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Abstract

Since the 1990s, reasoning with Venn and Euler diagrams has been studied from math-
ematical and logical viewpoints. The standard approach to a formalization is a “region-
based” approach, where a diagram is defined as a set of regions. An alternative is a
“relation-based” approach, where a diagram is defined in terms of topological relations
(inclusion and exclusion) between circles and points. In this paper, we compare these
two approaches from a proof-theoretical point of view. In general, diagrams correspond
to formulas in symbolic logic, and diagram manipulations correspond to applications of
inference rules in a certain logical system. From this perspective, we demonstrate the
following correspondences. On the one hand, a diagram construed as a set of regions
corresponds to a disjunctive normal form formula and the inference system based on such
diagrams corresponds to a resolution calculus. On the other hand, a diagram construed
as a set of topological relations corresponds to an implicational formula and the inference
system based on such diagrams corresponds to a natural deduction system. Based on
these correspondences, we discuss advantages and disadvantages of each framework.
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1 Introduction

Proof theory in logic has traditionally been developed based on linguistic (symbolic) repre-
sentations of logical proofs. Recently, logical reasoning based on diagrammatic or graphical
representations has been investigated by many logicians. In particular, Euler diagrams, in-
troduced in the 18th century to illustrate syllogistic reasoning, began to be studied in the
1990s from a mathematical and formal logical viewpoint. However, until now, proof theory
of Euler diagrams has not been that well developed.

In literature on diagrammatic reasoning, Euler diagrams have been formalized based on
the method developed in the study on Venn diagrams. A Venn diagram is abstractly defined
as a set of regions, where some of them may be shaded. In the same way, an Euler diagram is
defined by considering shaded regions of a Venn diagram as “missing” regions. (E.g., Howse
et al. [8]; for a survey, see Stapleton [21].) Thus, both Venn and Euler diagrams are abstractly
defined in terms of regions, and hence we call this framework a “region-based” framework.
Moreover, the inference rule of unification, which plays a central role in Euler diagrammatic
reasoning, is defined by means of superpositions of Venn diagrams. The operation of superpo-
sition is uniformly defined for any two Venn diagrams that have the same circles as a simple
union operation of shaded regions of the given diagrams. This uniformity of superposition
produces an effectiveness that makes it easy to control theorem proving using diagrams, see,
e.g. Stapleton et al. [22, 5].

Nevertheless, the superposition rule has some disadvantages. In particular, by making a
detour to Venn diagrams, some redundant steps are introduced in formalizing simple processes
employed in Euler diagrammatic reasoning. For example, in order to derive £ of Fig. 1 from
given diagrams D; and Dy, they are first transformed into Venn diagrams D] and D3 of
Fig. 2, respectively; then, by superposing the shaded regions of D} and D, and by erasing
the circle B, the Venn diagram £V is obtained, which is transformed into the region-based
Euler diagram &£. Thus, within the region-based framework, it is difficult to capture the
appropriate notion of Euler diagrammatic proofs, in particular that of “normal diagrammatic
proofs.” Accordingly, the notion of proof normalization, which plays an essential role in proof
theory, has not been developed to date for diagrammatic proofs.
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In contrast to studies elaborated using this region-based framework, we introduced in



[12, 10] an Euler diagrammatic reasoning system, where diagrams are defined in terms of
topological relations (inclusion and exclusion relations) between circles and points. We de-
scribe our approach as “relation-based.” We formalized the unification of Euler diagrams in
the manner developed in natural deduction, a well-known formalization of logical reasoning
in traditional symbolic logic. Inference rules of Gentzen’s natural deduction are intended to
be as close as possible to actual reasoning ([6]). Along similar lines, our unification rule is
designed to be as natural as possible to reflect intuitive manipulations of Euler diagrams as
seen in Fig. 1.

In this paper, we discuss from a proof-theoretical viewpoint the following contrast be-
tween the two frameworks: At the representation level, diagrams abstractly defined in the
relation-based framework correspond to implicational formulas, whereas diagrams defined in
the region-based framework correspond to disjunctive normal form formulas. At the inference
level, unification rules in the relation-based framework correspond to natural deduction style
inference rules associated with the implicational connective, whereas inference rules in the
region-based framework, in particular the erasure rule, correspond to the resolution principle.
Thus, an inference system in the relation-based framework corresponds to a natural deduction
system, and an inference system in the region-based framework corresponds to a resolution
calculus. The contrast between the two frameworks is summarized in the following table:

Relation-based framework Region-based framework
(Euler diagrams) (Venn diagrams)
Represen- Diag. topological relations regions with shading
tation Ling. implicational formulas disjunctive normal formulas
Diag. unification and deletion superposition and erasure
Inference
Ling. natural deduction resolution calculus
Table 1

These correspondences enable us to apply well-developed techniques used in traditional
proof theory within symbolic logic in the field of diagrammatic reasoning. For our Euler
diagrammatic inference system in the relation-based framework, we introduce the notion of a
normal diagrammatic proof, i.e., a proof in which unification and deletion appear alternately.
We show the normalization theorem of [12] by using the correspondence theorem between
our Euler diagrammatic inference system and a natural deduction system. The normalization
theorem is used to show that each chain of traditional Aristotelian categorical syllogisms
corresponds to a normal diagrammatic proof in our system (cf. [10]).

The rest of this paper is organized as follows. In Section 2, we summarize the contrast
between natural deduction and resolution. In Section 3, we show that our Euler diagram-
matic inference system in the relation-based framework corresponds to a natural deduction
system (Theorems 3.11 and 3.17). As a corollary, we show a normalization theorem for Euler
diagrammatic proofs (Corollary 3.16). In Section 4, we show that a Venn diagrammatic in-
ference system in the region-based framework corresponds to a resolution calculus (Theorems
4.3 and 4.4). In Section 5, we discuss advantages and disadvantages of the relation-based and
the region-based frameworks.



2 Natural deduction and resolution

In this section, we briefly review natural deduction and resolution, by contrasting them in
terms of the motivational aspects behind their formalizations. We concentrate on proposi-
tional fragments of these systems. For more detailed descriptions, see for example [16, 2] for
natural deduction and [4, 2, 9] for resolution.

Natural deduction. Natural deduction was introduced by Gentzen [6], and studied exten-
sively by Prawitz [16]. Natural deduction is one of the major logical inference systems for
propositional and first-order logic in proof theory. Gentzen wrote of natural deduction “(Engl.
Transl.:) ... I intended first to set up a formal system which comes as close as possible to
actual reasoning.” ([6, p.68].) Natural deduction is applied in various areas and not just in
mathematical logic. Indeed, some cognitive psychologists in their studies on Mental Logic or
Formal Rule Theory have admitted the naturalness of the logical inference rules, and adopted
it as a theoretical basis for their studies (e.g. Rips [17], Braine-O’Brien [1]).

We denote atoms (propositional variables) by A, B,C,.... Formulas are defined induc-
tively as usual by using connectives A,V,—,—, L, and formulas are denoted by ¢, ,8,....
Sets of formulas are denoted by I';) A A,.... Inference rules of natural deduction have a
particular property: Each inference rule is associated with a logical connective as follows.
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Introduction (I) rules are set based on the operational meaning of each logical connective in
question. Elimination (E) rules, which define the use of the corresponding connective, are
then justifiable by the definition. For example, once we define the operational meaning of
e AN (“p and ¢”) as “p is assertible and v is assertible,” then the Al rule expresses the
definition. Then the corresponding AFE; rules are justifiable as valid with this meaning of A
(cf. [14]).

We denote natural deduction proofs by m, 7/, 7,72, .... In general, a natural deduction
proof may contain some redundant inference steps and formulas called maximal formulas.
For example, the formula p; A @2 and the pair of applications of AI and AE; rules on the left
in the following proof are redundant in the sense that without them we already have a proof
m of 1 as illustrated on the right.
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A natural deduction proof is said to be in normal form when it does not contain any
maximal formula. The following normalization theorem holds for the natural deduction



system: If ¢ is provable from I' then there is a normal proof of ¢ from I'. ' Normal proofs
have an essential property called the subformula property: A normal proof = of ¢ from T’
contains only subformulas of ¢ and I'. Normalization and normal proofs play a central role
in the development of 20th century proof theory. Gentzen called the normalization theorem
Hauptsatz (Main Theorem) since most of the proof-theoretical results depend on this theorem.
2 We also use the theorem to show the correspondence between natural deduction and our
Euler diagrammatic inference system in Section 3.

The above introduction and elimination rules for the logical connectives, A, V, —, —,
compose the natural deduction system for minimal logic, which is the most basic part of
natural deduction. The system is extended to those for intuitionistic logic and for usual
classical logic by introducing the following additional inference rules LFE (the absurdity rule
for intuitionistic logic) and —=—FE (the double-negation rule for classical logic), respectively:
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To determine whether or not a given formula is provable, we would try to construct a proof
of the formula in the natural deduction system. However, such a proof-search procedure in
natural deduction is complicated and not very efficient, since the way to handle assumptions is
not well-suited to computer implementation (see [2]). In contrast, resolution, which we review
in the next section, provides a more efficient procedure to decide provability of formulas.

Resolution. Propositional and first-order resolution were introduced by Robinson “for use
as a basic theoretical instrument of the computer theorem-proving program” [18]. Thus,
from the outset, it is machine-oriented rather than human-oriented as exemplified by natural
deduction. Whereas natural deduction has many inference rules, two rules associated with
each logical connective, there is only a single rule in the resolution calculus. The single rule,
called the “resolution principle,” is very powerful in that it forms by itself a complete system
of propositional and first-order logic. The efficiency of the rule makes it easy to implement
decision procedures involved in establishing the provability of given formulas, and today’s
most automated theorem-proving programs adopt essentially this principle. The resolution
principle also plays an important role in the design of logic programming such as Prolog.
(See, e.g. [2].) Resolution is defined over a particular class of formulas, called “clauses.” A
clause is essentially a logic-free structure in the sense that it consists only of atoms and their
negation, with no other logical connectives explicitly occurring (see [9]). Although a clause is
usually interpreted as a conjunctive normal form (CNF) formula, it can also be interpreted
dually as being of disjunctive normal form (DNF) formula. This highlights a characteristic
feature of resolution; the principle can be applied without giving a specific interpretation. We
refer to [15, 2] for the following definition.

A literal is defined as either an atom A or its negation A. In the context of resolution,
we use here the “overbar” symbol for negation instead of the usual —. We denote literals by
L,M,N,....If Lis a literal of the form A, then L denotes the unnegated literal A. A clause

!This theorem is sometimes called the normal form theorem to distinguish it from the following stronger
form: Any proof reduces to a normal proof.

2Notions and properties related to normalization are more neatly formulated in Gentzen’s sequent calculus,
which is a refined system of natural deduction (cf. [6, 2]).



is a finite set of literals, and it is denoted by z,y,z,.... When a clause x is {L1,..., Ly},
it is sometimes denoted as Lj---L,. In particular, the empty-clause is denoted by 1. A
non-empty set of clauses is called a clause set, and it is denoted by I'; A, X, .... Let 21 and
xo be clauses such that L € 1 and L € x9. The resolution principle is defined as the
following operation to derive the clause (z1 \ {L}) U (z2 \ {L}), called the resolvent of x;

and zo: . -
1 2

(21 \{L}) U (22 \ {L}

A resolution derivation is then defined as the process of deriving a clause x from a given
clause set I' by applying the resolution principle.

In the literature on automated theorem proving, many refined strategies to construct
resolution derivations have been studied (see Chang-Lee [4]). Among them, we mention a
naive strategy, called the Davis-Putnam procedure: For any ordering of atoms Ay, As, ..., Apm,
a derivation is required to have a sequence of nested resolutions; i.e. first resolutions with
respect to Aj, then resolutions with respect to As, etc., concluding with resolutions with
respect to A,,. With this stipulation, we slightly extend the notion of derivability in our
resolution calculus: A is derivable from I' when, for any x € A, z is derivable from I.

When =z = {Ly,...,L,}, we define Ao = Ly A--- AL, and Vo = L1V ---V L,. In
particular, A= T and VO = L. For any non-empty clause set I = {z1,..., 2}, we define
d(I') = (Az1) V - -+ V (Azy,), which is DNF, and ¢(I') = (V1) A -+ A (Va,), which is CNF.
Resolution is usually defined to be a refutation procedure that refutes the satisfiability of a
clause set rather than a proof construction as found for natural deduction. The following
completeness then holds: For any non-empty clause set I, the empty clause [J is derivable
from T if and only if ¢(T') is unsatisfiable (see, [4, 2]). There is another presentation of
completeness, which is dual that given above: The empty clause (I is derivable from I' if and
only if d(T) is a tautology (see [15]).

)L

Let us summarize some advantages and disadvantages of natural deduction and resolution.
In natural deduction, inference rules are defined over the full syntax of propositional/first-
order logic and defined as simple as possible. In particular, the introduction rule of each
connective can be regarded as the definition of the operational meaning of the connective,
and the elimination rule, which defines the use of the connective, is justifiable by the definition.
Thus, their operational meaning and validity can be immediately grasped by that definition.
However, such rules cause some complications in their implementation.

In contrast, resolution works in essence only for clauses, which are formulas in conjunctive
(dually, disjunctive) normal form. The logic-free structure of clauses enables us to formalize
a complete system by using only the resolution principle. The effective single rule has the ad-
vantage of being amenable to implementation. However, such a refined rule composed of more
primitive rules, and it is usually explained in terms of the inference rules of natural deduction
(or sequent calculus), and hence its validity and operational meaning are not immediately
grasped.

The contrast between the two systems has been summarized in the following Table 2:



Natural deduction Resolution
Motivation human-oriented machine-oriented
proof construction refutation procedure
Formalization full syntax of the first order logic restricted to clause (logic-free)
rules for each logical connective single rule
simplicity of each rule not primitive but effective rule
normalization
Implementation difficult to implement amenable to implementation

Table 2 The contrast between natural deduction and resolution

3 Relation-based framework and natural deduction

In this section, we show a correspondence between FEuler diagrammatic inference system
introduced in [12] and natural deduction.

3.1 Euler diagrammatic representation system EUL
We roughly review the definition of EUL-diagrams of [11, 12].

Definition 3.1 (EUL-diagrams) An EUL-diagram is a plane (R?) with a finite number, at
least one, of named simple closed curves (denoted by A, B,C,...) and named points (denoted
by a,b,c,...), where each named simple closed curve or named point has a unique and distinct
name. EUL-diagrams are denoted by D, &, D1, Do, . ... An EUL-diagram consisting of at most
two objects is called a minimal diagram. Minimal diagrams are denoted by «, 3,7, .. ..

In what follows, a named simple closed curve is called a named circle. Named circles and
named points are collectively called objects, and denoted by s,t,u,....

Definition 3.2 EUL-relations are the following binary relations:
AC B “the interior of A is inside of the interior of B,”
AHB “the interior of A is outside of the interior of B,”
Ap>a B “there is at least one crossing point between A and B,”
bC A  “bis inside of the interior of A,”
bHA  “bis outside of the interior of A,”
aHDb  “ais outside of b (i.e. a is not located at the point of b).”

EUL-relation C is reflexive asymmetric relation, and H and > are irreflexive symmetric
relations.

Proposition 3.3 Let D be an EUL-diagram. For any distinct objects s and t of D, exactly
one of the EUL-relations s C t,t T s,s Ht,sxt holds.

Observe that, by Proposition 3.3, the set of EUL-relations holding on a given EUL-diagram
D is uniquely determined. We denote the set by rel(D). We also denote by pt(D) the set of
named points of D, by cr(D) the set of named circles of D, and by 0b(D) the set of objects of
D. As an illustration, for the diagram D; of Fig. 3, we have pt(D1) = {a}, cr(D1) = {A, B,C},
and rel(D;) = {A~ B, A= C,Bx=xC,aH A,a = B,a H C}. In the description of a set of
relations, we usually omit the reflexive relation s C s for each object s.



Definition 3.4 (Equivalence) When any two objects of the same name appear in different
diagrams, we identify them up to isomorphism. Any EUL-diagrams D and £ such that ob(D) =
ob(€) are syntactically equivalent when rel(D) = rel(E).

Example 3.5 (Equivalence of diagrams) For example, diagrams Dy, Dy, D3, and Dy of
Fig. 3 are equivalent since rel(D;) = rel(Dz) = rel(D3) = rel(Dy).

| |Oh| || (@D |p| | @

D, Dy D3 Dy Ds Ds

Fig.3 Equivalence of EUL-diagrams.

On the other hand, although D; and D5 (resp. D; and Dg) consists of the same objects, they
are not equivalent since different EUL-relations hold on them: A C C holds on Dj5 in place of
AaC of Dy (resp. C C A and C C B hold on Dg in place of A1 C and C > B of Dy).

See [11], in which EUL is extended by introducing intersection, union, and complement
regions, respectively, as diagrammatic objects, and D1, Ds, D3, and D, are distinguished.

In what follows, the diagrams which are syntactically equivalent are identified, and they
are referred by a single name. Note that, given the equivalence of EUL-diagrams, there is
a one-to-one correspondence between minimal diagrams and EUL-relations. Thus we also
denote EUL-relations by «, 3,7, . ...

Our semantics is distinct from usual ones, e.g., [7, 8] in that diagrams are interpreted in
terms of binary relations. In order to interpret the EUL-relations C and H uniformly as the
subset relation and the disjointness relation, respectively, we regard each point of EUL as a
special circle which does not contain, nor cross, any other objects.

Definition 3.6 (Model) A model M is a pair (U, I), where U is a non-empty set (the domain
of M), and [ is an interpretation function which assigns to each named circle or point a non-
empty subset of U such that I(a) is a singleton for any named point a, and I(a) # I1(b) for
any points a, b of distinct names.

Definition 3.7 (Truth conditions) Let D be an EUL-diagram. M = (U, ) is a model of
D, written as M = D, if the following truth-conditions (1) and (2) hold: For all objects s,t
of D,

(1) I(s) CI(t)if s tholdson D, and (2) I(s)NI(t)=0if sH ¢t holds on D.

Remark 3.8 (Semantic interpretation of r<-relation) By Definition 3.7, the EUL-relation
>4 does not contribute to the truth-condition of EUL-diagrams. Informally speaking, s < ¢
may be understood as I(s) N I(t) =0 or I(s) NI(t) # 0, which is true in any model.

The semantic consequence relation, = between EUL-diagrams is defined as usual. (See
[12] for a detailed description.)



3.2 Euler diagrammatic inference system GDS as natural deduction

In this section, we show that the diagrammatic inference system for EUL-diagrams, called the
Generalized Diagrammatic Syllogistic inference system GDS of [12, 11], corresponds to the
natural deduction system for disjunction-free minimal logic. We first give a translation of
each EUL-diagram to a propositional implicational formula. In what follows, we consider the
A connective as an n-ary connective for an appropriate n. Furthermore, we denote simply by
a sequence (set) ¢1,...,¢, a conjunction 1 A -+ A @,, where we assume all conjuncts are
distinct. We also generalize AI and AFE rules of natural deduction to those for the n-ary A
connective.

Definition 3.9 (Translation of EUL-diagrams) Each named circle or named point is trans-
lated into an atom. Then each EUL-relation « is translated into an implicational formula «°
as follows:

(sCt)=s—t (sHt)® =5 — —t (st)’ =85 —s,t—t

Let D be an EUL-diagram whose set of relations rel(D) is {a1,...,an}. The diagram D is

translated into the conjunction D° := af,..., .

We next give a translation of inference rules of GDS [12, 11]. GDS consists of two inference
rules: unification and deletion. Two kinds of constraint are imposed on unification. One is the
constraint for determinacy, which blocks the disjunctive ambiguity with respect to locations
of named points. For example, two diagrams D; and D, in Fig. 4 are not permitted to be
unified into one diagram since the location of the point ¢ is not determined.

OO D] O

Dl Dg Dg D4 DB DG

Fig.4 Indeterminacy Fig.5 Inconsistency

The other is the constraint for consistency, which blocks representing inconsistent information
in a single diagram. For example, the diagrams D3 and Dy (resp. D5 and Dg) in Fig. 5 are
not permitted to be unified since they contradict each other based on the semantics of EUL.
Unification rules of two diagrams are formalized by restricting one of the two diagrams to
being a minimal diagram, except for one rule called the Point Insertion-rule. The restriction of
unification makes the operational meaning of it clear. See also Appendix A for a more detailed
description of inference rules of GDS. Our completeness ([12]) ensures that any diagrams
D1, ..., D, may be unified, under the constraints for determinacy and consistency, into one
diagram whose semantic information is equivalent to the conjunction of those of Dy, ..., D,.
Inference rules are described in terms of EUL-relations: Given a diagram D and a minimal
diagram «, the set of relations rel(D + «) for the unified diagram D + « is defined.

We give the definition of each inference rule of GDS, and in parallel with it, we give a
translation of each rule into a combination of inference rules of natural deduction. Unification
between D and « such that rel(D + «) = rel(D) U {v1,...,7} is translated schematically as
Fig. 6:

In the following natural deduction proofs, by (¢r, ), we mean the set of formulas ¢1, . . ., @n.
Furthermore, for each formula ¢,, the repetition of the same inference steps is expressed as
the skeleton of a proof as in Fig. 7:
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Fig.6 Fig.7

Definition 3.10 (Translation of GDS) Inference rules of GDS are translated as follows.
We show here only U7 and U9 rules. See Appendix A for the remaining cases.

U7: If AH B holds on o and A € ¢r(D), and if ¢ = A holds for all ¢ € pt(D), then rel(D + «)
is defined as follows:

re(D)U{CHB|CrC Acrel(D)}U{cHB |cept(D)}
U{CxxB|AC Cor AHC or AxxC €rel(D)}U{B C B}

U7 is translated as follows:

De° De°
[C.]t C,— A lem]t em — A
A A— —-B A A— —-B .
-B__ -B__, [B] )
D° C, — B n ¢m — B m B— B

D°,(Cp, — = B)y, (¢my — - B)m, B — B

U9: If AC B holds on a and A < B holds on D, and if there is no object s such that s C A
and s H B hold on D, then rel(D + «) is defined as follows:

(rel(PD)\{D><C |DC Aand BC C €rel(D)}\{CxxD|CC Aand DH B € rel(D)})
u{DcC|DcAand BC Cerel(D)}U{CHD|CC Aand DH B €rel(D)}

U9 is translated as follows:

o

D° [Ck]? Cp— A D°
[Dn]' Dn— A ~ A4 A-pB D! DI—-B
A A— B D° B -B
B B —C,, 1
Com -D; !
D° Dn — Cm 1 n.m Ck — —\Dl k,l

D°, (Dr, = Cin)nym, (Ce — D)k
Definition 3.10 gives, by induction, a translation of any diagrammatic proof = of GDS into a
natural deduction proof w°. Hence the following theorem is immediate:
Theorem 3.11 (Translation of GDS) Let Dy,...,D,,E be EUL-diagrams. If = is a dia-

grammatic proof of £ from D1,..., Dy in GDS, then ©° is a natural deduction proof of E°
from DY,...,D;.

10



Example 3.12 (Barbara in GDS) The following diagrammatic proof on the left, which
expresses the famous valid syllogism called Barbara, is translated by Definition 3.10 into
the natural deduction proof on the right. For the sake of simplicity, we omit tautologies of
the form A — A in the proof:

\Uniﬁcation /

c [A]l A— B
B ————— — FE
B B—-C
C — FE
$Deletion A— B B-—=(C A—C /\_)1171

C A—-B,B—-C,A—C
@ A—C N

Observe that for the simulation of GDS, we use only a particular class of inference rules:
AN,ANE,— I,— FE,-I,—FE, which form a subsystem of classical logic, i.e., minimal logic
without disjunction. We denote the system as NM. Further note that the natural deduction
proof in Example 3.12 above is not in normal form since it contains redundant steps: without
applying AI and AFE rules, we already have a proof of A — C. By reducing the above proof,
we obtain the following normal proof in Fig. 8:

A—B B-—C

1
(A" A-B A C =
B B—-C 5
C I - A—-B B—-C w
A — C -5 A — —|C
Fig.8 Normal proof for Barbara Fig.9 Derived rules

The above normal proof of Fig. 8 provides a derived rule called C-rule in Fig. 9, and this rule
makes explicit the correspondence between the natural deduction proof with C-rule and the
diagrammatic proof for Barbara.

Lemma 3.13 (C and H rules) C-rule and H-rule of Fig. 9 are derived rules in disjunction-
free minimal logic.

Proposition 3.14 (Translation of NM) Let D be a set of EUL-diagrams which has a model.
Let o be a minimal diagram. Any proof of a° from D° in disjunction-free minimal logic is
transformed into a diagrammatic proof of a from D in GDS.

Proof. By the normalization theorem for disjunction-free minimal logic, any proof of a° from
D° is transformed into a normal proof. Let 7 be such a normal proof. Note that, by the
translation of EUL-diagrams, A and — connectives are completely separated without nesting
of them, and hence, Dis decomposed into minimal diagrams by AFE-rule in any normal natural
deduction proof of a°. Hence, we assume, without loss of generality, that D is a set of minimal
diagrams (i, ..., 3,, which is denoted by B_z’.

Note that the assertion is immediate, when there exists 1 < i < n such that 37 = a°, or
when a° = s — =t and there exists 1 <7 < n such that g7 =t — —s. Otherwise, we divide
the following two cases according to the form of a°.

11



(1) When a° = s — t, it is obtained by — I-rule since 7 is in normal form. Note that by
our translation of diagrams, an atomic formula, other than 1, is obtained by only — FE-rule.
Thus t is obtained by successive applications of — E-rule, and then 7 has the following form:

[s]' s — 81
S1 —E s — s
8.2

— F

S, Sy — t

— 1,1
s— 1

where : means successive applications of — E-rule. Note that formulas s — s1, §; — si11,
and s,, — t are open assumptions, since 7 is in normal form, in which they cannot be obtained
by — I-rule. Then 7 is transformed into the following ' by using C-rule:

S— 81 81— 82
S — 8§92

5 — Sy, Sy — t

s—t

Observe that each application of C-rule of the following form on the left is translated into the
diagrammatic proof on the right by using a pair of Unification and Deletion rules:

B C
NUnification”

C
A—-B B-—-C B

A0 - g’
Deletion

Thus 7’ is translated into a diagrammatic proof of « from 5

(2) When a° = s — —it, it is obtained by — I-rule since 7 is in normal form. Note that =t
may be obtained by — E or —I rule. In case it is obtained by — FE-rule, 7 has a similar form
to the case (1). On the other hand, if -t is obtained by —I-rule, it is shown that 7 has the
following form:

[s]2 s — s ' t— .
51 —E 5 — s Y1 T 01— o 5
So — F 902 —
U - .
Atﬁz,l
- — 1,2
s — —t

where : means successive applications of — E-rule, and each ©j is an atom or its negation.
Note that, by the presupposition of the semantic consistency of 5, i.e., it has a model, there
is no case where s = ¢ and they are closed at the same time by the application of either
—I or — I (in such a case, by — I or —I, respectively, the empty assumption is closed).
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Furtherer note that, since 7 is in normal form, —u cannot be obtained by —I-rule, and hence,
—u is obtained by — E-rule. Thus 7 has the above form, and then it is transformed into the
following 7’ by using H-rule and C-rule:

t— o1 o1 — P2

§— 81 81 — 82 C/H
§ — 89 L t— 2 /
5—:>u t — —u

s — —t H

Observe that each application of H-rule of the following form on the left is translated into the
diagrammatic proof on the right by using a pair of Unification and Deletion rules:

@ ©O

Unificationy”

A— B B—-C

Y Deletion
OO

Thus 7’ is translated into a diagrammatic proof of « from ﬁ [ |

Note that when premises and the conclusion are restricted to being minimal diagrams in
Proposition 3.14, a diagrammatic proof obtained from the above translation has the following
particular form, cf. Example 3.12:

Definition 3.15 (£-normal form) A diagrammatic proof 7 is in £-normal form if a uni-
fication (+) and a deletion (—) appear alternately in .

Thus Proposition 3.14 gives a normalization theorem of GDS:

Corollary 3.16 (£-normal form) Let ﬁ be a set of minimal diagrams which has a model.
Let o be a minimal diagram. If a is provable from B in GDS, then there is a =-normal
diagrammatic proof of a from (3.

See [12] for a semantic proof of the theorem. This +-normal form is important because
it serves to show the correspondence between diagrammatic proofs and chains of Aristotelian
categorical syllogisms. (Cf. [10].)

By applying the construction given in [12] of a general diagram £ from minimal dia-
grams obtained from &, Proposition 3.14 is naturally extended to the general case, where the
conclusion is not restricted to be minimal:

Theorem 3.17 (Translation of NM) Let D be a set of EUL-diagrams which has a model.
Let £ be an EUL-diagram. Any proof of £° from D° in disjunction-free minimal logic is
transformed into a diagrammatic proof of € from D in GDS.

Proof. By the normalization theorem for minimal logic, any proof of £° is transformed into

a normal proof of £°. Let m be such a normal proof of £° from D°. Let £° be al,...,ap,.
Then £° is obtained by AE or Al rule.
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(1) When af, ..., a3, is obtained by applying AFE to af,...,ap,,I', since 7 is in normal form,
it is again obtained by AE rule. In this way, m consists of successive applications of AE to
some assumption Dy € D°. Thus 7 is transformed into a diagrammatic proof of £ from D in
GDS, where £ is derived from D; by successive applications of Deletion rule.

(2) When £° is obtained by an application of Al-rule, without loss of generality, we assume
that it is obtained by a single application of Al-rule, and that « is in the following form:

D° D°
1 Tm,
o o
Qq QO
5 5 AN
Qaq, . s Oy

Then, by Proposition 3.14, each proof m; of o for 1 <14 < m is transformed into a diagram-
matic proof of a7 in GDS. Note that, by the presupposition that £° is the translation of an
EUL-diagram, the last application of Al-rule is translated into some applications of Unification
of GDS. A concrete procedure to transform the Al-rule is given in the completeness proof of
GDS in [12].

Thus, we have a d-proof of £ from D in GDS. [ |

4 Region-based framework and resolution calculus

In this section, we show a correspondence between a Venn diagrammatic inference system
and the resolution calculus.

4.1 Venn diagrammatic representation system

We briefly recall the syntax of Venn diagrams. See, e.g., [8, 20] for detailed descriptions.
We define Venn diagrams in terms of shaded regions. Fuler diagrams in the region-based
framework, called Euler diagrams with shading, are obtained by considering some shaded
regions of Venn diagrams as “missing” regions.

A concrete Venn diagram consists of finite numbers of named circles (simple closed curves)
on a plane enclosed by a boundary rectangle which satisfies the partial-overlapping condition,
i.e., all possible intersections of circles must occur. A zone or minimal region is a connected
component of the complement of the contour set, which may be shaded. Independently of a
concrete plane diagram, an abstract Venn diagram is defined in terms of names of circles as
follows: Let £ be the finite set of the names of circles for a diagram V. An abstract zone
(or minimal region) z is defined as z = (in(z),out(z)), where in(z) and out(z) are finite
subsets of £ such that in(z) Nout(z) = @ and in(z) Uout(z) = L. Let zone(V) be the set of
zones such that {in(z) | z € zone(V)} is the power set P(L) of L. Then an abstract Venn
diagram is defined as the set shade(V) of shaded zones which is a subset of zone()V). When
shade(V) = 0, V is called a primary diagram. We denote Venn diagrams by V, W, .. ..

A model of Venn diagrams is a pair M = (U, I) where U is a non-empty set called the
universe, and I is an interpretation function which assigns to each circle a subset of U. The
interpretation function I is naturally extended to interpret zones as follows: For any zone
z = (in(z), out(z)) the interpretation I(z) of a zone is defined by I(2) = \xejn) I(X) N

Ny eout(z) I(Y), where I(Y) is the complement of I(Y). M = (U,I) is a model of a Venn
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diagram V, denoted as M | V, if each shaded zone is interpreted as the empty set, i.e.,

Uzeshade(V) I(z) = 0. Cf. [8, 20].

In a similar way as EUL-diagrams, points (with linking) in Venn diagrams can be consid-
ered as special circles. For example, the Venn diagram on the left in Fig. 10, which contains
two occurrences of a point ¢ and a linking of them, can be replaced by the diagram on the

right:

Fig.10 Points as circles in Venn diagrams

Note that each point expresses the existence of an object, and hence, when a point as a
circle is completely shaded, it expresses the contradiction.

4.2 Venn diagrammatic inference system as resolution calculus

In this section, we show that a Venn diagrammatic inference system corresponds to the
resolution calculus over clauses. We first describe a translation of Venn diagrams into sets of
clauses.

Definition 4.1 (Translation of Venn diagrams) Let V be a Venn diagram whose set of
shaded zones shade(V) is {z1,...,2n}-

e Each shaded zone z; = ({A1,...,4;},{B1,...,By}) is interpreted as a clause 2 =
{A1,...,Aj, By, -+, By}, which is abbreviated as A --- A;By - - - By.

e The Venn diagram V is translated into the set of clauses V* = {z],...,2}}.

In particular, the completely shaded diagram without any circle is translated as {1},
and each primary diagram is translated as ().

In what follows, we denote by L aset of literals, i.e., a clause, L1 - - - L,, for an appropriate
n. For a clause z, we denote by |z| the set of atoms which appear in z. For a given clause set
I, let T =U{|z| | z € T}.

For example, the Venn diagram on the right in Fig. 10 is translated into a set of clauses
{ABc, ABc}. For the interpretation of Venn diagrams, a clause, i.e., a zone of a Venn diagram,
say z = ABC, is interpreted as the conjunctive formula Az = A A B A C; then a clause set,
i.e., a Venn diagram, say V = {ABC, ABC}, is interpreted as the disjunctive normal form
(DNF) formula d(V) = (AABAC)V(AANBAC). Cf. the semantics of Venn diagrams [8, 20].

Based on the above translation of Venn diagrams into sets of clauses, inference rules for
Venn diagrams are described as the following inference rules over clauses. We call the system
VR. In particular, any primary diagram is an axiom. See, e.g. [8, 20] for formal descriptions
of Venn diagrammatic inference rules.

Definition 4.2 (Translation of VR) Inference rules for Venn diagrams are translated as
follows:
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Introduction of a circle: A new circle A may be added to a diagram observing the partial-
overlapping rule, i.e., each zone splits into two zones with the introduction of A. If the zone
is shaded, then both corresponding new zones are shaded.

Let V be a Venn diagram such that V* = {L;,...,L,} and A & |L;:

{Ehu.,f/n} Intro, A
{AL,,... AL, AL,,... AL,} ’

Superposition of diagrams (Combining diagrams): Two diagrams that have the same circles
may be combined into a diagram whose semantic information is equivalent to the conjunction
of those of the original diagrams. Shaded zones in the combined diagram are shaded in one
(or both) of the original diagrams.

Let V¥ be {L1,...,L,} and Vi be {M,..., M,,} such that |V}| = |V3]:

{Li,....L,} {My,..., My}
{Ly,..., L,y U{M,..., My}

Erasure of shaded zones: Any shaded zones may be erased from a diagram.
Let V be a Venn diagram such that V* = {L1,..., Ly, Lpt1,..., Lin}:

—

(L,...,
{

7En+17"-7Em}
A

L
— ErS
le

Erasure of a circle: A circle A may be erased from a diagram so that any shading remaining
in only a part of a zone should also be erased.
Let V be a Venn diagram such that V* = {ALy,..., AL,, AM,..., AM,,}:

{AL:,...,AL,, AM,,...,AM,}
{I_:ZMJ | -3L(L € I_:Z and L € M])}

Er A

We show that VR is simulated by the resolution calculus. In the literature on automated
theorem proving, many refined strategies to construct resolution derivations have been studied
(see Chang-Lee [4]). Among them, we mention a naive strategy, called the Davis-Putnam
procedure: For any ordering of atoms Aj, As, ..., A, a derivation is required to have a
sequence of nested resolutions; i.e. first resolutions with respect to Ay, then resolutions with
respect to Ao, etc., concluding with resolutions with respect to A,,. With this stipulation,
we slightly extend the notion of derivability in our resolution calculus: A is derivable from I
when, for any = € A, z is derivable from I.

For any clause sets I' and A, we denote I' ~ A when they are semantically equivalent,
that is, I(d(I")) = I(d(A)) for any model M = (U, I).

Theorem 4.3 (Translation of VR) Let Vi,...,V,,V be Venn diagrams. If V is derivable
from Vi, ..., V, in VR, then there is a Venn diagram W such that Vi U---UV) ~ W* and V*
is derivable from W* in the resolution calculus.
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Proof. Note that there is a derivation of V such that applications of Er(S) rule are delayed,
in the sense that successive applications of Intro and Sup rules are followed by successive
applications of Er(S) rule. Thus, there is a Venn diagram W which consists of all circles
contained in Vi,...,V, (cf. Shin’s maximal diagram [20]). Observe that Intro, A rule is
described by the following semantic equations:

LV VLy=(LiV---VL,)ANAVA) = AL V---V AL,V AL,V ---V AL,

This means that when W, is obtained from W by Intro rule, Wi ~ W,. Thus, since Sup
rule is simply the union operation, we have Vi U--- U Vs >~ W™,

Furthermore, note that applications of ErS rule are further delayed, i.e., each ErS rule
is applied in the last part of the derivation. We assume without loss of generality that no
primary diagram is derived by Er(S) rule, since it is an axiom. Then Er, A rule corresponds
to the following applications of resolution with respect to A:

AL_AM;
L;M;
Thus, for any z* € V*, z* is derivable from W* in the resolution calculus. ]

The above proof shows that VR is a resolution calculus over full DNF, i.e., a DNF such
that each of its atoms appears exactly once in all conjuncts.
The converse of Theorem 4.4 also holds.

Theorem 4.4 (Translation of resolution) Let Vi,...,V,,V be Venn diagrams. If V* is
derivable from Vi U--- UV, in the resolution calculus, then V is derivable from Vi, ...,V in
the Venn diagrammatic inference system VR.

Proof. Let us consider the following resolution with respect to A on the left:

& Intro, M ﬂ Intro, L

{ALM, ALM} {AML,AML}

{ALM,ALM,AML,AML}
{LM}

up
AL AM
LM

A

)

It is shown by induction (the base case is obtained by using ErS rule) that there are Venn
diagrams which correspond to AL and AM, respectively. Then the resolution is simulated by
the above derivation on the right in VR. The same applies to the general case in which L and
M are extended to sequences of literals L and M. Thus there is a derivation of each zones
z € V in VR. It is obvious that they are superposed into the Venn diagram V. [ ]

5 Discussion and future work

We showed that the Euler diagrammatic inference system GDS, which is formalized in the
relation-based framework, corresponds to the natural deduction system for disjunction-free
minimal logic (Theorems 3.11 and 3.17), and that the Venn diagrammatic inference system
VR, which is formalized in the region-based framework, corresponds to the resolution calculus
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(Theorems 4.3 and 4.4). These correspondences highlight both advantages and disadvantages
of the two frameworks. On the one hand, inference rules in the relation-based framework
provide a natural notion of normal diagrammatic proofs, which neatly characterizes the notion
of linguistic chains of syllogisms; but the drawback is that they may cause some complications
in their implementation. On the other hand, inference rules in the region-based framework are
easy to control so that they are utilized to automated theorem proving; but such resolution-
style rules do not provide an appropriate notion of diagrammatic proofs. (See also [19] for
our cognitive psychological experiments, which compare Euler and Venn diagrams in actual
human reasoning assignments.)

Furthermore, with these correspondences, there arises the possibility of applying well-
developed techniques in traditional proof theory within symbolic logic in the field of diagram-
matic reasoning. Firstly, it is well-known that the Curry-Howard correspondence between nat-
ural deduction and typed A-calculus provides correspondences between formulas and types,
between proofs and A-terms, and between reduction steps of proofs and A-terms (see [2]).
Under the correspondence between natural deduction and GDS, then, we can explore compu-
tational aspects of Euler diagrammatic proofs by defining their syntactic rewriting procedure
in GDS. Secondly, in studies on resolution for theorem proving within symbolic logic, many
effective strategies are developed (see, e.g. [2, 4]). We may apply such strategies for the study
of theorem proving using Venn diagrams. Thirdly, complexity of proofs in resolution calculus
has been very well studied, e.g. [3]. Such results may be applied to the complexity analysis
on Venn diagrammatic proofs.
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A Diagrammatic inference system GDS

In this appendix, we review Generalized Diagrammatic Syllogistic inference system GDS of
[12, 11], which consists of two inference rules: wunification and deletion. We also give the
full description of Definition 3.10, i.e., the translation of each inference rule of GDS into a
combination of inference rules of natural deduction.

In order to motivate our definition of unification, let us consider the following question:
Given the following diagrams Dy, Dy and Ds of Fig. 11, what diagrammatic information on
A, B and ¢ can be obtained? (In what follows, in order to avoid notational complexity in a
diagram, we express each named point, say 2, simply by its name c.) Fig. 11 represents a way
of solving the question.

B a
®. 8
Dl\ / Do Ds Dy Ds
«.3 Fig. 12 Indeterminacy

G D] OO
@c De Dr

(D1 + D2) + Ds @

Fig.11 Unification Dy Dy

Fig. 13 Inconsistency

In Fig. 11, at the first step, two diagrams D; and Ds are unified to obtain D; +Ds, where point
c in D; and Dy are identified, and B is added to D so that c is inside of B and B overlaps
with A without any implication of a relationship between A and B. We formalize such cases,
where two given diagrams share one object, by U1-U8 rules of group (I) of Definition A.1. At
the second step, Dy +Ds is combined with another diagram D3 to obtain (D +D3)+Ds. Note
that the diagrams D; + Dy and D3 share two circles A and B: A <1 B holds on Dy + D» and
A C B holds on D3. Since the semantic information of A = B on Dj3 is more accurate than
that of A > B on D + Da, according to our semantics of EUL (recall that A >t B means just
“true” in our semantics), one keeps the relation A C B in the unified diagram (D; +Ds) + Ds.
We formalize such cases, where two given diagrams share two objects, by U9-U10 rules of
group (II) of Definition A.1. Observe that the unified diagram (D; + D2) + D3 of Fig. 11
represents the information of these diagrams D1, Dy, and Ds, that is, their conjunction.

We impose two kinds of constraints on unification. One is the constraint for determinacy,
which blocks the disjunctive ambiguity with respect to locations of named points. For ex-
ample, two diagrams D4 and Ds in Fig. 12 are not permitted to be unified into one diagram
since the location of the point ¢ is not determined (it can be inside B or outside B). The
other is the constraint for consistency, which blocks representing inconsistent information
in a single diagram. For example, the diagrams Dg and D7 (resp. Dg and Dy) in Fig. 13
are not permitted to be unified since they contradict each other. Recall that each circle is
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interpreted by non-empty set in our semantics of Definition 3.6, and hence Dg and Dy are
also incompatible. 3

We formalize our unification % of two diagrams by restricting one of them to be a minimal
diagram, except for one rule called the Point Insertion-rule. Our completeness (Theorem A.2)
ensures that any diagrams Dy, ..., D, may be unified, under the constraints for determinacy
and consistency, into one diagram whose semantic information is equivalent to the conjunction
of that of Dy, ..., D,. We give a formal description of inference rules in terms of EUL-relations:
Given a diagram D and a minimal diagram «, the set of relations rel(D + «) for the unified
diagram D+« is defined. It is easily checked that according to our constraints for determinacy,
locations of points are determined in a unified diagram. (See also [11], where we give a graph-
theoretical representation of unification.)

For a better understanding of our unification rule, we also give a schematic diagrammatic
representation and a concrete example of each rule. In the schematic representation of dia-
grams, to indicate the occurrence of some objects in a context on a diagram, we write the
indicated objects explicitly and indicate the context by “dots” as in the diagram to the right
below. For example, when we need to indicate only A and ¢ on the left hand diagram, we
could write it as shown on the right.

an) - S5

Definition A.1 Axiom, unification, and deletion of GDS are defined as follows.

Axiom:
Al: For any circles A and B, any minimal diagram where A b B holds is an axiom.

A2: Any EUL-diagram which consists only of points is an axiom.

Unification: We denote by D+ « the unified diagram of D with a minimal diagram «. D+«
is defined when D and « share one or two objects. We distinguish the following two cases:
(I) When D and « share one object, they may be unified to D + « by rules U1-U8 according
to the shared object and the relation holding on «. Each rule of (I) has a constraint for
determinacy. (IT) When D and « share two circles, if the relation which holds on « also holds
on D, D+ « is D itself; otherwise, they may be unified to D+ « by rules U9 or U10 according
to the relation holding on «. Each rule of (IT) has a constraint for consistency. Moreover,
there is another unification rule called the Point Insertion-rule (III).

(I) The case D and « share one object:

3 In place of our syntactic constraint, it is possible to allow unification of inconsistent diagrams such as
Ds and D7 (resp. Ds and Dy) by extending GDS with an inference rule corresponding to the absurdity rule
of Gentzen’s natural deduction system: We can infer any diagram from a pair of inconsistent diagrams. (For
natural deduction systems, see, for example, [6, 16].) However, such a rule requires linguistic symbol, say L,
or some arbitrary convention to represent inconsistency, and hence we prefer our syntactic constraint in our
framework of a diagrammatic inference system.

“The following definition of inference rules of GDS is slightly different from that of [12, 10] since we regard
C-relation as reflexive relation in this paper.
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Ul: If b C A holds on « and pt(D) = {b}, then rel(D + «) is defined as follows

relD)U{bC AlJU{A X | X ecr(D)}U{ALC A}
Ul is applied as follows:

[
D

\ v, © DN u1y D2
AT
G
D+a D1 + D2
U1 is translated as follows:
[A]!

D b A Ao A i[
D°b— AA— A

U2: If b H A holds on « and pt(D) = {b}, then rel(D + «) is defined as follows:

re(D)U{bHA}U{Ax X | X ecr(D)}U{AC A}
U2 is applied as follows:

D N U2, ® "o
O @
D+a

U2 is translated as follows:

D° b— —-A A—>A}\I
Db — —AA— A

U3: If b A holds on o and A € ¢r(D), and if AT X or AH X holds for all circle X in D,
then rel(D + «) is defined as follows:

relD)U{bC X |AC X erelD)}U{bHX | AHX €rel(D)}
U{bHz |z ept(D)}U{bLC b}
U3 is applied as follows:

o P

e A
TRt B
D+a D1 + D2
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U3 is translated as follows:

' b—A  pe ' b— A D°
A A— X, A A— =Y,
Xn _‘Y;n [b]l
De =X, ) v, L) b=t

De, (b - Xn)nv (b - _‘an)rm b—b

U4: If b H A holds on o and A € ¢r(D), and if X C A holds for all circle X in D, then
rel(D + «) is defined as follows:

re(D)U{bHX | XC Aecrel(D)}U{bHz |z ept(D)}u{bC b}

U4 is applied as follows:

A
SO0O 'O
D . U4 7 O Di N us ,/ D:
N A
¢
{b@s b
D+a D1+ D2
U4 is translated as follows:
DO
(X' X, — A [b)2 b——-A
A -A
= 1
“Xa [0]! )
De b— =X, n b—b

Dov (b - _'Xn)nab —b

U5: If A C B holds on o and B € cr(D), and if ¢ H B holds for all ¢ € pt(D), then rel(D + «)
is defined as follows:

re(D)U{ACC|BCCerelD)}U{AC |CC Bor CxBerelD)}
U{AHC|CHBerel(D)}U{cHA|cept(D)JU{ALC A}

U5 is applied as follows:

¢ .e
i,

& [O|®

D\US o DL~ Us /s
CE 5
D+ a D1+ D2

U5 is translated as follows:
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D° DO

) [A> A— B [Dn]' Dy — -B A A—B [q? ¢ — B
[A] A— B D° B B
- B - B
B B — C. 1
- - —-n 1 L N
Chp 1 =D, 2 —A [A] 1
D° A — Cp n A — =Dy, m cp — 0A 1 A— A

D, (A — Cn)n, (A — =Dm)m, (cg = ~A), A — A

U6: If AC B holds on a and A € cr(D), and if z C A holds for all x € pt(D), then rel(D + «)
is defined as follows:

rel(D)U{XCB|XCA€crelD)}u{zC B|ze€pt(D)}
U{X>xB|AC XorAHX or A X erel(D)}U{B C B}

U6 is applied as follows:

o @

D\U6/ a D~ U6 7 D>
D+a D1+ Do

U6 is translated as follows:

D° D°
(X' X,— A [Tm]t Ty — A
A A— B A A— B .
B, B, B
D° X,— B n T, — B m B— B

Do?(X’ﬂ - B)n,(l'm - B)maB - B

U7: If AH B holds on o and A € ¢r(D), and if ¢ © A holds for all ¢ € pt(D), then rel(D + «)
is defined as follows:

rel(D)U{CHB|CC AcrelD)}U{cHB |cept(D)}
U{CB|AC Cor AHC or AxxC €rel(D)}U{B C B}

U7 is applied as follows:

S oo 1@ 00

D N U7 D1\ U7/ D
‘O &)
D+a D1+ D2

U7 is translated as follows:
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D° D°

[C.]t C,— A lem]t em — A
A A — B A A — —-B .
~B__, ~B__ [B] )
DO Cn—>ﬁB n Cm—)ﬁB m B—)B

Do’ (Cn - _‘B)m (C’rn - _‘B)maB — B

U8: If A > B holds on « and A € ¢r(D), and if pt(D) = ), then rel(D + «) is defined as
follows:
rel(D) U{X = B | X € er(D)} U{B C B}

U8 is applied as follows:
2
H e @I ap

S

D . Uus @ DN\, us
@<
Dta Dy + D2
U8 is translated as follows:
[B]!
D BB !
D°.B— B

(IT) When D and « share two circles, they may be unified to D + « by the following U9 and
U10 rules.

U9: If AC B holds on a and A < B holds on D, and if there is no object s such that s A
and s H B hold on D, then rel(D + «) is defined as follows:

(relD)\{D>=<C|DC Aand BC C €rel(D)} \{C <D |CC Aand DH B € rel(D)})
u{DCC|DCAand BC Cerel(D)}U{CHD|CC Aand DH B € rel(D)}

U9 is applied as follows:

AW

D U9 a s , D
@ el©)
D+a D1+ D2
U9 is translated as follows:
’DO
D° Cul*> Cr— A D>
[Dn]! Dy — A A A—pB [D]' Di—-B
A A— B D° B -B
B B — C,, 1L 1
Cm 1 _‘7Dl 2
D° D, — C,, m Cr — Dy k.l

D°,(Dy, = Ci)nyms (Ck — 2Dy
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U10: If A H B holds on « and A 1 B holds on D, and if there is no object s such that s — A
and s C B hold on D, then rel(D + «) is defined as follows:

(relD)\{X <Y | XCAandY C BerelD))U{XHY | X C Aand Y C B € rel(D)}

U10 is applied as follows:

0% D | | OO

D N\ Ul D1 N\ U0 D

OO}

D+a D1+ Do
U10 is translated as follows:
’DO
D° X, X,— A
Yo' Y, — B A A— B
B -B
1
Wl
D° X, — Y, nm

DO: (Xn - ﬁva)n,m

(TII) Point Insertion: If, for any circles X, Y and for any O € {C, O,H,x}, XOY € rel(Dy) 4ff XOY €
rel(D2) holds, and if pt(Ds) is a singleton {b} such that b & pt(D;), then rel(D1+Ds) is defined

as follows:
rel(D1) Urel(Dy) U{bHz | z € pt(D1)}

Clel Sl
B

D1+ D2

Point Insertion is applied as follows:

Point Insertion is translated as follows:
DY Dj
DY, D3

i

Deletion: When t is an object of D, t may be deleted from D to obtain a diagram D — ¢t
under the constraint that D — ¢ has at least one objects.

rel(D) \ {tOs | s € 0b(D),0 € {C, 0,H,}}

Deletion rule is translated as follows:
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DO
D°\ {¢ | ¢ is an implicational formula which contains ¢}

ANE

The notion of diagrammatic proofs (or, d-proofs) is defined inductively as tree structures
consisting of unification and deletion steps. The provability relation between EUL-diagrams
is defined as usual. We denote by D a sequence of diagrams D1, ...,D,.

Theorem A.2 (Soundness and completeness of GDS [12]) Let D, & be EUL-diagrams,

and let D have a model. £ is a semantically valid consequence of D (D |= £), if, and only
if, there is a d-proof of € from D (D + &) in GDS.
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