.,
price.) The law of demand states that a higher price leads to a smaller quantity
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demanded; hence, demand curves generally slope downward. Similarly, the law
of supply states that a higher price leads to a larger quantity supplied; hence,
supply curves generally slope upward.

Condition (1) graphically corresponds to a leftward shift of the demand curve
from the original D to D∗, which we denote as D∗ ← D, and (2) graphically
corresponds to a rightward shift of the supply curve from the original S to S∗,
i.e., S → S∗.

In the above example, no concrete demand and supply functions are given,
and it is impossible to draw an “arbitrary” curve, as a drawn curve is more
or less specific. There are various pseudo-arbitrary curves in economics text-
books. Among others, linear graphs are frequently applied. (In fact, the above
example is explained by using linear graphs in [20].) However, careful atten-
tion is required in the use of linear graphs, as they may show something not
logically derived in general. This phenomenon appears often in the use of dia-
grammatic/graphical representations, and is called over-specificity of diagrams
by Shimojima [28]. Let us consider the above example by using the following
linear graphs, where m̄ is the original equilibrium between demand D and sup-
ply S, and m∗ is the new equilibrium between shifted demand D∗ and supply
S∗.
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From the above graph G, on the one hand, we can read off p̄ > p∗, i.e., equi-
librium price is decreased, which is a logical consequence of the given premises
(1) and (2). On the other hand, we can also read off q̄ < q∗, i.e., equilib-
rium quantity is increased, although this is not a logically valid consequence.
Whether equilibrium quantity increases or decreases depends on shift widths α
and β (these are certain positive real numbers) of the demand and supply curves,
respectively, and we need to examine the following three cases: α < β, α = β,
and α > β from the qualitative viewpoint.
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Then, according to the three cases, we find one of q̄ < q∗, q̄ = q∗, q̄ > q∗

holds depending on the relationship between shift widths α and β, and nothing
is logically derived regarding the change of the equilibrium quantity in this
example.

Furthermore, even if information on shift widths of demand and supply
curves is given, what is derived for the change of the equilibrium quantity de-
pends further on the magnitudes of the slopes of the demand and supply curves.
For example, assume α < β in the above example. Then, q̄ < q∗ is derived in
the above case where the slopes of the demand and supply curves are −1 and
+1, respectively. However, as seen in the following graphs, we find that q̄ < q∗

is not a valid consequence when the slopes of the demand and supply curves
are not fixed at −1 and +1. The following graphs depict the given premises

D∗ α←− D,S
β−→ S∗, and α < β, where D∗ α←− D expresses that the demand D

shifts to D∗ with shift width α, and q̄ > q∗ holds in G2 on the left and q̄ < q∗

holds in G3 on the right.
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What is derived on an increase or decrease of the equilibrium quantity and
price after shifts of demand and supply generally depends on (1) shift directions,
(2) shift widths and (3) slopes of demand and supply curves (even if we restrict
ourselves to linear graphs). Thus, for a rigorous analysis of problems such as
the above example, the method of differentiation is applied to general demand
and supply functions without specifying and depicting their graphs.

Remark 2.2. We can consider cases where demand and supply shift more than
once. However, in such a case of multiple shifts, we are eventually required to
compare the original and the final equilibriums. Thus, with some algebraic
calculation on shift widths of demand and supply, cases of multiple shifts are
reduced to cases of single simultaneous shifts.

2.2. Analysis by differentiation

We investigate Example 2.1 by using differentiation. To investigate the effect
of a demand shift, a demand function is usually defined as q = D(p, α) by
introducing an exogenous variable α, which represents a factor inducing the
shift (see [13, 6] for example). However, because we are mainly interested in
graphical shifts of demand and supply in this paper, we introduce exogenous
variables α and β, directly representing the shift widths of demand and supply
curves, respectively, without entering into the detail of the economic factors of
the shifts.
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Let q = D(p) and q = S(p) be demand and supply functions, respectively,
where q is quantity and p is price. We assume that D,S as well as their inverses
D−1, S−1 are always differentiable. We further assume that demand and supply
functions are strictly monotonically decreasing and increasing, respectively, that
is, dDdp = D′ < 0 and dS

dp = S′ > 0, which implies D−1 and S−1 are also strictly
monotonically decreasing and increasing.

Let α, β ≥ 0 be shift widths along the p-axis of given demand and sup-
ply curves, respectively. After any shifts in demand and supply curves, we
assume that there exists a new equilibrium, whose price is determined by α
and β, and is denoted as P ∗(α, β). The left shift of demand D∗ α←− D de-
scribed by (1) in Example 2.1 is expressed in terms of a mathematical function
as D∗(p) = D(p + α) for any p. In particular, when p = P ∗(α, β), we have

D∗(P ∗(α, β)) = D(P ∗(α, β) + α). Similarly for (2), S
β−→ S∗ in Example 2.1 is

functionally expressed as S∗(p) = S(p+β) for any p, and in particular, we have
S∗(P ∗(α, β)) = S(P ∗(α, β) + β). As D∗(P ∗(α, β)) = S∗(P ∗(α, β)) at the new
equilibrium, we have: D(P ∗(α, β)+α) = S(P ∗(α, β)+ β). By similar consider-
ation for pairs of directions of demand and supply shifts, we have the following
four basic equations according to the combinations of + and − on both sides:

D(P ∗(α, β)± α) = S(P ∗(α, β)± β)

where the (+,+) combination of the above basic equations corresponds to the

(
D←−, S−→)-pair of a left demand shift and a right supply shift and similarly; (+,−)

to (
D←−, S←−); (−,+) to (

D−→, S−→); and (−,−) to (
D−→, S←−).

By partially differentiating both sides of our basic equations with respect to
α and β, respectively, we have:

D′ ·
(
∂P ∗

∂α
± 1

)
= S′ · ∂P

∗

∂α

D′ · ∂P
∗

∂α
±D′ = S′ · ∂P

∗

∂α
∂P ∗

∂α
=
∓D′

D′ − S′

D′ · ∂P
∗

∂β
= S′ ·

(
∂P ∗

∂β
± 1

)
D′ · ∂P

∗

∂β
= S′ · ∂P

∗

∂β
± S′

∂P ∗

∂β
=
±S′

D′ − S′

Here, D′ = dD
dp and S′ = dS

dp . Note that the above four equations hold for any
shift widths α, β. That is, whatever the magnitudes of α and β are, the positive
or negative signs of ∂P∗

∂α and ∂P∗

∂β are determined depending on the directions
of the demand and supply shifts.

Then, we obtain the following total differential: dP ∗ =
∂P ∗

∂α
dα +

∂P ∗

∂β
dβ.

Based on the total differential, let us analyze the change ∆P ∗ in P ∗(α, β). To
compare the original equilibrium P ∗(0, 0), i.e., shift widths α = β = 0, and the
new equilibrium P ∗(α, β), let ∆P ∗ = P ∗(α, β)−P ∗(0, 0), ∆α = α−0 = α (≥ 0),
and ∆β = β − 0 = β (≥ 0). Then, the change ∆P ∗ in P ∗(α, β) is represented
as follows:

∆P ∗ =
∂P ∗

∂α
∆α+

∂P ∗

∂β
∆β
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We analyze the sign of ∆P ∗ by considering the following cases:

(i) When α ̸= 0 and β ̸= 0, we further divide this case into the following four
cases.

1. When D(P ∗(α, β) + α) = S(P ∗(α, β) + β), that is D∗ α←− D,S
β−→ S∗, we

have:
∂P ∗

∂α
=
−D′

D′ − S′ < 0 and
∂P ∗

∂β
=

S′

D′ − S′ < 0

Thus, ∆P ∗ < 0.

2. When D(P ∗(α, β) + α) = S(P ∗(α, β)− β), that is D∗ α←− D,S∗ β←− S, we
have:

∂P ∗

∂α
=
−D′

D′ − S′ < 0 and
∂P ∗

∂β
=
−S′

D′ − S′ > 0

Thus, the sign of ∆P ∗ is not determined and it depends on the slopes and
shift widths of demand and supply in general.

3. When D(P ∗(α, β)− α) = S(P ∗(α, β) + β), that is D
α−→ D∗, S

β−→ S∗, we
have:

∂P ∗

∂α
=

D′

D′ − S′ > 0 and
∂P ∗

∂β
=

S′

D′ − S′ < 0

Thus, the sign of ∆P ∗ is not determined.

4. When D(P ∗(α, β)− α) = S(P ∗(α, β)− β), that is D α−→ D∗, S∗ β←− S, we
have:

∂P ∗

∂α
=

D′

D′ − S′ > 0 and
∂P ∗

∂β
=
−S′

D′ − S′ > 0

Thus, ∆P ∗ > 0.

(ii) When β = 0, we have ∆P ∗ =
∂P ∗

∂α
∆α.

1. When D(P ∗(α, β) + α) = S(P ∗(α, β)), that is D∗ α←− D, we have
∂P ∗

∂α
=

−D′

D′ − S′ < 0. Thus, ∆P ∗ < 0.

2. When D(P ∗(α, β)− α) = S(P ∗(α, β)), that is D
α−→ D∗, we have

∂P ∗

∂α
=

D′

D′ − S′ > 0. Thus, ∆P ∗ > 0.

(iii) When α = 0, we have ∆P ∗ =
∂P ∗

∂β
∆β.

1. When D(P ∗(α, β)) = S(P ∗(α, β) + β), that is S
β−→ S∗, we have

∂P ∗

∂β
=

S′

D′ − S′ < 0. Thus, ∆P ∗ < 0.

2. When D(P ∗(α, β)) = S(P ∗(α, β) − β), that is S∗ β←− S, we have
∂P ∗

∂α
=

−S′

D′ − S′ > 0. Thus, ∆P ∗ > 0.
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As observed in the above analysis, there exist two cases: whether ∆P ∗ is
positive or negative is determinate or indeterminate, depending on combi-
nations of shift directions.

By considering the inverse demand and supply functions p = D−1(q) and
p = S−1(q), respectively, and by applying a similar calculation, we can inves-
tigate changes in equilibrium quantities. Let Q∗(α, β) be the new equilibrium
quantity. Then, our basic equations about quantity are D−1(Q∗(α, β)) ± α =

S−1(Q∗(α, β)) ± β, where (+,+) for (
D−→, S←−); (+,−) for (

D−→, S−→); (−,+) for

(
D←−, S←−); and (−,−) for ( D←−, S−→). Then, we obtain the following equation:

∆Q∗ =
∂Q∗

∂α
∆α+

∂Q∗

∂β
∆β,

where
∂Q∗

∂α
=

∓1
D−1′ − S−1′

and
∂Q∗

∂β
=

±1
D−1′ − S−1′

. Here, D−1′ = dD−1

dq < 0

and S−1′ = dS−1

dq > 0.

Let us investigate the case where α ̸= 0, β ̸= 0 (the other cases are similar).

1. When D
α−→ D∗, S∗ β←− S, whether ∆Q∗ is positive or negative is not

determined.

2. When D
α−→ D∗, S∗ β←− S, we have ∆Q∗ > 0.

3. When D∗ α←− D,S∗ β←− S, we have ∆Q∗ < 0.

4. When D∗ α←− D,S
β−→ S∗, whether ∆Q∗ is positive or negative is not

determined.

As the same calculation that is applied to price changes is also applied to the
quantity changes by considering inverse functions D−1 and S−1, we concentrate
on the investigation of price changes in the following discussions.

2.3. Notation

To discuss the consequences of our analysis in Section 2.2, we fix our nota-
tion.

Real numbers are denoted by a, b, c, . . . , and variables for real numbers are
denoted by p, q, x, y, . . . . The usual first-order terms are denoted by t, t1, . . . ,
and formulas are denoted by φ,ψ, θ, φ1, . . . . By D and S, we denote given de-
mand and supply functions, respectively. We assume that D,S as well as their
inverses D−1, S−1 are always differentiable. We further assume that demand
and supply functions are strictly monotonically decreasing and increasing, re-
spectively. When we mention a function without specifying demand or supply,
we denote it by C. In particular, by D(1) and S(1), we denote linear demand
and supply functions with slopes of −1 and +1, respectively. They are defined
by the following formulas:

• D(1)(p) = −p+ a for some real number a;

• S(1)(p) = p+ a for some real number a
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In our qualitative framework, exactly what number a represents is not impor-
tant, and it is only used to distinguish the given linear functions in question.
We are interested in these particular linear functions among others, and in what
follows, we consider these D(1) and S(1) as “linear” functions.

We denote the direction of a shift → or ← of a given function by σ. When
a function C shifts to C∗, we introduce the term w(C,C∗) to denote its shift
width, which is a certain positive real number. We define w(C,C∗) as the
distance between p-intercepts: w(C,C∗) = |C−1(0) − C∗−1(0)|. We usually
denote a shift width w(C,C∗) by α, β, . . . .

For a given function C, when the direction and width of its shift are specified,
the function after the shift is uniquely determined, and we usually denote it by
C∗. Then, by σ(C), we denote a shift formula C

α−→ C∗ or C∗ α←− C, where
w(C,C∗) is denoted by α. These shift formulas are defined as:

• D α−→ D∗ ⇔ ∀p(D∗(p) = D(p− α))
• S α−→ S∗ ⇔ ∀p(S∗(p) = S(p+ α))

Similarly for left shifts ←. Thus, shift formulas are abbreviations of the above
formulas on the right.

We assume that equilibrium always exists between given demand and supply
functions, and furthermore, that a new equilibrium exists after shifts of the
functions. This is possible because the magnitudes of p-, and q-values are not
specified in our qualitative framework. For given demand and supply functions
D and S, we introduce the term D ∩ S to denote the equilibrium, which is a
pair consisting of a q-coordinate and a p-coordinate. When D ∩ S = (q̄, p̄), we
define (D ∩ S)P = p̄ and (D ∩ S)Q = q̄.

By using the above notation, the logical consequence relation described in
Example 2.1 is expressed as follows (we assume α < β, for shift widths α
(= w(D,D∗)) of demand, and β (= w(S, S∗)) of supply, in addition to the given
premises (1) and (2)):

D∗ α←− D,S β−→ S∗, α < β |= (D ∩ S)P > (D∗ ∩ S∗)P

where the formulas on the left-hand side of |= are premises, and each comma
means a conjunction, and the formula on the right-hand side is the conclusion.
|= means that (D ∩ S)P > (D∗ ∩ S∗)P is a logically valid conclusion with

differential calculus as in Section 2.2 for the given premises D∗ α←− D,S
β−→ S∗,

and α < β. The negation of the consequence relation |= is expressed as ̸|=.
When we consider our problems more abstractly without specifying the mag-

nitude relationship between shift widths α and β, we denote the relation by w.
Thus, w is one of α < β, α = β, α > β. We also denote, by o, the magnitude
relationship between equilibrium prices (D ∩ S)P and (D∗ ∩ S∗)P , as well as
between equilibrium quantities (D ∩ S)Q and (D∗ ∩ S∗)Q. Then, the above
logical consequence relation can be further abstracted to the following form:

σ1(D), σ2(S), w |= o

which is the most abstract description of our problems.
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We can generalize our logical consequence relation by allowing any first-order
formulas to be premises and conclusions. However, in this paper, we concentrate
on the above restricted logical consequence relation for simplicity.

2.4. Determinacy of linear demand and supply functions

As a special case of the previous analysis on general functions in Section
2.2, we examine the case of linear demand and supply functions to verify that
the linear functions are qualitatively determinate. That is, when shift directions
and the magnitude relationship between shift widths are fixed, which conclusion
is qualitatively deduced is uniquely determined. As seen in Theorem 2.7, the
case of general demand and supply functions is not qualitatively determinate
(i.e., the conclusion is not uniquely determined), even if their shift directions,
shift widths, and slopes are specified.

Theorem 2.3 (Linear determinacy). For any σ1, σ2, for any w, there exists
unique o with respect to prices as well as quantities such that

σ1(D
(1)), σ2(S

(1)), w |= o

Proof. As a special case of our previous analysis in Section 2.2, we investigate

the case where D′ = −1 and S′ = 1. In this case,
∂P ∗

∂α
=
∓D′

D′ − S′ =
∓1
2

and

∂P ∗

∂β
=
±S′

D′ − S′ =
∓1
2

. Thus, ∆P ∗ =
∓α∓ β

2
.

We show the case where α ̸= 0 and β ̸= 0 for this proof. The other cases are
the same as those in Section 2.2.

1. When D(1)(P ∗(α, β) + α) = S(1)(P ∗(α, β) + β), that is

D(1)∗ α←− D(1), S(1) β−→ S(1)∗, we have:

∆P ∗ =
−α− β

2
< 0

Thus, in this case, whatever w is, ∆P ∗ is always decreased.

2. When D(1)(P ∗(α, β) + α) = S(1)(P ∗(α, β) − β), that is

D(1)∗ α←− D(1), S(1)∗ β←− S(1), we have:

∆P ∗ =
−α+ β

2

We further divide this case into the following three cases according to the
magnitude relationship between shift widths α and β.

(a) When α < β, we have ∆P ∗ > 0.

(b) When α > β, we have ∆P ∗ < 0.

(c) When α = β, we have ∆P ∗ = 0.
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3. When D(1)(P ∗(α, β) − α) = S(1)(P ∗(α, β) + β), that is

D(1) α−→ D(1)∗, S(1) β−→ S(1)∗, we have:

∆P ∗ =
α− β
2

We further divide this case into the following three cases according to the
magnitude relationship between α and β.

(a) When α < β, we have ∆P ∗ < 0.

(b) When α > β, we have ∆P ∗ > 0.

(c) When α = β, we have ∆P ∗ = 0.

4. When D(1)(P ∗(α, β) − α) = S(1)(P ∗(α, β) − β), that is

D(1) α−→ D(1)∗, S(1)∗ β←− S(1), we have:

∆P ∗ =
α+ β

2
> 0

Note that if the information w on the magnitude relationship between shift
widths is not given, there is no valid conclusion o in the above cases (2) and (3)
as it is in the analysis in Section 2.2.

Remark 2.4. In the case of linear demand and supply functions, we obtain the
same results through a simple algebraic calculation without using differentiation
techniques as follows. Let D(p) = −p+ a and S(p) = p+ b for some a, b. Then,
we obtain the following basic equations: −P ∗(α, β)∓α+ a = P ∗(α, β)± β + b.

Thus, we have P ∗(α, β) =
∓α∓ β + a− b

2
. Then, ∆P ∗ = P ∗(α, β)− P (0, 0) =

∓α∓ β
2

, which is exactly the same result as the formula in the above analysis

by differentiation.

2.5. Reduction to linear functions

By checking the analyses in Sections 2.2 and 2.4, we find that when infor-
mation on the magnitude relationship w between shift widths is “not given,”
exactly the same conclusion is derived in both cases of general and linear demand
and supply functions.

Theorem 2.5. For any D,S, σ1, σ2, o,

σ1(D), σ2(S) |= o if and only if σ1(D
(1)), σ2(S

(1)) |= o

Thus, we also have the following contrapositive form:

σ1(D
(1)), σ2(S

(1)) ̸|= o if and only if σ1(D), σ2(S) ̸|= o

11



Thus, without information on the magnitude relationship between shift
widths, problems involving general demand and supply functions are reduced to
problems involving linear functions. However, when information on the magni-
tude relationship w between shift widths is given, the above theorem does not
hold any longer, which is shown by Example 2.1.

Proposition 2.6. There exists some D and S such that

D(1)∗ α←− D(1), S(1) β−→ S(1)∗, α < β |= (D(1) ∩ S(1))Q < (D(1)∗ ∩ S(1)∗)Q but

D∗ α←− D,S β−→ S∗, α < β ̸|= (D ∩ S)Q < (D∗ ∩ S∗)Q.
This means; it is NOT the case that for any D,S, for any σ1, σ2, for any w, o,
“σ1(D

(1)), σ2(S
(1)), w |= o implies σ1(D), σ2(S), w |= o.”

In what follows we show that the ⇒-direction of Theorem 2.5 holds even
if w is given. Based on the analysis presented in Section 2.2, we find that the
positive or negative sign of the change ∆P ∗ is determinate or indeterminate
depending on combinations of shift directions σ1 and σ2. We say that the given
shift directions σ1 and σ2 are determinate with respect to price (or quantity)
change when the magnitude relationship o between equilibrium prices (resp.
quantities) is uniquely determined for given σ1 and σ2. That is, there exists a
unique o with respect to price (resp. quantity) such that σ1(D), σ2(S) |= o holds.
Otherwise, we say that the given σ1 and σ2 are indeterminate with respect to
price (or quantity) change. By examining the indeterminate cases of our analysis
in Section 2.2 in more detail, we obtain the following theorem. It is trivial that
what is logically derivable by any functions D,S is also logically derivable by
linear D(1), S(1) in particular. The following theorem is different from this
trivial fact, and claims that what is logically derivable by “some” functions (not
restricted to be linear) is also logically derivable by linear D(1), S(1).

Theorem 2.7 (Linear reduction). For any D,S, for any σ1, σ2, for any
w, o,

if σ1(D), σ2(S), w |= o then σ1(D
(1)), σ2(S

(1)), w |= o

In other words, for any σ1, σ2, for any w, o,

if ∃DS(σ1(D), σ2(S), w |= o) then σ1(D
(1)), σ2(S

(1)), w |= o

Proof. Assume that σ1(D), σ2(S), w |= o for some D and S. We first divide the
case according to whether or not the given σ1, σ2 are determinate.

(i) When σ1, σ2 are determinate with respect to price change, its conclu-
sion is obtained independently of w. Hence, we have σ1(D), σ2(S), w |=
o iff σ1(D), σ2(S) |= o in this case. Then, by Theorem 2.5, we
have σ1(D

(1)), σ2(S
(1)) |= o. Again, because σ1, σ2 are determinate, we

have σ1(D
(1)), σ2(S

(1)) |= o iff σ1(D
(1)), σ2(S

(1)), w |= o, and hence,
σ1(D

(1)), σ2(S
(1)), w |= o.

(ii) When the given σ1, σ2 are indeterminate with respect to price change (and
hence α ̸= 0, β ̸= 0), we examine the change ∆P ∗ = P ∗(α, β)−P ∗(0, 0) in more

12



detail. Let ∆P ∗
α = P ∗(α, 0) − P ∗(0, 0), which is the change of the equilibrium

price after a shift of D with its shift width α, and ∆P ∗
β = P ∗(0, β) − P ∗(0, 0),

which is the change of the equilibrium price after a shift of S with its shift width
β (see the following graph G). Then, we have

∆P ∗ = ∆P ∗
α +∆P ∗

β =
∆P ∗

α

∆α
∆α+

∆P ∗
β

∆β
∆β,

where ∆α = α (> 0) and ∆β = β (> 0), which is exactly the algebraic version
of the total differential analyzed in Section 2.2.

-

6D∗ S

P ∗(α, 0)

D

S∗

P ∗(0, 0)

P ∗(α, β)

P ∗(0, β)

G

Let

∣∣∣∣∆P ∗
α

∆α

∣∣∣∣ = a and

∣∣∣∣∆P ∗
β

∆β

∣∣∣∣ = b. Then the indeterminate cases consist of the

case ∆P ∗ = −aα+bβ (that is, D∗ α←− D,S∗ β←− S), and the case ∆P ∗ = aα−bβ
(that is, D

α−→ D∗, S
β−→ S∗). We investigate the second case of ∆P ∗ = aα− bβ

by dividing this case into the following three cases: a < b, a > b, and a = b.

1. When a < b, we further divide this case according to the magnitude
relationship between α and β.

(a) When α < β, we have aα < bβ, and hence, we have
∆P ∗ = aα− bβ < 0.
In the case of linear functions, by Case 3-a of Theorem 2.3, we find
that the same ∆P ∗ < 0 holds when α < β. Thus, we also have
σ1(D

(1)), σ2(S
(1)), w |= o in this case.

(b) Otherwise, when α ≥ β, we show that nothing is deduced qualita-
tively, that is, the premise of the theorem does not hold.

i. Let α :=
β + b

aβ

2
. Then, we have a < b and α ≥ β, as well as

aα < bβ, i.e., ∆P ∗ < 0 in this case.

ii. Let β :=
a

2b
α. Then, we have a < b and α ≥ β, as well as

aα > bβ, i.e., ∆P ∗ > 0 in this case.
iii. Let α := b, β := a. Then, we have a < b and α ≥ β, as well as

aα = bβ, i.e., ∆P ∗ = 0.

Thus, in the case where a < b and α ≥ β, by defining α, β appropri-
ately, any result of ∆P ∗ < 0,∆P ∗ > 0, and ∆P ∗ = 0 holds, which
means that there is no valid consequence o in this case.

13



Remark 2.8. The above analysis shows that the difference in mag-
nitudes of slopes is reduced to the difference in magnitudes of shift
widths.

2. When a > b, we further divide this case according to the magnitude
relationship between α and β.

(a) When α > β, we have aα > bβ, and hence, we have
∆P ∗ = aα− bβ > 0.

In the case of linear functions, by Case 3-b of Theorem 2.3, we find
that the same result ∆P ∗ > 0 holds when α > β. Thus, we also have
σ1(D

(1)), σ2(S
(1)), w |= o in this case.

(b) Otherwise, when α ≤ β, we show that the premise of the theorem
does not hold.

i. Let α :=
b

2a
β. Then, we have a > b and α ≤ β, as well as

aα < bβ, i.e., ∆P ∗ < 0 in this case.

ii. Let β :=
a
bα+ α

2
. Then, we have a > b and α ≤ β, as well as

aα > bβ, i.e., ∆P ∗ > 0 in this case.

iii. Let α := b, β := a. Then, we have a < b and α ≥ β, as well as
aα = bβ, i.e., ∆P ∗ = 0 in this case.

Thus, in the case where a > b and α ≤ β, there is no valid conse-
quence o.

3. When a = b (> 0), we have ∆P ∗ = aα− bβ = aα− aβ = a(α− β).
(a) When α < β, we have ∆P ∗ < 0, which corresponds to the linear

case. (Theorem 2.3 Case 3-a.)

(b) When α > β, we have ∆P ∗ > 0, which corresponds to the linear
case. (Theorem 2.3 Case 3-b.)

(c) When α = β, we have ∆P ∗ = 0, which corresponds to the linear
case. (Theorem 2.3 Case 3-c.)

Thus, in either case, we have σ1(D
(1)), σ2(S

(1)), w |= o.

The other case of ∆P ∗ = −aα+ bβ can be shown in the same way.

Let us consider the following contrapositive form of Theorem 2.7:
For any D,S, for any σ1, σ2, for any w, o,

if σ1(D
(1)), σ2(S

(1)), w ̸|= o then σ1(D), σ2(S), w ̸|= o

This says that what does not hold with linear demand and supply functions also
does not hold with any general functions. This means that the invalidity with
linear demand and supply functions is generalized to the invalidity with general
functions, although this is not so for the validity as seen in Proposition 2.6.
Thus, problems related to the invalidity with general functions can be reduced
to the invalidity with linear demand and supply functions.
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3. Use of linear demand and supply graphs

The linear system, where demand and supply functions are restricted to be
linear with slopes of −1 and +1, respectively, has the following special proper-
ties: (1) It is qualitatively determinate (Theorem 2.3 in Section 2.4); (2) Linear
graphs are easily constructed, and reasoning using such graphs is effectively
manageable. We discuss point (2) in the following Section 3.1. Unfortunately,
Example 2.1 shows that we need to pay careful attention using linear graphs
in deductive problems (when information on shift widths is given) because of
the over-specificity. However, as discussed in the following Section 3.2, they are
useful in abductive reasoning.

3.1. Inference with linear graphs

To make our strategy for solving given problems explicit, we formalize our
operations on graphs as inference rules based on the natural deduction inference
system. Natural deduction was introduced by Gentzen [9], and studied exten-
sively by Prawitz [23], and is one of the major inference systems in proof theory.
The inference rules of Gentzen’s natural deduction are intended to be as close
as possible to actual reasoning. Our formalization is simply a natural deduction
style description of the usual operations on graphs, and it can be implemented
to theorem proving systems such as [12].

We first define linear graphs in our system formally.

Definition 3.1 (Linear graph). A linear graph G consists of the following
items:

• The first quadrant of the qp-coordinate space. (q-axis for the horizontal
axis, and p-axis for the vertical axis.)

• At most two straight lines of slope −1, called demand curves and named

D(1), D(1)∗, D
(1)
1 , . . . ; at most two straight lines of slope 1, called supply

curves and named S(1), S(1)∗, S
(1)
1 , . . . .

• Every pair of demand D(1) and supply S(1) curves in G has an intersection
point, named D(1)∩S(1), which is accompanied by its coordinates; (D(1)∩
S(1))P for the p-coordinate, and (D(1) ∩ S(1))Q for the q-coordinate.

In our graphical representation, we usually omit the name of an intersection
point, as well as its coordinates, to avoid the visual complexity. Although our
basic linear graph defined above consists of at most two demand and two supply
curves (since these are sufficient for this paper), it can be generalized to include
more curves.

We then define the width between two curves in a given graph.

Definition 3.2 (Width). Let C and C∗ be a pair of demand or supply curves
in a graph. We define the width w(C,C∗) between C and C∗ as the distance
between the p-intercepts of C and C∗.
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In our qualitative framework, we may rearrange every curve by retaining the
magnitude relationship of widths among curves so that every p-intercept of the
given curves appears in the first quadrant of the qp-space. Cf. Definition 3.5
and Example 3.6 of the equivalence of our graphs.

In addition to a graph drawn as a diagram, we consider the type of a graph,
which is a symbolic specification thereof. The type of a graph also defines what
kind of information we can extract from it; cf. our inference rule obs in Definition
3.7. As in graph theory, we usually do not distinguish between a drawn graph
and its type, and denote both by G.

Definition 3.3 (Type). The type of a graph G is (C, lw, E , lp, lq), where:

• C is a sequence (D
(1)
1 , D

(1)
2 ;S

(1)
1 , S

(1)
2 ) of names of demand curves and

supply curves in G, respectively, which are ordered from left to right as
they are in the drawn graph G.

• lw is the ordering of widths w(D
(1)
1 , D

(1)
2 ) and w(S

(1)
1 , S

(1)
2 ) in G.

• E is the set of points of intersection between demand and supply curves
in G.

• lp is the ordered set of all the p-coordinates of intersections.

• lq is the ordered set of all the q-coordinates of intersections.

Example 3.4. The type of G in the following Example 3.6 is as follows:

• C = (D
(1)
1 , D

(1)
2 ; S

(1)
1 , S

(1)
2 )

• lw = w(D
(1)
1 , D

(1)
2 ) < w(S

(1)
1 , S

(1)
2 )

• E = {D(1)
1 ∩ S

(1)
1 , D

(1)
2 ∩ S

(1)
1 , D

(1)
1 ∩ S

(1)
2 , D

(1)
2 ∩ S

(1)
2 }

• lp = a3 < a4 < a1 < a2

• lq = b1 < b2 < b3 < b4

Based on types of graphs, we define the equivalence between graphs. Note
that points of intersection are determined when curves are given. Further-
more, in our qualitative framework, the exact width values, as well as the qp-
coordinates of the intersections, are not significant, whereas the ordering rela-
tion among them is important. Thus, we regard two graphs as being equivalent
when their arrangement of curves and their ordering relation among widths are
equivalent.

Definition 3.5. Two graphs G = (C, lw, E , lp, lq) and G′ = (C′, l′w, E ′, l′p, l′q) are
equivalent, written as G = G′, if C = C′ and lw = l′w.

Note that if C = C′, then lw and l′w consist of the same widths w(Ci, Cj),
although the values of w(Ci, Cj) of lw and of l′w may be different. Thus, lw = l′w
means that the ordering relation, not the exact value, is the same among the
widths of lw and l′w.
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Example 3.6 (Equivalence). The following graphs G and G′ are equiva-

lent because we have C = C′ = (D
(1)
1 , D

(1)
2 ;S

(1)
1 , S

(1)
2 ), and lw = l′w =

w(D
(1)
1 , D

(1)
2 ) < w(S

(1)
1 , S

(1)
2 ) even though the exact magnitude of w(D

(1)
1 , D

(1)
2 )

in G is smaller than that in G′. Here, (D
(1)
i ∩ S

(1)
j )P (resp. (D

(1)
i ∩ S

(1)
j )Q) is

expressed by ak (resp. bk) for some k.

-

6
@
@
@
@
@@

D
(1)
1

�
�
�
�
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S
(1)
1
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@
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@
@
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2
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�
��

S
(1)
2

a3

b3

a4

b4

G

=

-

6
@

@
@

@
@@

D
(1)
1

�
�
�

�
��

S
(1)
1
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@
@
@

@
@

D
(1)
2

a2

b2

�
��

S
(1)
2

a3

b3

a4

b4

G′

We now define our inference rules for our linear graphs in the style of natural
deduction. Every inference rule of natural deduction has the following form:

....
φ1 · · ·

....
φn

ψ
rule

which states that from φ1, . . . , φn (premises of the rule), we can infer ψ (the
conclusion of the rule) by the rule. For example, the following ∧I states that
from φ and ψ, we can infer φ∧ψ by the rule ∧I. A proof in natural deduction is
structured as a tree consisting of formulas as its nodes and inference rules as its
edges. The top formulas of the tree are the assumptions, and the other formulas
of the tree are ones that follow from the formulas immediately above, using one
of the inference rules. In the following rules, a formula written within square
brackets (in rules of ∨E,⇒ I,¬I, ∃E,RAA) indicates that the assumptions
of this form are closed at the inference. Closed assumptions are essentially
tentative assumptions in the given proof, in contrast to not closed, i.e., open
assumptions. For example, the following rule ∨E is a formalization of the usual
inference by case dividing: When we obtain a proof of θ in either case where φ
or ψ is tentatively assumed, we can infer θ from φ ∨ ψ without assuming φ nor
ψ. Each natural number n posed on the bracket and beside the name of a rule
indicates that the assumption is closed at the inference rule. ⊥ is the constant
to denote the contradiction. See [7, 24] for a detailed introduction to natural
deduction.

The natural deduction rules for first-order logic consist of the following dual
pairs, each pair consisting of an introduction (I) and an elimination (E) rule for
each connective ∧,∨,⇒,¬,∀,∃, as well as ⊥E and RAA:

....
φ

....
ψ

φ ∧ ψ ∧I

....
φ1 ∧ φ2

φi
∧E

(i = 1, 2)

....
φi

φ1 ∨ φ2
∨I

(i = 1, 2)

....
φ ∨ ψ

[φ]n
....
θ

[ψ]n
....
θ

θ
∨E, n
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[φ]n
....
ψ

φ⇒ ψ
⇒ I, n

....
φ

....
φ⇒ ψ

ψ
⇒ E

[φ]n
....
⊥
¬φ ¬I, n

....
φ

....¬φ
⊥ ¬E

....
φ(x)

∀xφ(x) ∀I

....
∀xφ(x)
φ(t)

∀E

....
φ(t)

∃xφ(x) ∃I

....
∃xφ(x)

[φ(x)]n
....
ψ

ψ
∃E, n

....
⊥
φ ⊥E

[¬φ]n
....
⊥
φ RAA,n

In ∀E and ∃I, t is a first-order term. In ∀I, the variable x may not occur freely
in any open assumption, on which φ(x) depends; in ∃E, x may not occur freely
in ψ nor in any open assumption on which ψ depends, except in φ(x). (These
variable conditions do not play an essential role in this paper. See [7] for a
detailed explanation.)

Our inference rules for linear graphs are augmented to the above natural de-
duction system for the first-order logic. According to Plummer and Etchemendy
[2], inference rules that are characteristic of heterogeneous systems combining
formulas and diagrams are generally called transfer rules, and allow the trans-
fer of information from one form of representation to another. Typical rules
in Hyperproof [3, 1], which is one of the representative heterogeneous systems
introduced by Barwise and Etchemendy, are apply (from formulas to a diagram)
and observe (from a diagram to a formula). Our apply rule app has the following
form:

G σ(C) w

G∗ app

where G∗ is obtained from a given graph G by adding a new curve, say C∗,
specified in the given shift formula σ(C), and w specifies the ordering of widths
in the resulting G∗. We interpret this rule as: “we apply σ(C) and w to amplify
G to G∗,” or “we extend G to G∗ by adding the new information of σ(C) and
w to G.” Our app can only be applied when the ordering relation between shift
widths in G∗ is specified by the above w. Otherwise, the resulting G∗ is not
uniquely determined (under the equivalence of graphs).

Definition 3.7. Inference rules for linear graphs consist of the following app
and obs.

app: Let G be a graph, that contains a curve C but does not contain C∗. Let
C

α−→ C∗ be a shift formula. Let w be an ordering condition that specifies
the ordering of widths in G∗:

....
G

....
C

α−→ C∗

....
w

G∗ app

where G∗ is obtained from G by adding the curve C∗ so that (1) C∗ is
parallel to C and located to the right of C; (2) C∗ is orthogonal to every
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curve that is orthogonal to C; (3) The width between C∗ and C is α; (4)
All widths including α satisfy w.

Similarly for C∗ α←− C.
obs: From a given graph G, we can extract, as a conclusion, any ordering rela-

tion o contained in lp and lq in the type of G:

....
G
o obs

In an application of app, we assume that there always exists an intersection
between the additional curve and every orthogonal curve already appearing in
the given premise graph. This is feasible, as we can always arrange the positions
of curves by retaining the ordering relation among widths under the equivalence
of graphs in our qualitative framework.

When w is not given, we cannot apply our app straightforwardly. In such a
case, we enumerate all possible linear orderings of widths in G∗ and apply the
slightly generalized ∨E-rule of natural deduction as follows:
case:

(α < β) ∨ (α = β) ∨ (α > β)
ax

.

.

.

.
G

.

.

.

.

C
α−→ C′ [α < β]m

G1

app

.

.

.

.
G∗/ψ

.

.

.

.
G

.

.

.

.

C
α−→ C′ [α = β]m

G2

app

.

.

.

.
G∗/ψ

.

.

.

.
G

.

.

.

.

C
α−→ C′ [α > β]m

G3

app

.

.

.

.
G∗/ψ

G∗/ψ
case,m

whereG∗/ψ denotes that either a graphG∗ or a first-order formula ψ is obtained.
Note that (α < β) ∨ (α = β) ∨ (α > β) is an axiom of real numbers, which is
provable without any premise. By regarding the above part in a proof as an
inference rule, we call it the rule of case. We sometimes omit the leftmost ax.

We usually omit the name of the inference rule in a proof to avoid visual
complexity.

Remark 3.8.
In our system, we assume the following form of
graphs as axioms, which is a graphical represen-
tation of the formula: there exist two linear func-
tions D(p) = −p + a and S(p) = p + b for some
a and b such that (D ∩ S)P , (D ∩ S)Q > 0.

-

6
@

@
@
@

D

�
�
�
�

S

(D ∩ S)P

(D ∩ S)Q

Example 3.9. Fig. 1 is an example of a proof in our linear system, which de-
scribes Example 2.1.
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Remark 3.10. One of the basic properties of formal logical systems is their
completeness with respect to appropriate semantics, which states that the se-
mantic notion of validity corresponds to the syntactic notion of validity, i.e.,
provability in the logical system. Our system is shown to be complete with re-
spect to appropriate set-theoretical semantics for the real number system, such
as an ordered real closed field, based on the type of a graph, i.e., symbolic
specification of graphs. However, we do not explore the completeness property
here, because it requires further tedious technical preparations, and it is not of
primary concern in this article.

3.2. Abductive reasoning

In this section, we discuss the use of linear graphs in abductive reasoning,
which is implied from Theorem 2.7. We first consider the following example
similar to Example 2.1.

Example 3.11 (Abduction). When a new, faster computer chip is intro-
duced, (1) demand for computers using the older, slower chips decreases (i.e.,

D∗ α←− D). Simultaneously, (2) computer makers increase their production of
computers containing the old chips in order to clear out their stocks of old chips

(i.e., S
β−→ S∗). When the equilibrium quantity falls in response to these events,

what possible explanations are there for this change?

Let (D∩S)Q = q̄ and (D∗∩S∗)Q = q∗. First, note that we cannot prove q̄ > q∗

under the given premises (1) and (2), as observed in Example 2.1. Thus, our
task for this question is to find a possible explanation w, as well as particular

curves D1 and S1, such that D∗
1

α←− D1, S1
β−→ S∗

1 , w |= q̄ > q∗ holds. When
we consider linear graphs, the two given premises (1) and (2) provide the three
linear graphs as depicted in Example 2.1 (and Fig. 1 in Example 3.9), according
to whether α < β, α = β, or α > β. Among those three graphs, we find a graph
(the third one) in which q̄ > q∗ holds. Thus, we know that q̄ > q∗ holds when
α > β holds for the shift widths of the linear demand and supply curves. Hence,
we can propose α > β as a possible explanation w, as well as our linear demand
and supply graph.

This type of reasoning is called abduction, and frequently appears in scientific
reasoning. Abduction has been extensively studied in the literature on artificial
intelligence AI. (See, for example, [26, 11] for surveys of abduction in AI.) In
the framework of AI, abduction is usually formalized as the task of finding
a hypothesis (or explanation) H that explains a given observation O under a
theory (or set of premises) T such that O is a valid consequence of T and H,
i.e., T,H |= O, and T,H are consistent. Usually, it is assumed that without H,
we cannot prove O, i.e., T ̸|= O. Furthermore, restrictions such as “minimality”
are imposed on H so that it represents “the best explanation” of the given
observation O.

Our abductive problem is slightly generalized from the usual one, because
we would like to find not only w but also specific demand and supply curves.
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Thus, our abductive problem can be formalized as follows: Given an obser-
vation o, as well as premises σ1(D

′) and σ2(S
′) for some D′ and S′, are

there an explanation w and D,S such that σ1(D), σ2(S), w |= o holds, i.e.,
∃w∃DS(σ1(D), σ2(S), w |= o) holds?

Theorem 2.7 implies that our abductive problem can be reduced to that with
linear graphs.

Corollary 3.12 (Abduction). For any σ1, σ2, for any o,

∃w′(σ1(D
(1)), σ2(S

(1)), w′ |= o) if and only if ∃w∃DS(σ1(D), σ2(S), w |= o)

Proof. The ⇒-direction is easily obtained by abstracting the given D(1) and
S(1) to the existence of D and S.

To show the ⇐-direction, assume that ∃DS(σ1(D), σ2(S), w |= o) for some
w. Then, by Theorem 2.7, we have σ1(D

(1)), σ2(S
(1)), w |= o. Therefore, we

conclude that ∃w′(σ1(D
(1)), σ2(S

(1)), w′ |= o).

The above Corollary 3.12 can be divided into the following two claims:

1. If ∃w′(σ1(D
(1)), σ2(S

(1)), w′ |= o) then ∃w∃DS(σ1(D), σ2(S), w |= o).
That is, if we have an explanation in linear graphs, then we already have
a general explanation, which is not surprising.

2. If ¬∃w′(σ1(D
(1)), σ2(S

(1)), w′ |= o) then ¬∃w∃DS(σ1(D), σ2(S), w |= o).
That is, if there is no explanation with linear graphs, then there is no
explanation in general.

Theorem 2.3 ensures that whether or not an explanation is found in the
linear system is determinate. Furthermore, from the above claim (2), when we
find there is no explanation in the linear system, we can conclude that there is
no explanation in general. Thus, based on the determinacy of the linear system,
our abductive problem in general is determinable. This is one of the advantages
of linear graphs. Furthermore, linear graphs make graphical explanations pos-
sible. (Although whether linear graphs provide “good explanations” is another
matter.)

Let us investigate our strategy to solve abductive problems. For this purpose,
resolution and proof-search to construct deductive proofs are usually applied.
Our strategy in this paper is slightly different, and it can be considered as a kind
of model enumeration. This is because our inference using graphs essentially
corresponds to model construction by regarding our graph as a certain kind of
representative model. When there is insufficient information on shift widths of
supply and demand curves, we enumerate all possible cases (i.e., models). We
can then determine the required explanation from among these cases, as seen in
Example 3.11. To describe our abductive reasoning more formally, we modify
our rule of case to abcase as follows.

22



abcase:

w1 ∨ w2 ∨ w3
ax

....
G

....
σ(C) wi

Gi

app
....

G∗/ψ

G∗/ψ
abcase

where wi (i = 1, 2, 3) is one of α < β, α = β, α > β, and the underlined wi

indicates a proposed explanation.

In contrast to case, which should be case exhaustive, it is not necessary to
enumerate all cases of w1, w2, and w3 by applying abcase, and it is sufficient
to find a single case w1, w2, or w3 in which the given conclusion (observation)
holds. The above rule of abcase is not a sound rule, i.e., the conclusion G∗/ψ
is not a logically valid conclusion of the given premises G, σ(C), as we do not
enumerate all possible cases of w1, w2, and w3. However, abcase is useful to make
our strategy for abductive problems clear by depicting our abductive reasoning
in the usual proof tree form. Abductive reasoning in Example 3.11 is formally
described by the following proof structure by using abcase.

(α < β) ∨ (α = β) ∨ (α > β)
ax
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6
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�
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��
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q∗

q̄ > q∗

q̄ > q∗
abcase

Thus, we can propose α > β, as well as the lowermost linear graph as our
explanation. Note that if we regard the underlined α > β as a premise and
delete the abcase-rule, we obtain a regal proof in our system.

We further examine another example, where the observation (conclusion)
q̄ > q∗ of Example 3.11 is replaced by (D ∩ S)P < (D∗ ∩ S∗)P , i.e., p̄ < p∗.

Example 3.13. Is there any explanation for given premises D∗ α←− D,S β−→ S∗

and observation (D ∩ S)P < (D∗ ∩ S∗)P ?
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As seen in the proof in Fig.1 in Example 3.9, ¬((D ∩ S)P < (D∗ ∩ S∗)P ) is
provable from the given premises. Thus, there is no explanation, and this is not
restricted to the linear case, it is general by Corollary 3.12.

We formalize our procedure as follows.

1. By regarding given demand and supply functions as linear, we construct
linear graphs by unifying given premises.

2. (a) When the given observation o is provable without abcase-rule, given
premises are determinate. Thus, any w can be an explanation.

(b) When the negation ¬o of the given observation is provable without
abcase-rule, the given premises are determinate. Thus, there is no
explanation in general. (Cf. Example 3.13.)

(c) When there is a proof structure of the given observation o with using
abcase-rule, we can propose w,D(1), S(1) in the proof structure as an
explanation. (Cf. Example 3.11.)
(There is no case where we cannot find w by allowing abcase-rue,
because the linear system is determinate when w is given.)

4. Conclusion

We investigated an interaction between mathematical logic and economics.
For this purpose, we focused on economic reasoning with linear demand and
supply graphs. Linear graphs have the following advantages: (1) Linear graphs
are easily constructed and reasoning using such graphs is effectively manageable
(as discussed in Section 3.1); (2) Linear graphs are qualitatively determinate
with respect to our problems, that is, which conclusion is qualitatively deduced
from the given premises is uniquely determined (Theorem 2.3).

We showed in our qualitative framework that when information on the mag-
nitude relationship between shift widths of given demand and supply functions
is “not given,” exactly the same logical consequences are derived in both cases
of general and linear demand and supply functions (Theorem 2.5). Thus, linear
demand and supply functions are useful in this fragment. However, when in-
formation on the magnitude relationship between shift widths is “given,” some-
thing which is not derived in general is derived by linear functions because of
the over-specificity (Proposition 2.6). In other words, the validity with linear
demand and supply functions cannot be generalized to the validity with gen-
eral functions. Thus, we need to pay careful attention in deductive reasoning
with linear graphs, especially when information on the magnitude relationship
between shift widths is given. However, we showed that the invalidity with lin-
ear demand and supply functions is generalized to the invalidity with general
functions (Theorem 2.7).

Thus, based on Theorem 2.7, we investigated abductive reasoning in eco-
nomics. Corollary 3.12 of the theorem shows that linear graphs are particularly
effective in abductive reasoning. We also proposed a model of economic reason-
ing by formalizing economic reasoning with linear graphs in the framework of
natural deduction developed in proof theory of mathematical logic.
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