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Abstract

In graphical or diagrammatic representations, not only the basic component of a dia-
gram, but also a collection of multiple components can form a unit with semantic signif-
icance. We call such a collection a “global object”, and we consider how this can assist
in reasoning using diagrammatic representation. In this paper, we investigate reasoning
with correspondence tables as a case study. Correspondence tables are a basic, yet widely
applied graphical/diagrammatical representation system. Although there may be various
types of global objects in a table, here we concentrate on global objects consisting of rows
or columns taken as a whole. We investigate reasoning with tables by exploiting not only
local conditions, specifying the values in individual table entries, but also global condi-
tions, which specify constraints on rows and columns in the table. This type of reasoning
with tables would typically be employed in a task solving simple scheduling problems,
such as assigning workers to work on different days of the week, given global conditions
such as the number of people to be assigned to each day, as well as local conditions such
as the days of the week on which certain people cannot work. We investigate logical
properties of reasoning with tables, and conclude, from the perspective of free ride, that
the application of global objects makes such reasoning more efficient.

1 Introduction

By “global objects,” we mean those patterns or structures in diagrams that allow the ex-
traction of higher-level information about the represented domain. Typical examples are a
“cloud” consisting of multiple dots in a scatter plot that allows an estimation of the corre-
lation strength of two variables [12], an “ascending staircase” made of multiple columns in
a vertical bar graph that allows the observation of an increasing trend [13], and a group of
adjacent contours lines in a topographical map that allows the identification of a character-
istic landform of the terrain [11, 9]. The extraction of such higher-level information has been
variously called “macro reading” [20], “pattern perception” [7], “direct translation” [13], and
“cognitive integration” [14], and contrasted to the extraction of more concrete information
from local objects, such as individual dots (scatter plot), bars (bar charts), and passing points
of a contour line (geographical maps).

Given that the utilization of global objects significantly contribute to comprehension of
graphical representations [5, 6, 20, 13, 21, 10, 7, 14], it is natural to suspect its inferential
advantage. That is, applying inferential operations on global components of a diagram may
lead to a simplification or other positive change of inferential processes. Despite this prospect,
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few logical investigations have been conducted on what exact inferential advantages might be
obtained by the utilization of global objects.

In our view, the paucity of logicians’ interests in global objects is attributed to the dif-
ficulty of formally characterizing global objects—patterns and structures—that have been
investigated in the graphics comprehension research cited above. The present paper tries to
break the impasse and takes a few initial steps toward the logical explication of inferential
advantages of utilizing global objects. For this purpose, we scale down the problem to the
case of simple tabular representations. Simple as they may appear, rows and columns, as
opposed to individual cells, can play the role of global objects and bring about a definite
inferential advantage in certain natural inferential tasks. Also, rows and columns are simple
enough to formally characterize, and we can define a heterogeneous logical system with ta-
bles, where the distinctive roles played by rows and columns are pinned down in the form
of specific inference rules in the system. This allows us to compare logical systems with and
without these inference rules, and to quantize the advantage of utilizing rows and columns on
the basis of the complexity of proofs in the relevant logical system.

As it turns out, the inference rules in question involve “free rides” in the sense of Shimojima
[15], and that is directly reflected in our results on computational complexity. Thus, the
present work can be thought of as a quantitative analysis of the inferential advantage of free
rides that nicely complements Shimojima’s qualitative analysis.

In Section 2, we specify our reasoning with tables through an example. In Section 3,
we define the syntax, semantics, and inference rules of our logic with tables (LT). LT is a
table fragment of the heterogeneous logic with tables (HLT) of [19], in which tables and the
usual first-order formulas are combined. We then investigate some logical properties, i.e.,
translation into a usual sentential system, soundness, and completeness of LT. In Section 4,
we discuss the effectiveness of particular inference rules in LT by connecting up the notion of
free ride with a computational complexity analysis.

2 A reasoning with tables

Correspondence tables are one of the most basic graphical/diagrammatical representations,
and have been applied in a variety of scenarios. Shimojima [17] studied the semantic mecha-
nism of extracting information from a given table, and discussed the mechanism of derivative
meaning. In addition to the extraction of information from given tables, we can use tables
more dynamically to solve a given problem. This involves constructing a table and adding
pieces of information, before manipulating, and finally reading the table as illustrated in the
following example.

Example 2.1 Consider four people a, b, c, d who are scheduled to work separately on one of
Monday, Tuesday, Wednesday, and Friday. The following constraints are known: (1) a works
on Wednesday; (2) Neither b nor c can work on Monday; (3) On Friday, either c or d should
work. Under these conditions, how we can arrange who works on which day?

Let us first consider this problem without using tables. Note that, in addition to conditions
(1), (2), and (3), we know that:

(4) There is a one-to-one correspondence between the persons and the days.
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First, condition (1) states that “a works on Wednesday.” Thus, by (4), we find that “a does
not work on Monday.” Then, by combining this with (2) and (4), we find that “d works on
Monday.”

In the given situation, (3) is equivalent to the following (5) under (4):

(5) “a does not work on Friday, and b does not work on Friday.”

Because we have already determined that “d works on Monday,” (4) implies that “d does not
work on Friday.” As the above facts can be combined to give that “Neither a nor b nor d
works on Friday,” we find by (4) that “c works on Friday.”

As for b, because we already know that “a works on Wednesday,” “c works on Friday,”
and “d works on Monday,” we have from (4) that “b works on Tuesday.”

In this way, we are able to determine the working day of a, b, c, d.

Note that in the above reasoning, the condition (4) is necessary to derive any piece of
information. Further note that there are various ways to solve the above problem. For
example, in the above solution, we converted condition (3) with disjunction into (5) without
disjunction. Alternatively, we could have divided (3) into two cases, and examined each case
individually.

Next, let us solve the same problem using a correspondence table. We construct a table in
which the rows are labeled according to the workers a, b, c, d, and the columns are labeled by
days, M (for Monday), T (for Tuesday), W (for Wednesday), and F (for Friday). Based on
the given conditions (1), (2), and (3), we insert ⃝ into each entry (x, Y ) for which “x works
on Y ” holds, and insert × when “x does not work on Y ” holds. Thus, we obtain the table T0

in Fig. 1. Note that we applied condition (5) instead of the given condition (3).
In terms of tables, condition (4) is divided into the following two conditions:

(6) In each row, exactly one entry should be marked as ⃝, and the other entries should be
×;

(7) In each column, exactly one entry should be marked as ⃝, and the other entries should
be ×.

Thus, from the fact that the (a,W )-entry is ⃝ and (6), we find that the (a,M), (a, T ) entries
are ×, as illustrated in T1. Similarly, because the (a,M), (b,M), (c,M) entries are all ×, we
find that (d,M) must be ⃝ by (7), as illustrated in T2.

Hence, by successively applying (6) and (7), we finally get the determined table T7. From
this, we can read off any information about the working day of a, b, c, d.

Although all entries are either ⃝ or × in the above example, in general, some entries may
not be determined. For example, if we remove condition (3), we obtain a partial table in
which (b, T ), (b, F ), (c, T ), (c, F ) remain indeterminate.

Let us consider another example, in which the number of days worked by each person and
the number of people working on a given day are changed from Example 2.1.

Example 2.2 Each person should work exactly two days, and exactly two people should
work on each day. Conditions (1) and (2) are the same as in Example 2.1. Condition (3) is
replaced by: (8) On Friday, c and d should work together. In this case, how can we arrange
the allocation of working days to a, b, c, d?

Using tables, we are able to apply essentially the same strategy as for Example 2.1. Note
that conditions (6) and (7) in Example 2.1 become the following:
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a ⃝ ×
b × ×
c ×
d

T0

M T W F
a × × ⃝ ×
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b × ×
c ×
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a × × ⃝ ×
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d ⃝
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M T W F
a × × ⃝ ×
b × × ×
c × ×
d ⃝ ×
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M T W F

a × × ⃝ ×
b × ⃝ × ×
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c × ×
d ⃝ ×

T4

M T W F
a × × ⃝ ×
b × ⃝ × ×
c × ×
d ⃝ × × ×
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T5

M T W F
a × × ⃝ ×
b × ⃝ × ×
c × × ×
d ⃝ × × ×
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T6

M T W F
a × × ⃝ ×
b × ⃝ × ×
c × × × ⃝
d ⃝ × × ×

�
�

�
�

T7� �
Fig. 1

(9) In each row, exactly two entries should be marked as ⃝, and the other entries should
be ×;

(10) In each column, exactly two entries should be marked as ⃝, and the other entries should
be ×.

We begin with the following table T8. Because the (b,M), (c,M) entries are ×, we find, by
(10), that (a,M), (d,M) are ⃝, as illustrated in T9. In a similar way, we obtain T10. Then,
because the entries of (a,M), (a,W ) are ⃝, we find, by (9), that (a, T ) is ×, as in T11, and in
a similar way to Example 2.1, we finally obtain table T15 as follows.� �

M T W F
a ⃝
b ×
c × ⃝
d ⃝

T8

M T W F
a ⃝ ⃝
b ×
c × ⃝
d ⃝ ⃝

�
�

�
�

T9

M T W F
a ⃝ ⃝ ×
b × ×
c × ⃝
d ⃝ ⃝

�
�

�
�

T10

M T W F
a ⃝ × ⃝ ×

�� ��
b × ×
c × ⃝
d ⃝ ⃝

T11� �� �
M T W F

a ⃝ × ⃝ ×
b × ⃝ ⃝ ×

�� ��
c × ⃝
d ⃝ ⃝

T12

M T W F
a ⃝ × ⃝ ×
b × ⃝ ⃝ ×
c × ⃝
d ⃝ × × ⃝

�� ��
T13

M T W F
a ⃝ × ⃝ ×
b × ⃝ ⃝ ×
c × ⃝ ⃝
d ⃝ × × ⃝

�
�

�
�

T14

M T W F
a ⃝ × ⃝ ×
b × ⃝ ⃝ ×
c × ⃝ × ⃝
d ⃝ × × ⃝

�
�

�
�

T15� �
In the above examples, although the number of ⃝ is fixed to be the same (i.e., one or two)

in every row and column, this is not necessarily the case. We do not assume such a restriction
in our formalization of reasoning with tables.

By investigating Examples 2.1, and 2.2, we find that there are two types of condition in
our problems. One is a “constraint over the framework of a given problem” (e.g., condition
(4) above), and we call these global conditions. In view of tables, our global conditions are
constraints over the number of ⃝ and × in every row and column. (Although there may be
various types of global conditions, we here discuss a particular kind of them, which is formally
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defined in Definition 3.4 below.) The other type is a “specific condition for each object” (e.g.,
(1) above), and we call these local conditions. In view of tables, local conditions specify only
particular entries. Our reasoning with tables is essentially conducted by combining global
conditions and local conditions.

One of the remarkable facts of our reasoning with tables is that, even if the given local
and global conditions change, we are able to apply essentially the same strategy:

(I) We decompose, if necessary, the given conditions into local conditions (i.e., atomic
sentences or their negation, such as “a does not work on Friday” and “b does not work
on Friday”) by applying logical laws (e.g., (3) ∧ (4) → (5)).

(II) We construct a correspondence table using these local conditions (e.g., T0).

(III) By applying global conditions, that is, by exploiting constraints over the number of ⃝
or × in a row or column, we further insert ⃝ and × into the table.

(IV) Finally, we extract information from the table.

Although most of the given conditions in the above example are already local conditions,
more complex conditions may generally be given. In such cases, we frequently apply item (I)
in the above procedure. Furthermore, a given condition, such as an implicational sentence,
may be decomposed using basic information obtained after item (III). In these complex cases,
we must repeat the whole procedure several times. Thus, a natural system of formalizing
our reasoning with tables is a heterogeneous logical system combining tables and first-order
formulas. Our formalization is based on Gentzen’s natural deduction.

Reasoning tasks, such as that specified above, occur in simple scheduling problems, civil
servant examinations in Japan, and in so-called logic puzzles, among others. Barker-Plummer
and Swoboda [2] discussed similar problems. They formalized correspondence tables and their
manipulations. Their system, consisting mainly of rules for case dividing and reduction to
absurdity, is defined to be simple and have as few rules as possible. Conversely, we formalize
our system based on each row and column as a global object so that they work effectively to
solve a given problem.

3 Logic with tables LT

In Section 3.1, we roughly review our HLT [19], while in Section 3.2, we define the syntax and
semantics of LT, which is the table fragment of HLT. We introduce the inference rules of LT
in Section 3.3 and then investigate logical properties of LT, that is, the translation of tables
into formulas in Section 3.4, and the completeness theorem in Section 3.5.

3.1 A heterogeneous logic with tables HLT

To formalize our heterogeneous reasoning with tables, we adopt many-sorted first-order logic,
in which constants and variables of the usual first-order language are divided into two sorts:
sorts of row and column. A row-label or row-constant (resp. variable) is denoted by a
small letter a (resp. x), while a col-label (resp. variable) is denoted by a capital letter
A (resp. X). (See, for example, [8] for many-sorted logic.) Then, by an atomic formula
B(a), or more formally ⃝(a,B), we denote that “a and B are in a certain positive relation.”
Thus, sentences such as “a is B,” “a matches B,” and “a corresponds to B” are all expressed
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as B(a). Atomic formulas and their negation without free variables are collectively called
(closed) literals. Based on the atomic formulas, complex formulas are defined inductively
as usual by using connectives ∧,∨,→,¬, ∀, ∃. Among such complex formulas, we distinguish
“global formulas”, as defined in Definition 3.4 below. Our correspondence tables are defined
in Definition 3.1.

Semantics is defined as a particular case of the semantics of many-sorted logic, which
is a natural generalization of the usual first-order set-theoretical semantics. (See [8] for the
semantics of many-sorted logic.)

Since we are mainly concerned with the table fragment LT (Logic with Tables) of our
Heterogeneous Logic with Tables HLT in this paper, we present definitions of the tables and
global formulas without going into the detail for the heterogeneous system. See [19] for a
formal description of the full HLT.

3.2 Syntax and semantics of LT

First we define our tables.

Definition 3.1 A table T is an m× n-matrix over symbols {⃝,×, b}; that is, a rectangular
arrangement of the symbols, in which rows are labeled by distinct row-labels a1, . . . , am and
columns are labeled by distinct col-labels A1, . . . , An.

In a specific representation of a table, we usually omit the symbol “b” and leave the entry
blank. A table is said to be determined if there are no blank entries.

Tables T1 and T2 are of the same type if their labels are the same.

Note that according to the definition, no entry can be marked as ⃝,×, b at the same time.

Remark 3.2 A table T is abstractly defined as the function T : R× C −→ {⃝,×, b}, where
R (resp. C) is some finite set of row-labels (resp. col-labels) of T .

As usual, any pair of tables, say T1 and T2, are identical if they have the same type, and
if the ⃝, × marks of all entries in T1 and T2 are also identical. This is formally defined as
follows.

Definition 3.3 (Equivalence of tables) Table T1 is a subtable of T2, written as T1 ⊆ T2,
if:

• all row- and col-labels of T1 are also those of T2;

• for any (ai, Aj)-entry in T1: if it is ⃝ in T1, it is also ⃝ in T2, and if it is × in T1, it is
also × in T2.

T1 and T2 are (syntactically) equivalent if T1 ⊆ T2 and T2 ⊆ T1 hold.

Note that, by definition, two specific tables that differ only in the order of their labels of
rows and columns are equivalent.

Next, we define global formulas. To express sentences of the form “among n objects, there
are exactly i objects that are A,” we introduce a kind of counting quantifier, and write the
sentence as ∃i/nx.A(x).
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Definition 3.4 (Global formula) For fixed sets of row-labels R = {a1, . . . , am} and of col-
labels C = {A1, . . . , An}, the following forms of formulas are called global formulas: For
any A and a,

∃i/mx ∈ R.A(x), ∃i/mx ∈ R.¬A(x), ∃i/nX ∈ C.X(a), ∃i/nX ∈ C.¬X(a).

If a set of labels is clear from the context, it is abbreviated as ∃i/mx.A(x).

Global formulas are simply abbreviations of the appropriate first-order formulas. For example,
for some row-label a and col-labels C = {A1, A2, A3}, the global formula ∃2/3X ∈ C.X(a) is
an abbreviation of the following formula:(

A1(a) ∧A2(a) ∧ ¬A3(a)
)
∨
(
A1(a) ∧A3(a) ∧ ¬A2(a)

)
∨
(
A2(a) ∧A3(a) ∧ ¬A1(a)

)
.

By G, we denote a set of global formulas, and by label sets of G, we mean the set
consisting of label sets of every global formula of G.

As for the semantics, informally speaking, (a,B) = ⃝ in a table T means that “a certain
relation exists between a and B,” or more specifically, B(a) holds. In the same way, (a,B) = ×
in T means that B(a) does not hold, i.e., the negation ¬B(a) holds. (a,B) = b in T means
that it is not determined whether or not B(a) hold. Although such an informal reading of a
table can be formalized in an appropriate set-theoretical domain by applying the semantics
of many-sorted logic, here we informally introduce the notion of models by avoiding technical
details. See [19] for the details.

Let M be a set-theoretical domain. First-order formulas are interpreted as usual, and we
write M |= φ if formula φ has a model M , i.e., φ holds in M . Table T has a model M
(written as M |= T ) if the following holds:

• if (a,B) = ⃝ in T , then B(a) holds in M ;

• if (a,B) = × in T , then B(a) does not hold, i.e., ¬B(a) holds, in M .

Let G be a set of global formulas. We write M |= G, T if M |= G and M |= T , i.e., T has a
model M in which G holds.

Since our tables and global formulas do not contain any variables, LT is essentially the
propositional logic. Thus, our model M can be considered to be a set of literals, which hold
in M .

Alternatively, a determined table T can also be regarded as a model in its own right,
because we can define a model M from T as follows: B(a) holds in M if (a,B) = ⃝ in T ;
and B(a) does not hold in M if (a,B) = × in T (and either one is fine if (a,B) is blank or if
there is no such entry in T ).

Conversely, if we have a model M of T , we are able to construct the determined instance
TM by applying the above definition in the opposite direction.

Thus, the following are equivalent:

• T has a model;

• T can be extended to a determined table by consistently inserting ⃝,× marks into the
blank entries of T .

7



The semantic consequence relation in our LT is defined as follows.

Definition 3.5 (Semantic consequence) Let T1 and T2 be tables of the same type, and
G be a set of global formulas whose label sets are those of T1. T2 is said to be a semantic
consequence of G, T1, written as G, T1 |= T2, if any model of G, T1 is also a model of T2.

3.3 Inference rules of LT

According to Plummer-Etchemendy [1], inference rules characteristic of heterogeneous sys-
tems are generally called transfer rules, and they allow the transfer of information from one
form of representation to another. Typical rules in Hyperproof [3, 4] are the Apply rule (from
sentences to a diagram) and the Observe rule (from a diagram to sentences). Our inference
rules, corresponding to the Apply rule, generally have the following form:

T φ

T ′

where T and T ′ are our tables, and φ is a formula (more specifically, a literal or global
formula). Following [3, 4], we read this rule as: “we apply φ to amplify T to T ′,” “we extend
T to T ′ by adding the new information of φ to T ,” or “φ justifies the specific modification of
T to T ′.” More concretely, our heterogeneous HLT has the following rules, for example:

in rule: By applying A(b), we extend table T in which the (b, A)-entry is blank, to table T ′

in which the (b, A)-entry is ⃝. Similarly for ¬A(b).

row rule: By applying global formula ∃i/nX.X(a), we extend T in which exactly i entries of
row a are ⃝, to T ′ in which the other entries of row a are ×.

Similarly for a global formula of the form ∃i/nX.¬X(a).

col rule: By applying global formula ∃i/nx.A(x), we extend T in which exactly i entries of
column A are ⃝, to T ′ in which the other entries of A are ×.

Similarly for a global formula of the form ∃i/nx.¬A(x).

ext rule: This rule corresponds to the Observe rule in Hyperproof, and we extract information
in a sentential form from a given table.

In addition to these transfer rules, our heterogeneous HLT has the usual natural deduction
rules for first-order formulas. See [19]. Thus, the table fragment LT consists of the above row
and col rules, which are formally defined below. Our rules are defined by specifying premises
(a global formula and a table) and a conclusion (a table) for each rule. See [19] for the other
rules, as well as the usual natural deduction rules for formulas. (See Appendix A for the usual
natural deduction style representation of our rules.)

Definition 3.6 Inference rules row and col of LT are defined as follows.

row× rules Premises: A global formula of the form ∃i/nX.X(a) (resp. ∃i/nX.¬X(a)), and
a table T in which exactly i entries of row a are ⃝ (resp. b or ×) and the other entries
of row a are b or × (resp. ⃝).
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Conclusion: A table T ′ that is exactly the same as T except for the blank entries of row a,
which are now ×.

row⃝ rules Premises: A global formula of the form ∃i/nX.X(a) (resp. ∃i/nX.¬X(a)), and
a table T in which exactly i entries of row a are b or ⃝ (resp. ×) and the other entries
of row a are × (resp. b or ⃝).

Conclusion: A table T ′ that is exactly the same as T except for the blank entries of row a,
which are now ⃝.

col× rules Premises: A global formula of the form ∃j/mx.A(x) (resp. ∃j/mx.¬A(x)), and
a table T in which exactly j entries of column A are ⃝ (resp. b or ×) and the other
entries of column A are b or × (resp. ⃝).

Conclusion: A table T ′ that is exactly the same as T except for the blank entries of column
A, which are now ×.

col⃝ rules Premises: A global formula of the form ∃j/mx.A(x) (resp. ∃j/mX.¬A(x)), and
a table T in which exactly j entries of column A are b or ⃝ (resp. ×) and the other
entries of column A are × (resp. b or ⃝).

Conclusion: A table T ′ that is exactly the same as T except for the blank entries of column
A, which are now ⃝.

The notion of proof in LT is defined inductively as usual in natural deduction.

Definition 3.7 (Provability in LT) Let T1 and T2 be tables, and G be a set of global
formulas whose label sets are those of T1. T2 is provable from G, T1, written as G, T1 ⊢ T2,
if there exists a proof of T2 from the premises of G, T1.

Example 3.8 A proof in LT of Example 2.1 is given in Fig. 2.

3.4 Translation of LT

We investigate our tables in terms of the usual first-order language through logic translation
of tables. Our tables are translated as follows.

Definition 3.9 (Translation) A table T is translated into a conjunction of literals T ◦ as
follows:

T ◦ =
∧

{Ai(aj) | (aj , Ai) = ⃝ in T} ∧
∧

{¬Ai(aj) | (aj , Ai) = × in T}

Conversely, it is easily seen that, for any consistent conjunction of literals (without free
variables), there exists a corresponding table. Thus, a table T and a consistent conjunction L
of literals can be regarded as being interchangeable. Thus, by slightly abusing our notation,
we sometimes write as L ⊆ T .

Based on the translation of tables, manipulations of tables, i.e., row and col rules of LT
are translated into combinations of natural deduction rules; see [19] for the details. The
translation of an application of the row× rule is illustrated as follows.
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M T W F

a ⃝
b ×
c × ×
d ∃1/4X.X(a)

M T W F

a × × ⃝ ×
b ×
c × ×
d

row×

∃1/4x.M(x)

M T W F

a × × ⃝ ×
b ×
c × ×
d ⃝

col⃝

∃1/4x.W (x)

M T W F

a × × ⃝ ×
b × ×
c × × ×
d ⃝ ×

col×

. . . . . . . . .

M T W F

a × × ⃝ ×
b × ⃝ × ×
c × × × ⃝
d ⃝ × × ×

Fig. 2 A proof in LT of Example 2.1

Example 3.10 Let us consider the following application of the row×-rule:

A1 A2 A3

a ⃝ ⃝ ∃2/3X.X(a)

A1 A2 A3

a ⃝ ⃝ ×

row×

The premise table is translated into the formula A1 ∧A2, while the conclusion table is trans-
lated into A1 ∧ A2 ∧ ¬A3, where we abbreviate Ai(a) as Ai. Note that ∃2/3X.X(a) :=
(A1 ∧ A2 ∧ ¬A3) ∨ (A1 ∧ A3 ∧ ¬A2) ∨ (A2 ∧ A3 ∧ ¬A1), where we omit trivial permutations.
This application of the row×-rule is translated into the following proof:

∃2/3X.X(a)

[A1 ∧A2 ∧ ¬A3]1

¬A3

[A1 ∧A3 ∧ ¬A2]1

¬A2

A1 ∧A2

A2

⊥
¬A3

[A2 ∧A3 ∧ ¬A1]1

¬A1

A1 ∧A2

A1

⊥
¬A3

¬A3
1

A1 ∧A2

A1 ∧A2 ∧ ¬A3

Proposition 3.11 (Translation) If G, T1 ⊢ T2 in LT, then G, T ◦
1 ⊢ T ◦

2 in the natural deduc-
tion (without tables).

By the above theorem of translation, soundness of LT is obtained through soundness of
the usual natural deduction without tables.

Proposition 3.12 (Soundness of LT) If G, T1 ⊢ T2 in LT, then G, T1 |= T2.

10



3.5 Completeness of LT

Let us now investigate the completeness theorem of LT. The theorem implies, in the framework
of the heterogeneous HLT, that any conjunction of consistent ground literals provable with
natural deduction rules is also provable only with manipulations of tables. Unfortunately, LT
is not complete with respect to our semantics; that is, for a given table T1 and global formulas
G, there exists a table T2 such that G, T1 |= T2 but it cannot be obtained from T1 with only
row and col rules, as illustrated in the following example.

Example 3.13 Let T1 and T2 be the following tables. Let the global formulas G be ∃1/4x.X(x)
for all X ∈ {A,B,C,D} and ∃1/4X.X(x) for all x ∈ {a, b, c, d}, which implies that in every
row and column, exactly one entry should be ⃝. Then, we have G, T1 |= T2 but G, T1 ̸⊢ T2

since we cannot apply row, col rules to T1.

A B C D

a × ×
b × ×
c
d

T1

A B C D

a × ×
b × ×
c × ×
d × ×

T2

Thus, in order to obtain completeness, we need to: (1) extend the inference rules in LT
so that the above G, T1 ⊢ T2 holds; or (2) restrict the logical consequence relation so that
the T1 and T2 above are not considered. For (1), we can extend LT by introducing rules for
case dividing and reduction to absurdity according to [2]. However, these rules check each
entry one by one, and hence they are not that effective. Thus, instead of (1), we adopt (2),
thereby retaining our intuitive manipulation of tables, and restricting our tables and global
formulas as follows. Thus, by retaining our rules, intuitive manipulation of tables, we restrict
our tables and global formulas as follows.

Informally speaking, a table T is uniquely determinable under G, if every entry of
T is uniquely determined semantically to either ⃝ or ×, without leaving any entry blank,
regardless of any model M in which G holds.

Definition 3.14 (Uniquely determinable) Given table T and its model M , we are able
to construct the determined table TM . Let G be a set of global formulas whose label sets are
those of T . T is said to be uniquely determinable under G, if the following hold:

• G and T have a model M , i.e., M |= G, T , and

• for any model N , if N |= G, T then TM = TN .

We further restrict our global formulas. We call a set G1 of global formulas all-one-global
formulas, consisting of global formulas of the following forms: ∃1/nx.Y (x) for every Y and
∃1/nX.X(y) for every y, which implies, in terms of tables, that “for every row and column,
exactly one entry should be ⃝.”

Lemma 3.15 If M |= G, T and G, T ⊢ T ′, then TM = T ′
M .

Proof. By ⊗, we denote either ⃝ or ×. Then, by ⊗, we denote ⃝ if ⊗ is ×; and × if ⊗ is ⃝.
Assume to the contrary that TM ̸= T ′

M . Then, since TM and T ′
M are of the same type and

11



determined, (a,B) = ⊗ in TM , but (a,B) = ⊗ in T ′
M for some entry (a,B). However, since

by definition M |= TM and M |= T ′
M , we have M |= B(a) and M |= ¬B(a), which is a

contradiction.

The following is the main lemma used to prove our completeness.

Lemma 3.16 (Main lemma) Let G1 be a set of all-one-global formulas. Let T be a table
uniquely determinable under G1. Then, we have G1, T ⊢ T ′ in LT for some determined table
T ′.

Proof. Let T ′ be a table obtained by applying as many row and col rules to G1, T as possible;
that is, G1, T ⊢ T ′, and no more row and col rules can be applied to T ′. To show that this
T ′ is the required determined table, assume to the contrary that T ′ is not determined, i.e.,
T ′ contains some blank entries.

Let M be a model such that M |= G1, T . Then, by the soundness (Theorem 3.12) of LT,
we have M |= T ′. The determined table defined by T ′ and M is the same as that of T by
Lemma 3.15, which we denote by TM . By using this TM , we construct another determined
table TN that is different from TM . Then, we obtain another model N of T that is different
from M . This contradicts the assumption that T is uniquely determinable under G1.

In what follows, we refer to each blank entry of T ′ using □ notation, and denote the entry
in the determined TM as ⃝ or × .

We assume that there are no entries marked by ⃝ in T ′, since, if there is a ⃝ entry, then
all entries of the corresponding row and column are already determined to be ×, and such
rows and columns do not play any role in the following construction of TN . Thus, in the
determined TM , all entries marked by ⃝ are boxed.

Let all rows (resp. columns) of TM be labeled by a, b, c, d, . . . (resp. A,B,C,D, . . . ). We
usually refer to an entry of TM by its label, say (a,B), but sometimes, we refer to an entry
according to the underlying table without using labels, like (1st, 2nd), which denotes the
intersection of the first row and the second column.

We illustrate our strategy to rewrite the given TM in Fig. 3. For simplicity, we assume
that the (a,A)-entry in TM is ⃝ . In every row and column of TM , there are more than two
boxed entries, because, if this were not the case, we would be able to apply a row or col rule
to T ′. In particular, there is another boxed entry, other than (a,A) = ⃝ in column A of TM .

Let (b, A) = × . Then, we replace the entire row a including ⃝,× marks in the row by row
b. After the replacement, if the ⃝-entry of row b, say (b,B), which appeared in the first row,
becomes boxed (i.e., if (b,B) = ⃝ ), then we terminate our rewriting process. Otherwise, we

continue replacing the row b by another row, say c, such that c ̸= a and (c,B) = × . After
the replacement, we again check whether the ⃝-entry in row c, which appeared in the first
row, is boxed, and if not, we continue the replacement process.

A B C

a ⃝

b ×
c

d

A B C

b × ⃝

a ⃝

c ×
d

A B C

c × ⃝

a ⃝

b × ⃝

d ×

A B C

d ×
a ⃝

b × ⃝

c × ⃝

Fig. 3

Our rewriting process is described more formally as follows:
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Step 1: Let (a,X) = ⃝ .

Step 2: Search for a row y such that (y,X) = × and y has not yet been replaced.

Step 3: Replace the 1st row by y.

Step 4: Search for a column Y such that (1st, Y ) = ⃝.

Step 5: If (1st, Y ) = ⃝ , terminate the process.

Otherwise, search for a row z such that (z, Y ) = × and z has not yet been replaced.

Step 6: Replace the 1st row by z.

Step 7: Return to Step 4.

When the above rewriting process has finished, we obtain TN by renaming labels of the
resulting table so that 1st, 2nd, 3rd, . . . rows are labeled as a, b, c, . . . , respectively.

In the above rewriting process, we are able to find a row z that has not yet been replaced.
This is because there are more than two boxed entries in every column.

The above process terminates after some repetition. This is because, in the first row, there
are more than two boxed entries, and hence, by repeating the replacement, ⃝ appears as a
boxed entry in the first row at most the number of columns minus two steps.

The resulting table TN differs from the original TM only with respect to the boxed entries.
Note that on the one hand, (a,A) = ⃝ in the original TM , and on the other, (a,A) = × in
the resulting TN . Furthermore, by our definition of the rewriting process, all ⃝ appear in a
boxed entry, and hence, TN and TM differ only with respect to their boxed entries.

Since the above TN is determined, we are able to define a model N . Then, we have
N |= G1, T , since T ⊆ T ′ ⊆ TN by our construction.

By the above main lemma, we obtain our completeness of LT.

Theorem 3.17 (Completeness of LT) Let T1, T2 be tables of the same type, and G1 be a
set of all-one-global formulas. Let T1 be uniquely determinable under G1. If G1, T1 |= T2,
then G1, T1 ⊢ T3 in LT for some table T3 such that T2 ⊆ T3.

Proof. Let T3 be a table obtained by applying as many row and col rules to G1, T1 as possible.
We show that T2 ⊆ T3. Assume to the contrary that (a,B) = ⃝ in T2 and (a,B) ̸= ⃝ in T3

for some entry (a,B). (The same applies to the case (a,B) = × in T2 and (a,B) ̸= × in T3.)
Since T2 and T3 are of the same type, and since T3 is determined by Lemma 3.16, we have
(a,B) = × in T3. Then, for any model M such that M |= G1, T1, we have M |= B(a) and
M |= ¬B(a), which is a contradiction.

4 Effectiveness of tables from a free ride perspective

In this section, we investigate the effectiveness of our tables from the viewpoint of the notion
of free ride. In Section 4.1, we introduce the notion of “free rides” of inference rules, and
explain that our rules have multiple free rides. In Section 4.2, we further investigate the
effectiveness of our rules in terms of the complexity of inference.
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4.1 Free rides of inference rules

The free ride property is one of the most basic properties of diagrammatic systems that
provides an account of the inferential efficacy of diagrams. By adding a certain piece of infor-
mation to a diagram, the resulting diagram somehow comes to present pieces of information
not contained in the given premise diagrams. Shimojima [15] called this phenomenon free
ride, and analyzed its semantic conditions within the framework of channel theory.

By slightly extending the notion of free ride, let us call diagrammatic objects, or translated
formulas thereof, free rides if they do not appear in the given premise diagrams or sentences,
but (automatically) appear in the conclusion after adding pieces of information to the given
premise diagrams. The notion of free rides enables us to analyse the effectiveness of each
inference rule. (Cf. [18].) Let us illustrate free rides of the row× rule by the following
example.

Example 4.1 (Free rides of row×) Let us consider the following application of the row×
rule and its translation: By applying a global formula ∃1/4X.X(a), we extend table T1 in
which exactly one entry of row a is ⃝, to T2 in which the other entries of row a are ×. In the
translation, the double line represents the application of various rules.

T1

A1 A2 A3 A4

a ⃝ ∃1/4X.X(a)

A1 A2 A3 A4

a ⃝ × × ×
T2

row× transl.
=⇒

A1(a) ∃1/4X.X(a)

A1(a),¬A2(a),¬A3(a),¬A4(a)︸ ︷︷ ︸
free rides

Note that pieces of information, ¬A2(a),¬A3(a),¬A4(a) in the conclusion do not appear in
premise table T1, which is translated into A1(a). Furthermore, they do not appear explicitly,
or they are indeterminate, in the given global formula ∃1/4X.X(a) := (A1 ∧ ¬A2 ∧ ¬A3 ∧
¬A4) ∨ (¬A1 ∧A2 ∧ ¬A3 ∧ ¬A4) ∨ (¬A1 ∧ ¬A2 ∧A3 ∧ ¬A4) ∨ (¬A1 ∧ ¬A2 ∧ ¬A3 ∧A4). Note
that the global formula does not imply any definite information about which entries are ⃝
and which are ×. If we extend T1 to T2 so that ∃1/4X.X(a) holds, all blank entries in row a
have to be × in T2 since there already exists one ⃝ in row a of T1. Note that, in the extension
of T1 to T2, we do not care about the location of ⃝ in T1, because the same applies even
if (a,A2) = ⃝ and the other entries are blank in T1. The only thing that matters is the
number of ⃝ in row a in T1, which corresponds to the number 1/4 of the given global formula
∃1/4X.X(a). Then, we freely find that all blank entries of T1 are × without checking each
entry one by one. In other words, the pieces of information, ¬A2(a),¬A3(a),¬A4(a), are free
rides of this row× as they do not appear explicitly in the premises.

As seen in Example 4.1, the row× rule has multiple free rides. By checking each rule of
LT, we obtain the following proposition.

Proposition 4.2 (Free rides) row and col rules of LT have multiple free rides.

4.2 Complexity of inference

We further investigate the multiple free rides of our inference rules in terms of complexity
of inference. To this end, we consider the framework of the full heterogeneous HLT, which
contains our LT as a subsystem. In the heterogeneous HLT, in addition to the rules for tables,
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we have usual natural deduction rules for first-order formulas. Furthermore, as shown by
the translation (Proposition 3.11), everything provable by using tables in LT is also provable
in HLT by using formulas instead of tables. Thus, we compare, in the framework of the
heterogeneous HLT, complexities of inference both with and without the use of tables.

As usual, we formally define the complexity as the length, i.e., the number of formulas and
tables, of a given heterogeneous proof in HLT. We consider the restricted logical consequence
relation G1, T1 ⊢ T2 (and its translation G1, T ◦

1 ⊢ T ◦
2 ), where T1, T2 are n×m-tables, and T1

is uniquely determinable under G1.
Let us first examine inference without using tables. In order to state each formula (literal)

of T ◦
2 corresponding to an entry in T2, we need n×m formulas. Although we need zero steps

to derive such a formula when it is given in the premise T ◦
1 , it is difficult to estimate how many

steps (definitely more than one) we need to derive the formula generally. (Cf. the natural
deduction proof in Example 3.10.) Thus, we assume we need at least one step to derive all
the formulas of T ◦

2 . Then, we need n × m formulas to derive T ◦
2 . Hence, we estimate the

following number of steps, i.e., formulas, to prove G1, T ◦
1 ⊢ T ◦

2 :

(n×m)︸ ︷︷ ︸
to state

+ (n×m)︸ ︷︷ ︸
to derive

.

Next, we examine inference using tables. Our completeness (Theorem 3.17) implies the
following theorem, which states that we are able to set an upper bound on the length of
inference with tables.

Theorem 4.3 (Upper bound) Let G1 be a set of all-one-global formulas, and T be an
n×m-table that is uniquely determinable under G1. Let L be a conjunction of literals whose
labels (constants) are those of T . If G1, T ⊢ L in the heterogeneous HLT, then, with a proof
of at most n+m length, we have G1, T ⊢ T ′ for some T ′ such that L ⊆ T ′.

Proof. Let G1, T ⊢ L in HLT. Then, by the soundness of HLT, we have G1, T |= L. Also, by
the completeness of LT (Theorem 3.17), we have, with only rules for tables, G1, T ⊢ T ′ for
some T ′ such that L ⊆ T ′. Note that the rules applicable to T are only row and col rules,
and, by an application of one of these rules, one of the rows and columns is filled with ⃝ and
× symbols. Since there are only n+m rows and columns in T , we obtain T ′ within at most
n+m steps (tables).

In order to state each formula of the entries in T2, i.e., to read table T2 using the ext rule, we
need n ×m formulas. Furthermore, by the above theorem, in order to derive such formulas
using tables, we need at most n + m tables. Hence, we estimate the following number of
formulas and tables to prove G1, T1 ⊢ T2:

(n×m)︸ ︷︷ ︸
to state

+ (n+m)︸ ︷︷ ︸
to derive

.

Since the number of steps to state each formula is the same, the above comparison between
inference with and without tables (or between systems with multiple free rides and with at
most one free rides, more generally) is summarized as the difference between n+m and n×m,
or between 2n and n2 more concisely.

The effectiveness of our system stems from the multiple free rides of our inference rules. In
contrast to the rules for deriving each entry in a table one by one, our rules, having multiple
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free rides, derive multiple entries at once. The bigger a given table is, the more significant
the difference between 2n and n2 becomes. However, note that the above result is obtained
in a restricted fragment, where global formulas are restricted to all-one-global formulas G1,
and where T1 is uniquely determinable under G1. In contrast, there is no such restriction on
inference using natural deduction rules without tables, although we need n2 steps to infer. In
other words, the above theorem characterizes a fragment in which our tables work effectively.
Thus, in practical applications, we can divide the solution to a given problem into two phases.
The first phase consists of applying our row and col rules to a given table; while the other
consists of applications of the usual natural deduction rules.

5 Conclusion and future work

We studied reasoning with tables in which local and global conditions are exploited. By re-
garding each row and column as a global object, we formalized our logic with tables LT, which
is a subsystem of the heterogeneous logic with tables HLT. LT is shown to be complete with re-
spect to the usual set-theoretical semantics (Theorem 3.17). Our inference rules, row and col
rules, are designed to take full advantage of the global objects. Thus an inferential advantage
of our tables is captured as multiple free rides of our rules (Proposition 4.2 and Theorem 4.3).

Our basic research can be extended in a variety of ways. Our correspondence tables
and global objects (rows and columns) can be generalized, respectively. We here discuss the
following among others.

• Our completeness of LT is restricted to the fragment in which only all-one-global formu-
las and uniquely determinable tables are considered. The theorem can be generalized
by weakening this restriction or by introducing other inference rules. We intend inves-
tigating a more general completeness in the future.

• In addition to the free ride discussed in Section 4.1, there may be another kind of free
ride in our system. From a local point of view, any addition of a symbol in an entry is
just that—the addition of a symbol in that entry. From a global point of view, however,
it means something additional, namely, the addition of a symbol in the row and column
comprising the entry. As our inference rules act upon the number of symbols in a row
or in a column, such an additional global effect can add up to trigger them and advance
our reasoning. In fact, such effects can be seen abundantly in the example discussed
in Section 2. We leave the formalization and analysis of this type of free ride to future
work.

• We concentrated on global conditions that constraints, from the perspective of tables,
on the numbers of ⃝ and × symbols in each row and column. However, there may
be several different global conditions such as ∀x(A(x) ↔ ¬C(x)), which implies that
columns A and C are opposite. Characterization and analysis of these general global
conditions remain to be investigated.

• Although our table consists of a matrix over symbols ⃝,×, b, besides these symbols,
we typically use other symbols as well, such as characters and numbers. In particular,
numbers make numerical reasoning possible, and we may need other types of inference
rules to formalize this reasoning.
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A row and col rules of LT

row× rules : each □ is blank or ×.

A1 . . . Ai Ai+1 . . . An

a ⃝ . . . ⃝ □ . . . □
∃i/nX.X(a)

A1 . . . Ai Ai+1 . . . An

a ⃝ . . . ⃝ × . . . ×

A1 . . . Ai Ai+1 . . . An

a □ . . . □ ⃝ . . . ⃝

∃i/nX.¬X(a)

A1 . . . Ai Ai+1 . . . An

a × . . . × ⃝ . . . ⃝

row⃝ rules : each □ is blank or ⃝.

A1 . . . Ai Ai+1 . . . An

a □ . . . □ × . . . ×
∃i/nX.X(a)

A1 . . . Ai Ai+1 . . . An

a ⃝ . . . ⃝ × . . . ×

A1 . . . Ai Ai+1 . . . An

a × . . . × □ . . . □
∃i/nX.¬X(a)

A1 . . . Ai Ai+1 . . . An

a × . . . × ⃝ . . . ⃝

col× rules : each □ is blank or ×. col⃝ rules : each □ is blank or ⃝.

A
a1 ⃝
..
.

..

.
aj ⃝

aj+1 □
..
.

..

.
am □ ∃j/mx.A(x)

A
a1 ⃝
..
.

..

.
aj ⃝

aj+1 ×
..
.

..

.
am ×

A
a1 □
..
.

..

.
aj □

aj+1 ⃝
..
.

..

.
am ⃝ ∃j/mx.¬A(x)

A
a1 ×
..
.

..

.
aj ×

aj+1 ⃝
..
.

..

.
am ⃝

A
a1 □
..
.

..

.
aj □

aj+1 ×
..
.

..

.
am × ∃j/mx.A(x)

A
a1 ⃝
..
.

..

.
aj ⃝

aj+1 ×
..
.

..

.
am ×

A
a1 ×
..
.

..

.
aj ×

aj+1 □
..
.

..

.
am □ ∃j/mx.¬A(x)

A
a1 ×
..
.

..

.
aj ×

aj+1 ⃝
..
.

..

.
am ⃝
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