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Abstract

We extend natural deduction for first-order logic (FOL) by introducing diagrams as
components of formal proofs. From the viewpoint of FOL, we regard a diagram as a
deductively closed conjunction of certain FOL formulas. On the basis of this observation,
we first investigate basic heterogeneous logic (HL) wherein heterogeneous inference rules
are defined in the styles of conjunction introduction and elimination rules of FOL. By
examining what is a detour in our heterogeneous proofs, we discuss that an elimination-
introduction pair of rules constitutes a redex in our HL, which is opposite the usual redex
in FOL. In terms of the notion of a redex, we prove the normalization theorem for HL,
and we give a characterization of the structure of heterogeneous proofs. Every normal
proof in our HL consists of applications of introduction rules followed by applications
of elimination rules, which is also opposite the usual form of normal proofs in FOL.
Thereafter, we extend the basic HL by extending the heterogeneous rule in the style of
general elimination rules to include a wider range of heterogeneous systems.
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1 Introduction

Proof theory has traditionally been developed based on sentential representation of logical
proofs. Formal proofs are defined as chains of sentences/formulas, and other forms of repre-
sentations, such as diagrams or graphs, are regarded not as components of formal proofs, but
only as auxiliary tools to construct formal proofs or to explain ideas.

However, recently, after the pioneering works of Barwise, Etchemendy, and Shin (e.g.,
[1, 5, 23]), diagrams have been investigated as counterparts of logical formulas, which con-
stitute formal proofs. Diagrams are rigorously defined as syntactic objects, allowing set-
theoretical semantics to be defined. Inference systems are formalized, and they are shown to
be equivalent to some symbolic logical systems. Consequently, fundamental logical properties,
such as soundness and completeness, have been investigated (e.g., [23, 10, 13, 26]). These
diagrammatic systems are further developed into heterogeneous systems combining diagrams
and formulas. These include Hyperproof [2, 5, 3], which is developed by Tarski’s World; Euler
and Venn systems [9, 25, 31]; and correspondence table systems [4, 28]. However, a proof
theory for heterogeneous logic generally has not yet been well-developed. Based on these
previous studies, we give a proof-theoretical investigation of heterogeneous logic by extending
natural deduction for first-order logic (FOL).

Diagrammatic reasoning consists of construction of a diagram by unifying pieces of infor-
mation contained in given premises, and extraction of a conclusion from the unified diagram.
This applies to diagrammatic reasoning generally, including a proof of the Pythagorean The-
orem, diagram chasing in category theory, syllogistic reasoning with FEuler diagrams, and so
on. Refer to Section 2.1 for an example of Euler diagrammatic reasoning. Thus, on top of
the usual natural deduction for FOL, we introduce inference rules for diagrams: Construction
rules (unification and application) of a diagram and extraction rules (deletion and observation)
from a diagram. From the viewpoint of FOL, our diagram can be regarded as a deductively
closed set of certain FOL formulas, which describes basic information contained in the dia-
gram. We elucidate it as Postulate 2.1 in Section 2, and we investigate such diagrams in this
article. Then, the above construction and extraction rules of diagrams can be considered as
certain introduction and elimination rules of natural deduction for FOL, respectively.

In Section 3, we show the normalization theorem for our heterogeneous logic HL. We first
define reduction rules for heterogeneous proofs by examining what is a detour, i.e., a redex
in our heterogeneous proof. We discuss that, in light of the Postulate 2.1, an extraction-
construction pair, i.e., an elimination-introduction pair of rules constitutes a redex in hetero-
geneous proofs. This is opposite the usual redex in the natural deduction for FOL, where an
introduction-elimination pair constitutes a redex. Based on this notion of redex, we prove
the normalization theorem for HL, and we give a characterization of the structure of hetero-
geneous proofs. Every normal proof in our HL consists of applications of construction rules
followed by applications of extraction rules. This is also opposite the usual form of normal
proofs in FOL. We further investigate a diagrammatic counterpart of the usual subformula
property of FOL, that is the maximal diagram property of HL.

In Section 4, we extend our basic HL to HLe by introducing the so-called rules of exhaustive
cases of [5, 2] in the style of V E-rule in the natural deduction for FOL. Although inference rules
in the style of VE-rule make it difficult to grasp the structure of proofs, general elimination
rules, including VE-rule, have been introduced by Dyckhoff [7], Lépez-Escobar [12], and
Tennant [29], and have also been independently introduced and extensively studied by von
Plato and Negri [17, 16], and Schroeder-Heister [21]. In particular, translations between



natural deduction with general elimination rules and sequent calculus were investigated, the
normalization theorem was proved, and the structure of proofs with general elimination rules
was investigated. By applying these results, we prove the normalization theorem for our
extended HLe, and investigate the structure of heterogeneous proofs in HLe.

Finally, in Section 5, we summarize our results and discuss various dualities between
sentential reasoning and diagrammatic reasoning.

This article is a development of the research introduced in [27], and this article includes,
for completeness, a partial summary of this work.

2 Syntax of heterogeneous logic

In Section 2.1, to give an insight into reasoning with diagrams, we illustrate reasoning with
Euler diagrams of [13]. In Section 2.2, we review the natural deduction system for FOL,
based on which we introduce our abstract heterogeneous logic HL in Section 2.3. In Section
2.4, we introduce inference rules of HL; subsequently, we also introduce term notation for our
heterogeneous proofs by extending the usual A-terms.

2.1 Euler diagrammatic reasoning

Let us consider an Euler diagrammatic representation of the following syllogistic reasoning:

Some A are B, All B are C' |= Some A are C.

Some A are B All B are C
' '

CE7)

D1\, S D

D1 +D2
Some A are C

The given premise All B are C' is represented as Dy in terms of the inclusion relation
between circles B and C. The other premise Some A are B is represented as D;. Note that the
relationship between A and B is not specified to inclusion or exclusion by the given sentence.
In such a case, we represent it as in D; following Venn diagrammatic conventions, and we
call the relation a “crossing relation” between A and B. Furthermore, we do not assume
the so-called existential import for regions, that is, we do not assume that every region in a
diagram is nonempty. Thus, two crossing circles A and B do not imply anything in their own
right, and to represent the nonemptiness, we need point x to represent the existence of some
object explicitly. (The existential import for regions destroys the one-to-one correspondence
between syllogistic sentences and diagrams. Please refer to the introduction of [13] for a brief
description of the historical background of Euler and Venn diagrams.)

Then, the validity of the given inference is shown by unifying D; and Ds. In this uni-
fication, circle B in D and D, is identified, and C is added to D; so that B is inside C
and C' overlaps with A without any implication of a specific relationship (i.e., inclusion or



exclusion) between A and C. From D; + Ds, we can read off the conclusion that Some A are
C. Furthermore, if we have another premise No D are C, just by adding circle D outside C'
in D1 + D4, we can read off No D are B, Some A are not D, Some B are not D, and Some
C are not D without deducing them explicitly as in sentential reasoning. This phenomenon
where, by constructing a diagram, we obtain a conclusion without explicit deduction is called
free ride in the literature of diagrammatic reasoning ([24]).

An Euler diagram of [13], called an EUL-diagram, is defined as a plane with named circles
(A, B,C,...) and points (z,y, a,b, ... collectively denoted by p, q), which are called diagram-
matic objects. EUL-diagrams can express neither disjunctive information with respect to
the location of a point, nor information on contradiction. Each EUL-diagram is specified in
terms of the following relations between diagrammatic objects; those are described by the
corresponding FOL formulas called diagrammatic formulas.

AC B the interior of A is inside of the interior of B Va(Ax — Bx)

AH B the interior of A is outside of the interior of B Vz(Ax — —Bzx)

A B there is at least one crossing point between A and B Vz(Ax — Az) AVz(Br — Bz)
pC A pisinside of the interior of A Ap

pHA  pis outside of the interior of A -Ap

Note that we interpret the crossing relation so that it does not convey any specific (in-
clusion or exclusion) information about the relationship between circles. Thus, A <1 B is
translated into a tautology as above. Refer to [10] for the other region-based formalization of
Euler diagrams in contrast to our relation-based formalization of [13]. Also refer to [14] for a
comparison thereof.

For example, the above diagram D; + Dy consists of relations BC C, A~ B, A= C,z C
A,x C B,x C C. We call the set of relations the type of the diagram and denote it by
|D1 + Ds|. The type of a diagram is the symbolic specification of that diagram. In terms of
formulas, |D; + Ds| is the conjunction of diagrammatic formulas Va(Bx — Cx),Vx(Az —
Az) ANVz(Bx — Bzx),Ve(Ar — Ax) AVz(Cx — Cx), Az, Bx, and Cz. We identify the
conjunctive formula with the type of the diagram.

In this way, our diagram is specified by the set of relations that holding on the diagram.
Note that |D1| = {A>= B,z C A,z C B}, |Ds| = {B C C}, and |D1+Ds| = |D1|U|Dy|U{z C
C'}, where x T C is obtained from  — B and B C C. Thus, |D; +Ds| is not just the union of
|D1| and |D2|, but the deductive closure of |D;|U|D2| (except for irrelevant tautologies). The
notion of free ride corresponds to the deductive closedness of diagrams from the viewpoint of
FOL.

Based on the above insight on Euler diagrams, we elucidate our intended diagrams, which
are not restricted to Euler diagrams, in this study.

Postulate 2.1 (Diagrams)

1. We assume the set of diagrammatic formulas to be a subset of FOL formulas. Thus,
every piece of basic information contained in a diagram is described by a formula of FOL.
Considering FOL, we regard a diagram as the conjunction of diagrammatic formulas
comprising the diagram.



2. We assume the type |D| of a diagram D is deductively closed with respect to diagram-
matic formulas. That is, for any diagrammatic formula ¢?, if ¢? is provable from |D|
in FOL then ¢ € |D].

Although we mainly illustrate only one concrete Euler diagrammatic system [13] below,
our investigation is independent of how concrete diagrams are defined in each concrete system,
and our definition is valid for other Euler and Venn systems (e.g., [9, 23, 10]), blocks world
systems ([2, 5]), and so on.

2.2 Natural deduction rules for FOL

Formulas of FOL, denoted by o, %, 0, p1, ©s, ..., are defined inductively as usual:

pu=Aler,..en) [oAp eV le—=p|-p| L] Vap | Izp

where A(ey,...,e,) is an atomic formula comprising a predicate A and first-order terms
€1,...,6n. When A is a unary predicate, we usually omit parentheses and write an atomic
formula such as Ae.

A proof in natural deduction is structured as a tree consisting of formulas as its nodes
and inference rules as its edges. The natural deduction rules for FOL consist of dual pairs,
with each pair comprising introduction (I) and elimination (FE) rules, for each connective
AV, —, 1V, 3, as well as LE and RAA. In the following rules, a formula written within
square brackets indicates that the assumptions of this form are closed at the inference. We
call such closed assumptions auxiliary assumptions of the rule. In every elimination rule,
the premise containing the connective being eliminated is called the major premise and the
other premises are called minor premises of the rule. See [6, 19] for a detailed introduction
to natural deduction.

[el™ [y
M ©1 /\ ©2 801 © \/ 1/] 0_ 0_
AP M Pi /\E(i=1,2) w1V 2 \/I(i:u) I VE n
{2 o
v o oo : o o
—I,n —0 = F L -E
el [l
<:P Vo o[z = e] Jrp 1 : :
vI VE 31 JE,n L L

In VI, the variable x may not freely occur in any open assumption on which ¢ depends; in
JF, x may not freely occur in % nor in any open assumption on which 1 depends, except in
©.

The above set of rules provides the rules of classical logic, and the set without RAA
(Reductio Ad Absurdum rule) provides that of intuitionistic logic.

We write ¢1, ..., ¢, F ¥ when there exists a natural deduction proof of ¢ (i.e., is provable)
from open assumptions ¢1, ..., @y,. See [6] for the usual definition.



2.3 Diagrams

On top of the system of natural deduction, we introduce diagrams in this section and infer-
ence rules thereof in the next section. While concrete syntax is defined in each system, we
extract common items to be specified in each system. The syntax of heterogeneous logic is
defined by specifying diagrammatic objects, diagrams, and diagrammatic formulas in addition
to formulas.

Diagrammatic objects are components of diagrams, and are denoted by 0,01,09,.... We
denote the set of diagrammatic objects that appear on a diagram D by ob(D).

Diagrams are denoted by D, &, F,Dy,Da,....

Diagrammatic formulas are denoted by ¢?, 1%, o, go‘f, <p§l .... They describe pieces of ba-
sic information contained in diagrams. When it is clear from the context, we denote a
diagrammatic formula simply by ¢ without the superscript d.

We identify a diagrammatic object in a diagram with a predicate or a term describing
the object in a diagrammatic formula. Thus, for a diagrammatic formula ¢?, we use
ob(npd) to denote the set of predicates and terms appearing in ¢?, each of which expresses
a diagrammatic object. Furthermore, we identify a relation holding on a diagram with
a diagrammatic formula describing the relation.

For a diagram D, its type |D| is the set {pf, 4, ..., %} of diagrammatic formulas such
that the relation ¢? holds on D if and only if ¢¢ € |D| for all 1 < i < n. We identify
|D| with the conjunctive formula ¢ A o3 A -+ A 2.

What qualifies as a concrete diagram is defined in each concrete system. Here, we define
a general operation + on diagrams.

Definition 2.2 (Diagrams)

e When D and & are both diagrams, D+£ is a diagram such that [D+&| = {v¢ | |D|, |€| F
¥® in FOL}.

e When D is a diagram and ¢ is a diagrammatic formula, D + ¢ is a diagram such that
D+ ¢ = {¢? | |D], " - ¢ in FOL}.

e The operation + is associative and commutative.

e A diagram & is a subdiagram of D, written as £ C D, when |£] C |D| holds.

We denote a formula or a diagram by «, 58,7, 6, a1, a9, .. ..

D + & is the unified diagram of D and & (cf. [10, 13]). D+ ¢? is the diagram that extends
from D by adding the information of ¢ called app-formula (cf. [2, 5]).

Depending on the specific definition of diagrams in each system, D + ¢% and D + £ are
not always defined. Typical cases are the case of indeterminacy, where D + ¢ or D+ £ is not
uniquely determined as a single diagram because of an appearance of disjunctive information,
and the case of inconsistency, where D and ¢?, or D and &, are inconsistent. To avoid these
cases, in the Euler diagrammatic system [13], constraints are imposed on the operation +, and,
in [23, 10], the notion of a diagram is extended to express indeterminacy and inconsistency
by introducing certain devices. In our basic HL, to make + always applicable, we introduce
an expression *, which expresses that D + ¢? or D + £ is undefined. For technical reasons,



we regard x as a diagram, which does not appear in given premises and conclusion. * is not
necessarily equivalent to 1 in FOL, since, other than contradiction, there are cases wherein
diagrams are not defined because of their expressive limitations. In Section 4, we extend
our basic HL to HLe by introducing the rule of Cases Exhaustive [2, 5] to deal with certain
disjunctive information in diagrams.

Although we do not enter into detail here, the semantics of our heterogeneous system HL
is defined as the usual set-theoretic semantics for FOL because our diagram corresponds to a
conjunction of appropriate formulas.

2.4 Inference rules of basic heterogeneous logic HL

Among various inference rules, as representative rules of heterogeneous systems independent
of specific diagrams, we investigate the following rules, where app and obs consist of the dual
pair of heterogeneous rules, and uni and del consist of the dual diagrammatic rules.

Definition 2.3 (Basic HL) Heterogeneous rules of Application (app) and Observation (obs),
and diagrammatic rules of Unification (uni) and Deletion (del) have the following forms:

D D D £ D
app = ob P 2
D+ ¢ e © SWhere Yt € |D| D+ &

delwhere ECD

In app, as well as obs, an app-formula (resp. observed formula) is restricted to being a
diagrammatic formula. This is the result of our postulate regarding a diagram as a conjunction
of diagrammatic formulas.

For *, which expresses that D 4 ¢? or D + £ is undefined, we introduce the following
*E-rule similar to the usual LE-rule of FOL. When D + ¢? is not defined, we express it as
follows: J J

* *
Y app *('0 app T*E

*

Similarly for uni.

Since * is obtained by an application of app or uni, we may consider * as the most complex
diagram. Then, *E can be regarded as a special case of del.

Both app and uni are operations to unify given pieces of information into a diagram,
and both obs and del (as well as xFE) are operations to extract pieces of information from a
diagram. These essentially have the same structure, and they play the same roles in a proof
and in the reduction of proofs (cf. Section 3.2). Thus, we denote app and uni collectively by
+, and obs and del (and xE) by — as follows, where « is a diagram or a formula:

12)>+i (+) % (=)

Thus, when « is a diagrammatic formula, + is app and — is obs. When « is a diagram, + is
uni and — is del (or *E when D is x).

A heterogeneous proof, denoted by t,s,u,v,t1,%o,..., is inductively defined as a tree
consisting of formulas and diagrams as its nodes, and inference rules as its edges. We write



at,...,a, B o, when « is provable from premises aq,...,«a,, where «, «; is a formula or a
diagram.

By extending the usual A-terms, we introduce proof-terms for our basic HL, which de-
scribe our reduction rules compactly and precisely. Based on the usual A-terms, we define
app, uni, obs, and del-operations. We recall proof-terms for — and A of FOL. See, for example,
[30] for terms of FOL.

Definition 2.4 Proof-terms, or simply proofs, for basic HL is inductively defined as fol-
lows.

A term-variable x® is a proof of a.

If s is a proof of ¢ and t is a proof of ¥, then (s,t) is a proof of v A .

If t is a proof of ¢ A ¢ then pq(t) is a proof of ¢ and ps(t) is a proof of .

If ¢t is a proof of ¥ then Ax®.t is a proof of p — 1.

If s is a proof of ¢ — ¥ and t is a proof of p, then st is a proof of 1.

If s is a proof of D and t is a proof of ¢?, then app(s,t) is a proof of D + .
If s is a proof of D and ¢ is a proof of £, then uni(s,t) is a proof of D + €£.
If ¢ is a proof of D and ¢? € |D|, then obs(t) is a proof of ¢?.

If ¢ is a proof of D and £ C D, then del(t) is a proof of £.

© X N o WD

—_
e

If t is a proof of x, then () is a proof of D for any diagram D.

e We denote a proof of app(s,t) or uni(s,t) by +(s,t).
e We denote a proof of obs(t),del(t), or *(t) by —(t).

Although we use the same = to express a term-variable and a first-order variable, we
usually denote a term-variable as x¥ using a formula ¢. Although we sometimes omit the
superscript to avoid notational complexity, it is possible to determine which variable we refer
to by the context.

Because of our —-rule, the formula (type) of a given proof-term is not uniquely determined
by the form of the term. To avoid this situation, we may describe our proof-term with its
formula or diagram « as t%, but we omit the superscript to avoid notational complexity.

3 Normalization of heterogeneous proofs

We recall the notions of detour, reduction, and normal proof in the usual natural deduction
for FOL in Section 3.1. Then, we discuss their counterparts for heterogeneous logic in Section
3.2. In Section 3.3, we prove our normalization theorem for basic HL. Based on the theorem,
we investigate a characterization of the structure of heterogeneous proofs in Section 3.4.

3.1 Normal proof and normalization in FOL

In general, a natural deduction proof may contain some redundant steps and formulas called
maximal formulas, i.e., formulas that simultaneously stands as the conclusion of an introduc-
tion rule and as the major premise of an elimination rule. For example, the formula @1 A @9



and the pair of applications of AI and AE rules on the left in the following proof are redun-
dant. This is because without them, we already have a proof t; of ¢; as illustrated on the
right.

i

Y1 P2 )

1 N\ P2 /\/EEI tth

Y1 Y1

A maximal formula along with its related pair of applications of an introduction and an
elimination rule are called detour in a proof, and it is possible to remove such a detour as
illustrated above. This rule of rewriting a given proof by removing a detour is called the
reduction rule. It is defined for every pair of dual introduction and elimination rules. We
call such a pair of rules a redex. In addition to the above A-reduction rule, the reduction
rules for —, V,V, 3 are defined. We recall only A and — reduction rules in term notation.

A-reduction  p;(t;,ta) > t;fori=1,2
—-reduction (Az¥.s)t > s[a¥ =]

A natural deduction proof is said to be in normal form when it does not contain any
redex. Then, the following normalization theorem holds for the natural deduction system: If
© s provable from @1,...,pn, then there is a normal proof of ¢ from ¢1,...,¢n. Normal
proofs have an essential property called the subformula property: A normal proof t of ¢
from @1, ..., @ contains only subformulas of ¢ and @1, ..., . (See [6, 30] for the precise for-
mulation of these theorems.) Normalization theorem makes various proof-theoretical analyses
possible. For example, the notion of normal proofs enables us to characterize the structure
of proofs in a formal system. Prawitz [18, 19] revealed that each normal proof consists of
two parts: An analytical part in which premises are decomposed into their components by
using elimination rules; and a synthetic part in which the final components obtained in the
analytical part are put together to construct the conclusion by using introduction rules.

3.2 Reduction rules for heterogeneous proofs

Let us define reduction rules for our heterogeneous proofs. Our dual pair of rules are app
and obs, as well as uni and del. It is possible to define reduction rules thereof by applying
the reduction rules of FOL straightforwardly through a translation of diagrams into formulas
of FOL. However, as discussed in [26], the resulting “normal” proof does not reflect the
characteristics of diagrammatic inference, and it may be called the “sentential normal” proof.
This article investigates reduction rules inherent in our diagrammatic inference.

The notion of reduction in natural deduction for FOL is explained as the removal of a
detour, i.e., a redundant maximal concept (formula) as well as its introduction and elimination
rules. Let us consider what is a detour inherent in our diagrammatic inference. Based
on our Postulate 2.1, in which we regard a diagram as the deductively closed conjunction
of diagrammatic formulas, the use of redundant subconcepts (diagrams/formulas) may be
considered to be a detour. This detour is part of a proof where one infers by deducing
subconcepts, even though one can directly infer by using a superior concept. For example,
Bc and the pair of obs-app in the following proof on the left are redundant, i.e., a detour,
since the information of Bc is already contained in the diagram above the obs, and we can
obtain the same conclusion by directly unifying two premise diagrams without deducing the



formula Be.

P S
e obs ﬂ(@ T A

a _ a =z =
= pp = del [ IOPD g+¢del

> app(u, s[z¥ := obs(t)]) > del(uni(u,t))

This kind of a detour and its reduction can be formulated by the above rule on the right.
When 1 depends only on ¢ (i.e., ¢ F 1), ¢ and ¥ as well as the formulas/diagrams between
them are redundant subconcepts. This is because our diagrams are deductively closed, and
we are able to infer £+ by directly unifying £ and D without deducing ¢ nor ¥ as illustrated
on the right. Note that this reduction is possible when 1 depends only on ¢ (¢ F ). That
is, s is expressed as s[z¥ := obs(t)], where ¥ is fresh variable for s, and no variable other
than x¥ appears in s[z¥].

Remark 3.1 Note that the notion of “detour” is conceptual, and it is not necessarily related
to the length of proofs. It is well known that normal proofs may be more lengthy and complex
than non-normal proofs, but they are conceptually simpler in the sense that no detour is
contained.

The above obs-app-reduction may be generalized as follows: When ¢y, ..., ©n, af, . ,0;1 F

1, the following part in a proof on the left is reduced to the part on the right, where D is the
unified diagram D; 4+ Do + -+ - + Dy,

; ; Dy Dy

D D,, : : =

()711 obs.. .5 - obs od.. .ol : D fl"'gl app
: : £ D + o o
: : —— uni
& d

wapp E+D+o del
E+y > E+

In the above reduced proof on the right, the double line uni refers to repeated applica-
tions of uni to Dy, ..., D,; the same applies to app. Each afl is a diagrammatic formula
independent of obs. Since ¥ may depend not only on diagrams D;, ..., D, but also on for-
mulas Jf, e ,ald, the similar structure of our detour may occur in such a part. Thus, we
generalize our reduction by including O'Zd to reduce such a part; cf. Fig. 1 of Example 3.9.

The same applies to another dual pair of del and uni. Moreover, since del and obs share
a similar structure (i.e., extraction of information), a pair of del and app may form the same
detour as before although del and app are not in duality. Thus, for removing the detours of
the same kind in a proof, we define our reduction for pairs of 4+ (app and uni) and — (obs,
del, and *F).

St Sty S

We abbreviate a set of proofsa; ..., a, collectively as &« with an appropriate number
n. On the one hand, we denote a set of proofs by ¢, on the other hand, we denote a unification
of diagrams and formulas oy + - - - + «,, by a.

10



In the expression of substitution, say s[z® := t], we always assume that ¢ is free for s as
1 3 3 (&2 R « —— o .
usual. We denote simultaneous substitution s[z]" :=t1,...,20" :=t,] by s[z® :=1], and a

sequence of simultaneously substituted terms si[z® :=t], ..., sp[z* :=t] by § [z :=t].

Definition 3.2 +-reduction rule in basic HL is of the following form.

L Lt
D L2 : D ’7
g(—) 5752 gu 5o (+)
. +
LU ] 7_,_7 (+)
g d(+) . E+D+75 (=)
E+a where 1 # () > E+a
— 7 — R
+(u,s{z’ = —(t1),y" :=1t2}) > —(+(u,+(1,12)))
NN T
Here, in the term notation s{z® := —(t;),3” := t2}, the term s contains only zf,y¥ as its

term-variables, although not all of them should appear in s. We express this condition using
braces { } that is different from the usual square brackets [ ] expressing substitution. The
above part on the left in a given proof is called a redex.

Although the following is the other form of +-reduction, since we assume the operation
+ to be commutative, we mainly consider the above reduction rule in what follows.

t1 t1 t
D
FOI 74 iu
ol . D+7 &

LS D u S (+)
E+a where t; # () > E+a
— 7 — R
—i—(S{.fﬁ = _(tl)vy’y = t2}7u) > _(+(+(t17t2)7u))

Example 3.3 +-reduction is performed as follows. See also Example 3.9.

Y DY ¢

2 0 & Dryo
E” oAy E+ (D + )
E+ (o Ny (+) > E+ (o Ny) (=)

@, (=), 2) > —(+(z,+(y,2)))

Example 3.4 The following proof is expressed as +(u, Ax. — (+(t1,t2]z]))) in our term no-
tation, where variable x appears in to. These applications of —-rule and +-rule do not con-
stitute a redex because —(+(t1,t2[z])) is not free for Az.z when we regard +(u, (A\zr.z)[z :=

—(+(t1, t2[x]))])-

11



[pa]”

t1 . ta
D 2
. D+ 2 (+)
D u ©3 (=)
& ©1 — P3 ?—F)
E+ (p1 = p3)

Such a case, where the “free for condition” is not satisfied exclusively occurs by applications
of FOL-rules to construct app-formulas. (Cf. Proposition 3.13.)

In a given proof, our redex is not uniquely determined. There are several redexes with
respect to the same application of app/uni. For example, in the following form of a proof,
each of del and obs induces a redex with respect to the same app.

Dt
D
zdel
(pobs
u s
E
a
g1y PP

Thus, to enumerate redexes in a given proof, we count every possible redex, such as pairs of
del-app (i.e., s{z7 := —(t)}) and obs-app (i.e., s{y® := —(—(t))}) in the above proof. Thus,
the above proof contains two redexes (explicitly).

Definition 3.5 (Normal form) A (heterogeneous) proof that does not contain any redex
is called a normal (heterogeneous) proof.

In accordance with our Postulate 2.1, in which we regard our diagram as the deductively
closed conjunction of formulas, our *-reduction rule can be understood by decomposing it
into two operations of deductive closure and +-permutation. Based on this consideration, we
show the subject reduction property as follows.

——_ﬁ %
Lemma 3.6 (Deductively closed) If s{z” := —(t1),y" :=t3} is a proof of c, then so is

Proof. Assume that given s is the following form on the left. Then, we obtain the follow-
ing proof on the right, where the last application of — is valid since the diagram D + 7 is
deductively closed.

: R tz Y b
D .t . :2
Z(=) " D 5
Bl — (+)
1S D+
16" o (*)

Lemma 3.7 (+-permutation) If +(u,—(t)) is a proof of € + a, then so is —(+(u,t)).

12



Proof. Assume that +(u, —(t)) is the following form on the left. We can then obtain the
following proof on the right, since a € |D].

.t Lu it
i gé# 88 +g((_+))
E+a E+a
|
Proposition 3.8 (Subject reduction) If +(u, s{z” := —(tl),m}) is a proof of £+«

then so is —(+(u, +(t1,12))).

Proof. Assume that the given proof is the following form on the left. Then, we obtain the
proof in the middle by Lemma 3.6. We further obtain the proof on the right by Lemma 3.7.

g : - 12 . D '
O D4 v — (4
: v : — (+) E D+7
U DS ;4 D47 ——— ()
E (+) E  a (+S_) E+D+7 (-)
E+a E+a E+a

Example 3.9 (Euler diagrams) We obtain the normal proof on the right by reducing the
obs-app pair of the following proof on the left in Fig. 1.

e‘@ Va(Bx — Cx)

app

\\ X X X
@‘@ @@ Vz(Cz — Dx)

app
Vz(Ax — Brx) obs
Ar — Bx  [Az]Y Vz(Bzx — Cx) l ’
Bzx Bx — Cx Va(Cax — Dx) c uni
Cx Cx — Dz
Dz
- Y >
Ax — Dx 6
Vz(Az — Dx) % 6
app ———— del

D D

Fig.1 =-reduction
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3.3 Normalization for basic HL

We show the normalization theorem for our basic HL. Note that the usual FOL-reductions
and our +-reduction are performed separately, that is, +-reduction does not provide any
FOL-redex, and FOL-reductions do not provide any +-redex. Thus, it is sufficient to prove
the normalization theorem only for the diagrammatic part, since that for FOL part is already
established.

Our #+-reduction provides numerous new applications of +-rule; hence, by reducing a
redex, numerous new redexes may be provided in general (when there are applications of
—-rule above the redex in question). However, by successively applying +-reduction to the
topmost-leftmost redex in a given proof, we can prove the weak normalization theorem for
our basic HL (cf. [27]). In this article, instead of fixing a reduction strategy, we generalize our
+-rule and consider a kind of parallel 4+-rule, which blocks the generation of new applications
of 4+-rule, and we show essentially the strong normalization theorem.

Theorem 3.10 (Normalization for basic HL) Let o, ; be a diagram or a formula. Any
proof of a from an, ..., a, is reduced to a normal proof of a from aq,. .., .

Proof. We generalize our +-rule to a parallel rule @ as follows, and we abbreviate the rule as
it appears on the right.

§t1 tn 281 D Sm st L8

D, .o Dy, o e O ©) D J(@)
D+3d D+
@(tlv"'vtnasb'"asm) @(t_;g)

The case n > 2 and m = 0 is the generalization of uni, and the case n > 1 and m > 1 is the
generalization of app. The +-reduction rule is generalized as follows:

t

D g M

5(—) 5 ruoont .
_ L7 & D 5
! U E+D+7 (©)

£ ) Y

—2 (@) — (-)
E+a > E+a

Note that ¥/ is a sequence of proofs such that vy {z? := —(t),y" := s},...,v.{2? :== —(t),y7 := s}.

By applying the above generalized +-reduction, the number of applications of — above
the @ is reduced; accordingly, the number of redexes is reduced. Therefore, by induction on
the number of redexes in the given proof, it is shown that any reduction sequence terminate
in finite steps.

Thus, for a given proof, we repeatedly apply the generalized +-reduction rule and obtain a
proof with some applications of @ without any redex. The proof with & is easily transformed
into the usual normal proof without ¢, and we obtain the theorem. ]

14



3.4 Structure of normal heterogeneous proofs in basic HL

Let us investigate how diagrammatic inference and FOL inference appear, and are related
in our heterogeneous proofs. Following [6], let us define the notion of tracks. To make our
discussion simple, we concentrate on the diagrammatic part by ignoring the FOL part. (Thus,
the usual subformula property of FOL is not obtained from the following definition of tracks.)

Definition 3.11 (Track) A path in a proof is a sequence of formulas and diagrams as, . . ., ay,
such that (1) a; is an open or closed assumption; (2) «a, is the conclusion of the proof; (3)
«; is a premise immediately above ;41 for 1 <i<n—1.

A track is an initial part of a path which stops at the first app-formula or at the conclusion.

Lemma 3.12 (Track) In every track in a normal proof in basic HL, no application of —-rule
can precede an application of +-rule.

Proof. Assume that there is an application of —rule in the given track.

(1) When the given application of — is obs, assume to the contrary that there is an application
of 4+ under the obs. We assume the + is the first one under the obs. Since the given track
does not end at the app-formula of the given +, it is the following form of wy, us:

Since formula ¢ should be transformed into diagram Dy in wug, there should be another
application of + in ug, which contradicts to the assumption that the above + is the first one
under the obs. Thus, no application of obs can precede an application of +.

(2) When the given application of — is del, assume that there is an application of + under
the del. We assume the + is the first one under the del. Since there exists no obs before the
4+, the given track is the following form of w1, us:

-
D,
Dig del

u2 :

D3 16"

Since the above + is the first one under the del, us consists only of applications of del. Thus,
no variable of u; becomes bound in the process to construct uo; hence the above pair of del
and + comprises a redex, which contradicts to the assumption that given proof is normal.
The same applies to the case wherein the given — is *FE.
Therefore, no application of —rule can precede an application of +-rule. ]

Proposition 3.13 (Normal proof in basic HL) In any normal proof t, every track in t
has the form (1) p1,...,pr (when the track starts from a formula), or (2) D1,..., Dy, &1, ..., Em,
U1, ..., %, (when the track starts from a diagram), where
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® Vo, ..., pp and 1y, ... Py, are obtained by FOL-rules (FOL part);
e Dy, ..., Dy are obtained by +-rule (+ part);
o &1,...,Em, Y1 are obtained by —-rule (— part).

Proof. (1) When the given track starts from a formula o7, only FOL-rules are applicable to
obtain s, ..., ¢k, where yg is an app-formula or the conclusion of ¢. This is because every
track stops at an app-formula or the conclusion; hence, no formulas are transformed into a
diagram in any track starting from a formula.
(2) When the given track starts from a diagram D, rules of app, uni, obs, del are applicable.
By Lemma 3.12, we assume without loss of generality, that + is applied certain times to
Di,...,D;_1, and then — is applied to D;. Do, ..., D; may be %, and if it appears once, *
continues to appear until D;.

obs and del are applicable to D;. Since obs transforms a diagram into a formula, we
assume without loss of generality, that del (or *E when Dj is %) is applied certain times to
Dy, &1, ...,Em_1, and then obs is applied to &,,.

Then, 1; is obtained from &, by obs, and by the same reason as (1) above, only FOL-rules
are applied to 91,...,1,_1 to obtain ,. [ |

Thus, in our basic HL, every normal proof has the following form.
¥1

D, Sf"k(

When 1, is an app-formula, the whole structure as above appears as a part of a normal proof.

Normal proofs of FOL have the subformula property, and we find that sentential inference
comprises decomposition of given assumptions and construction of a conclusion. In contrast,
from Proposition 3.13, we find that diagrammatic inference comprises construction of a dia-
gram by unifying given assumptions and extracting a conclusion. Thus, we have the following
maximal diagram property, which may be considered to be a diagrammatic counterpart of
the subformula property.

Corollary 3.14 (Maximal diagrams) Lett be a track Dy, ..., Dy, 1y, Emy U1, ... Uy in
a normal proof. Then, there exists a diagram D in t such that D;,E; T D for 1 <i <1[,1<
7 < 'm, or there exists a sequence of x in t.

Proof. First observe that premises of +-rule are subdiagrams of its conclusion, and the
conclusion of del is a subdiagram of its premise.
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By Proposition 3.13, Ds, ..., D; are obtained by +-rule, and hence D; C D; for all 1 <1 <
l—1. &, ...,&y are obtained by del, and hence £; C D; for all 1 < j < m. Therefore, D; is
the maximal diagram of the given track.

As shown in Proposition 3.13, * appears, if any, at D,,...D;, and if it appears once, *
continues to appear until Dj. [ ]

Let us call a track that reaches to the given conclusion a main track; and a track that ends
with an app-formula a minor track. A main track comprises the main part of diagrammatic
reasoning, where a maximal diagram is constructed and the conclusion is extracted; and every
minor track constructs an app-formula.

There exists a maximal diagram in every track, and it is impossible in general to compare
the complexities of such maximal diagrams in a proof.

4 Extension of basic heterogeneous logic

In Section 4.1, we extend our basic HL to HLe by extending the +-rule in the style of general
elimination rules in FOL. In Section 4.2, we prove the normalization theorem for extended
HLe. In Section 4.3, we investigate the structure of normal proofs, and show the maximal
diagram property of HLe.

4.1 Extended HLe

Other than the case of contradiction, our +-rule (app and uni) in basic HL may provide
*. Omne of the typical cases is the case wherein the result of unification between D and ¢
is not uniquely determined as a single diagram. For example, in our Euler diagrammatic
system [13], we cannot apply our app-rule to the following diagram D in Fig. 2 and a formula
Vx(Az — Bzx). This is because whether point a is included by A is not determined in the
unified diagram. In such a case, the result of unification of D and ¢ becomes * in basic HL.

C

D

Fig. 2 Indeterminacy

There are several options to avoid such a difficulty: (i) we may prohibit such an application
of +-rule (e.g., [13]); (ii) we may extend the notion of a diagram so that disjunctive information
can be expressed by introducing certain devices such as linking between points and diagrams
(e.g., [23, 10]); (iii) we may extend inference rules, instead of diagrams, to deal with disjunctive
information (e.g., [5]). This article adopts (iii) with our Postulate 2.1. To this end, we first
define exhaustive cases, which refer to a disjunction of diagrams equivalent to the deductive
closure of D and « at the level of types.

Definition 4.1 (Exhaustive cases) Let D, &, ..., &, be diagrams, and « be a diagram or a
formula. When 0b(D)Uob(a) = 0b(&;) for 1 <i < nand {p? | |D|,|a| - ¢? in intuitionistic FOL} <+
|E1] V - -V |&,] holds in intuitionistic FOL, we call &1, ..., &, exhaustive cases for D plus

a. We denote &; by (D + a);.
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In particular, when there is no exhaustive cases for D plus «, we express it by the special
diagram .

Note that we restrict the FOL provability relation to that in “intuitionistic logic.” This is
because the disjunction property of intuitionistic logic is applied in the proof of Lemma 4.5
(Subject reduction). In what follows, for the FOL provability in our extended HLe, we mean
the intuitionistic provability.

Example 4.2 Exhaustive cases for D in Fig.2 plus Vz(Ax — Bz) are the following two
diagrams.

(D +Vz(Az — Bx))1 (D + Vz(Az — Bz))2

Using the exhaustive cases, we extend +-rule as follows.

Definition 4.3 Extended +-rule (app and uni) as well as its term notation in HLe are of
the following forms. Let (D + «)1, ..., (D + «), be exhaustive cases for D plus a.

| D+ [(D+a))
Su g ;51 : Sn
D B 8
where every x in s; (1 < i < n) is bound by +,. In this rule, D and « are major premises
and f3,...,0 are minor premises. In our term notation, we divide proofs of major premises
(u and t) and minor premises (si,...,S,) by a semicolon ; . Furthermore, we call exhaustive
cases auxiliary assumptions in a given proof in accordance with the VE-rule of FOL.

+Z‘ (U,t;Sl,...,Sn)

The +-rule in basic HL, where the conclusion diagram is uniquely determined and hence
exhaustive cases is a singleton, is the following special case of the extended +-rule:

tulyg
D & [D+aff
D+ a

(+2) +z (u,t;x)

+-reduction is also extended as follows:

Definition 4.4 Extended +-reduction in HLe is of the following form. The following part
in a proof is called redex:

t1
£ L
5O L2 Dranr [(D+a)l
U St D81 Sn
D o B B
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is reduced to the following form, where we assume E=&+--+&, and Y=y1+- 4+

Siy...,8; € {s1,...,sn}. In the following z, 4, p ranges from 1 to k of £ and q ranges from 0
to [ of 4:
[(D+E+7))" ) (D +E+F)m]”
(D +a) (D +a);
= L to . Si S S5
(©+Erozrt 5 3 % )
_ to1 : (+)
SN AV (C ) e B (a0 1)
(D + &E—1)]" 10 & B e
3 (F2k0)
ti1 (+)
& B
+z10
3 (+21,0)

The term notation of #-reduction in HLe is as follows:

—
+(u, t{y := —(ts ;,z =1t} 81,.-.,5n)

> +I170 ('LL, t117 Ty +xk’0 (:L'k,‘—l,(% tlk‘a +$k11 ($k,07 t217 e

o (Tt tags sife = — ()], sl o= —(@)]) ) )

where t1,t5 are free for t. Every bound variable z in the original s; is replaced by z’ after
the reduction, and 2’ in sy, ..., s; are bound by +/. 44 (Tg -1, to; sifz == —(2)], ..., sj[z =
—(2')]) means that the whole structure +,/(zg 1, to; silz = —(2')],...,sj[z == —(2')]) is
repeated by the number of times depending on the number of exhaustive cases for D+E+ o/
plus 7;_1. In the expression s;[z := —(2')], proof s; may contain variables other than z.

The above £-reduction is essentially the same as that in basic HL. When « is deduced from
£ and ~ by using —-rule, and « is unified with D, we obtain the same result without deducing
«, but by directly unifying g ,%, and D. Although the form of extended +-rule makes the
appearance of proof complicated, the above proof after the reduction just expresses successive
applications of +-rule to D, &1, ...,& and 71, ..., one by one.

After the reduction, which proofs s;,...,s; of s1,...,s, in the original proof appear de-
pends on the exhaustive cases for D, g , plus 4. This is shown in the following proof of the
subject reduction property. (See also Example 4.6.)

Lemma 4.5 (Subject reduction) The extended £-reduction in HLe preserves the conclu-
sion of a proof.

Proof. To show that the applications of —-rule in the reduced proof are valid, we prove for
all 1 <7 < m, there exists 1 < j <n such that [(D + & +7);| - |(D + «);].

By the assumption on the original proof, we have |1|,...,|Ek|, [71],---, || F |a|, which
implies ‘D|7 ’gl‘v SRR ’gk’a ’71‘7 s h/l‘ - |D| A |Oé|

Let Cl(p1,...,pn) be the deductive closure of ¢1,...,¢,. Then, by the definition of
exhaustive cases, we have \/, |(D + & +7):| = CU(|D|, [E1], - - ., [Ekl, Il [nl) and V,; (D +

a)j| = CI(|D|, |a|). Hence, we have \/; (D + E+9) V; (D + a);], which implies |(D +

19

(=)



E+7)| - V; [(D+«);| for all 1 <4 < m. Then, by the disjunction property of intuitionistic

logic, there exists 1 < j < n such that |(D + & 4 7);| F [(D + a);].

Example 4.6 (Euler diagrams) Our extended +-reduction in HLe can be applied in our

Euler diagrammatic system as follows:
x

del

B
C
b

<C
=
N
8
4
oy
&
8
5]

is reduced to the following:

T

del

appy

7. (e (@,
del del deI

Remark 4.7 The following applications of — and + (4, and +,) do not constitute any

redex.
w iy PraF o ERP
D ag 5 (+w) tz 58
(+y)

B

In our term notation, the above proofis 4+ (4 (u, t1; —(z)), t2; s). If we consider +,(u, t1; 2)[z :=
— ()] then —(x) is not free for 4+ (u, t1; 2); hence, it is not a redex. In contrast, the following

proof contains a redex (marked by boxes).

€+
D+ a]* _ D s
§u;t15 i 5(+)
D « B Y
The above proof is +4(u, t1;+,(—(x),t2; s)); if we consider +,(z,t2;5)[z := —(x)] then —(x)

is free for +,(z,t2;s). Hence, it constitutes a redex.
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4.2 Normalization for HLe

Our extended =+-reduction may provide a new redex. Let us consider the following proof,
where we assume that every exhaustive case is single for simplicity.

. Dt §t3
g D+l 6 [D+e+o]
p" E[0] o

D+yp+o

(+y)

+a (T, —(t2); +y (2, t339))
By reducing the above redex, we obtain the following proof, where a new redex is produced:

it ity DAy o [Dtp+al

D & Dto+o
D+yp+o

(+y)

+
( x) +g (t17t2§+y(_($/)7t3;y))
When we further reduce the above new redex, we obtain the following proof without any
redex (explicitly). Note that the application of — in the minor premise does not constitute a
redex.

it [D+E+0V

ty ity [D+E]T o D+<P+U(+,)
D & D+e+o Y
Dty+o (o)

tar (b1, 25+ (2 13— (Y)))

In general, the more exhaustive cases for an application of +, the more new redexes are
provided after an application of +-reduction. However, those new redexes are provided at the
minor premises of the original application of +, that is, redexes are moved to the right upper
part of the proof, and the height of proofs remains essentially unchanged by #4-reduction.
Thus, we prove our normalization theorem by the following procedure: (1) we choose the
rightmost-uppermost redex; (2) after an application of +-reduction, we further reduce new
redexes one by one, which are located at the right upper part. Thus, our theorem is essentially
the weak normalization theorem.

Theorem 4.8 (Normalization for HLe) Let o, ; be a diagram or a formula. Any proof
of a from ay, ..., a, is reduced to a normal proof of a from aq,. .., .

Proof. For the same reason as the proof of the theorem for basic HL, to block the generation
of inessential redexes, we generalize our +-rule to a parallel rule @, where the number of

major premises is not restricted to two. Let (D + @)1,..., (D + &), be exhaustive cases for
D plus a:
| (D+ank  (D+@nk
tuotf st D Sp
D B e 64
g @) o B

where every x in s; is bound by @,.
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Our +-reduction is also generalized as follows.

t
Ey it . R
57V 57 (mran (D + @)
u t3 DSt Sn
D Q 15} I}
is reduced to the following:
(D +a); (D +a);
UL s i= (") syl = —(@)
D & 4 3 3
Dy
- (@)
where we assume (D + £+ MNiy-oy (D + £+ ¥)m be exhaustive cases for D, €, plus 7, and
Siy...,8; € {s1,...,sn}. The term notation is as follows:
L — N
EBgc(u,tg{y‘S = —(t1),27 i=ta};81,...,8n) > Dw(u,ty,t sz = —(2)],... ,Sjlx = —(2"))

We choose the rightmost-uppermost redex, which does not contain any redex in its minor
premises. Thus, such redex has the above form, where s1, ..., s, does not contain any redex,
although w, {1, t2, t3 may contain some redexes. We show that the redex is removable by the
induction on the maximal number K of applications of & in every si,..., S,.

(1) When K = 0, none of sq,...,s, contain any application of @. By reducing the given
redex, the original redex is reduced and no redex is generated in this part because s;,...,s;
does not contain any application of .

(2) When K > 0, there exists at most K applications of & in every si,...,s,. Assume
that s; contains K applications of @, and s; appears after the reduction. Although these
K applications of @& do not constitute any redex in the original proof since we choose the
rightmost-uppermost redex, they may constitute numerous new redexes in s;[x := —(2)]
after the reduction. However, for every redex generated after the reduction, the number of
applications of & in its minor premises is reduced to less than K. The same applies to proofs
other than s;. Thus, by the induction hypothesis, we can reduce case K > 0 to case K =0,
and we are able to reduce the rightmost-uppermost redex.

Therefore, by the induction on the number of redexes, we obtain the theorem. [ |

4.3 Structure of normal heterogeneous proofs in HLe

As is the case with VE-rule in the usual natural deduction for FOL, our extended +-rule
in HLe makes it difficult to grasp the structure of proofs. When we examine the maximal
diagram property of HLe, we find that it is difficult to compare the complexities of diagrams
D+ a and &€ + v in the proof of Remark 4.7. To overcome this difficulty, we consider other
reduction rules related to our 4+-rule. These include simplification reduction and permutation
reduction as investigated by [19, 17, 16].

We first consider the simplification reduction. When one of the minor premises does not
depend on an auxiliary assumption of an application of +, we already have a proof without
the application of +.
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Definition 4.9 (Simplification) Simplification reduction is of the following form:

, (D + )] , (D + a)n)®
tu g 51 si S
5 (+2) > 3

where s; does not contain the term-variable z.
As indicated by [17, 16], simplification reduction may provide new +-redex. Thus, we
need to apply simplification reduction first before applications of £-reduction.

Next, we investigate the permutation reduction. We extend the notion of major premises
to apply FOL introduction rules and —-rule, too.

Definition 4.10 (Permutation) Major premises of introduction rules of FOL, as well as
—-rule, are premises of those rules.

Let R be an inference rule. When a major premise of R is obtained by +-rule, we apply
the following permutation reduction:

e The case where R is not +-rule is as follows:

_ (D + ah]” (D + a)n]” (D + o)1) (D + a)n]®
DU : 51 : Sn : 81 C Sp
(+z) o ~ R —~ R
% R N D 77 ~ ()

e The case where R is +-rule (+, below) is as follows:

| (D+a)r  [(D+a))
P U2t D S ;S [(E+B))Y
& B ’3 ol
- (+)
is reduced to the following:
e N (R R N (R
: : : S1 D83 W : Sn : 85
fuy iy € : i :
b4 - T & 7 (+,)
. (+2)

Observe that permutation reduction moves an application of 4+ in a major premise to the
positions of minor premises.
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Example 4.11 Permutation reduction is applied as follows:

. [P+ off €+ o)
Pur gy L s1 Cup b ey BT
D a p ' ! ; DS
(+2) & @ Y (4 5
B g (+2)
5 4
is reduced to the following:
. . ) €+ )Y ;
D+a]” fuy it ey BT
P81 & o o i 83
5 x

The above proof is further reduced to the following;:

D+al" g4 B+
) : 51 LS9 . 53
Dug e B g Y
u1 tl g OZ/ 1) (+ ) (+Z)

An application of permutation reduction always reduces the number of applications of + in
a major premise in a given proof. Therefore, by successively applying permutation reduction,
we finally obtain, in finite steps, a proof without applications of + in any major premise.

Permutation reduction may provide new +-redexes. Let us consider the proofs in Remark
4.7, where the second proof is obtained by an application of permutation reduction to the
first. Although the first proof does not contain +-redex, the second proof contains a +-redex.
Thus, we need to apply permutation reduction, as well as simplification reduction, in advance
of £-reduction.

Observe that in Definition 4.4, after simplification and permutation reductions, there
are no applications of +-rule in w, t1, t3 both in the proofs before and after application of +-
reduction. Thus, +-reduction does not provide any permutation redex. Therefore, by applying
simplification and permutation reductions followed by +-reduction, we obtain intended normal
proofs. In what follows, by normal proofs, we mean proofs which do not contain any +-redex,
simplification redex, nor permutation redex.

Let us now investigate the structure of normal proofs. Following [30], we extend the notion
of tracks to our HLe. For simplicity, we define it only for normal proofs.

Definition 4.12 A track of a normal proof ¢ in HLe is a sequence of formulas and diagrams
aq, ...,y such that

1. «1 is an open or closed assumption not closed by +-rule.
2. «y, is either an app-formula or the conclusion of ¢.

3. a; (1 <i<n-—1)isnot an app-formula, and either:
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(a) «; is not the major premise of +-rule and a;41 is directly below «;; or
(b) «; is the major premise of +-rule and a;41 is an auxiliary assumption of the +-rule.

In the same way as Lemma 3.12, Proposition 3.13, and Corollary 3.14 for basic HL, we
obtain the following lemma, proposition, and the maximal diagram property for HLe.

Lemma 4.13 (Track) In every track in a normal proof in HLe, no application of —-rule can
precede an application of +-rule.

Proposition 4.14 (Structure of normal form) In HLe, every track in a normal proof of
« has the form (1) ¢1,...,¢r (when the track starts from a formula), or (2) Di,...,Dy,
Elyeo s Emy W1,y Uny . a0 (when the track starts from a diagram), where

® Vo, ..., and Yo, ..., 1y, are obtained by applications of FOL-rules;

e Dy,...,D;_1 are major premises of applications of +-rule;

o D; is one of the auxiliary assumptions of the last application of +-rule;
e &1,...,Em, Y1 are obtained by applying —-rule;

e «, ..., are conclusions of applications of +-rule.

Thus, every normal proof has the following form:

D del/ « E
571 e / *
: del
Em
‘ a obs
: : FOL
D] B &
| = (+)
R )
: 2] P2 a
D1 ok a (+)
a (+)
Corollary 4.15 (Maximal diagrams in HLe) Lett be a track D1, [D2],...,[Di], &1, .., Em,

V1, .oy Un, @, ..., ina normal proof. Then there exists a diagram D int such that D;, E; T D
J
or1 <i<I[,1<j<m, orthere exists a sequence of x in t.
J ; q

Proof. We show that [D;] is the maximal diagram in ¢. When D; # * for 1 < i <[, let us
consider the following form of an application of +:

(D +anl (D +a)l
— (+2)

If there is another application of 4+ in the above si, due to the form of normal proofs (cf.
Proposition 4.14), [(D’ + «)k]* should be a major premise of an application of + in s. In
general, every major premise of an application of + is a subdiagram of every exhaustive case
of the application of +. Hence, [(D’ + a)x|* should be a subdiagram of another application of
+, and every exhaustive case of the topmost application of +, i.e., [D;] in the above sequence,
is the maximal diagram in t. [ |
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5 Concluding remarks

Let us summarize our results and discuss relationships and certain dualities between sentential
reasoning and diagrammatic reasoning.

The basis of our study is the Postulate 2.1. From the perspective of FOL, we regard
our diagram as the deductively closed conjunction of diagrammatic formulas. Based on this
observation, we have defined inference rules of HL. Natural deduction inference rules of FOL
consist of pairs of introduction and elimination rules for every connective. Inference rules of HL
consist of +-rule (app and uni) and —-rule (obs, del, and *xE). Here, +-rule (i.e., construction
of a diagram) can be considered to be a generalization of the conjunction introduction rule of
FOL, and —-rule (extraction from a diagram) can be considered to be a generalization of the
conjunction elimination rule. (However, this correspondence is more subtle in our extended
HLe, where +-rule has the form of the general elimination rule.)

By examining what is a detour in heterogeneous proofs given the Postulate 2.1, we have
defined our £-reduction rule for heterogeneous proofs. In the usual natural deduction for FOL,
reduction rules are defined for every introduction-elimination pair of connectives. In contrast,
our +-reduction rule for heterogeneous proofs is defined for the elimination-introduction pair
by regarding —-rule as an elimination rule and +-rule as an introduction rule.

In terms of the reduction rule, we have proved the normalization theorems for basic HL
(Theorem 3.10) and for extended HLe (Theorem 4.8). In FOL, one of the most important
consequences obtained from the normalization theorem is the subformula property. We have
investigated a diagrammatic counterpart of the subformula property, and we have shown
the maximal diagram property for HL (Corollary 3.14) and for HLe (Corollary 4.15). Thus,
in contrast to the reduction in FOL, which reduces a maximal formula, the reduction in
heterogeneous logic constructs a maximal diagram.

Based on the normalization theorems, we have further investigated the structure of normal
proofs in HL (Proposition 3.13) and in HLe (Proposition 4.14). In FOL, every normal proof
consists of, from the top-down, applications of elimination rules followed by applications
of introduction rules. Thus, sentential reasoning, as characterized by [19, 18], consists of
(1) decomposition of given assumptions, and (2) construction of a conclusion by combining
the decomposed formulas. In contrast, every normal proof in HL consists of applications
of +-rule (the introduction rule) followed by applications of —-rule (the elimination rule).
Thus, diagrammatic reasoning consists of (1) construction of a maximal diagram by unifying
pieces of information contained in given assumptions, and (2) extraction of a conclusion
from the unified diagram. This observation is also supported by various cognitive studies on
diagrammatic reasoning, for example, [1, 24].

Gentzen [8] remarked that an introduction rule gives the meaning of the logical connective
in question, and this meaning justifies the corresponding elimination rule. This idea is devel-
oped by Prawitz to the notion of the proof-theoretic validity [19], and further developed to
proof-theoretic semantics, cf. [22, 15]. In our diagrammatic reasoning, +-rule is a geometric
operation such as adding diagrammatic objects to a part of the given diagram, and it does
not commit in the meaning of diagrams directly. On the other hand, —-rule is an operation
to extract meaning from the given diagram. Thus, —-rule, i.e., the elimination rule, seems
to be principal in terms of proof-theoretic semantics. This is also in contrast to sentential
reasoning, where introduction rules are usually considered to be principal.

In this way, there are certain dualities between sentential reasoning and diagrammatic
reasoning. Their relation has also been extensively discussed in the literature on cognitive
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science, in particular, as to which of rule-based sentential reasoning and model-based reasoning
is fundamental to, or is close to, our actual reasoning. While rule-based sentential reasoning
is considered to be conducted by constructing a kind of natural deduction proofs for FOL
(e.g., [20]), model-based reasoning is considered to be conducted by constructing a mental
model (e.g., [11]), which was derived from the notion of models in logic. A mental model
is a restricted finite model in logic, and it is constructed as long as it is conceivable for a
reasoner depending on his/her state of knowledge. Such a mental model can be considered to
be represented by a diagram, and hence, reasoning with mental models can be considered as
reasoning with certain diagrams. Thus, our investigation on heterogeneous logic combining
sentences and diagrams may shed light on the discussion from the perspective of proof theory.

Based on the above findings on the duality between sentential and diagrammatic reasoning,
we need further philosophical investigation into this relationship.
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