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1 Introduction

One of the basic paradigms of logical studies is

to show soundness and completeness of syntac-

tic inference systems with respect to a certain

model theoretic semantics. The usual setting

of soundness and completeness is provided with

respect to “provability”. In this note we show

that the same paradigm can be extended to the

setting of soundness and completeness with re-

spect to “proofs”, in place of “provability”, for

certain logical systems. For that purpose, as a

simple setting, we give phase semantic sound-

ness and completeness, for proofs, of the im-

plicational conjunctive fragment of intuitionis-

tic logic (IL). We show that the phase seman-

tic soundness and completeness argument for

provability (which was presented in eg. [Okada

02]) can be naturally extended to that for

proofs in this setting.

Soundness and completeness of IL in phase

semantics for provability are expressed as the

following statement: A formula A is provable

in IL if and only if A is true in any phase

modelM for IL. In phase semantics for proofs,

this statement is replaced by the form referring

to not only a formula but also a proof explicitly:

s is a proof of formula A if and only if s

belongs to the interpretation A∗ of formula A

in any phase modelM for proofs.

Our phase

semantic model construction is closely related

to the computability/reducibility argument for

the normalization theorem for λ-calculus (see

[Tait 67, 75], [Girard 72], [Prawitz 71] and

[Marin-Löf 75] etc.). One of the most notable

differences between these approaches and ours

is in the way of model construction. The com-

putability/reducibility argument directly refers

to such a syntactic notion as normalizability.

(See, for example, [Barendregt 92] or [Gallier

90] etc..) This means that a specific single

model (namely the syntactic canonical model)

is considered in the argument. On the other

hand, we give a more general model construc-

tion based on the notion of phase space, which

is defined independently of such a notion as

normal form or normalizability.

In this note we shall present our paradigm

with a simple setting, following [Okada 96].

The domain of our models consists of untyped

λ-terms with contexts. Logical connectives

(type constructors) are defined by the type as-

signment rules. There is a “closure condition”

of the form: if s ∈ X and s ≃ t, then t ∈ X,

namely the interpretation of types should be

closed under a kind of equality (for example

βη equality). Then we shall show soundness

and completeness for this semantics by using

almost the same argument as the phase seman-

tic argument for provability.

2 Phase semantics for

proofs of IL→∧

In this section, we shall introduce a type as-

signment system for the implicational conjunc-

tive fragment of traditional intuitionistic logic



IL→∧ and phase semantics for proofs of this

system.

2.1 Review of the type assign-

ment system for IL→∧

There are two ways to introduce types into λ-

calculus. One is due to [Curry 34], and the

system is called type assignment system. The

other is due to [Church 40], and the system

is called explicitly-typed λ-calculus. We shall

introduce a type assignment system for IL→∧.

A type assignment system is designed on the

operation of assigning a type to an untyped λ-

term. We review the basic notions following

[Barendregt 92].

Definition 2.1.1 (Untyped λ-terms)

Untyped λ-terms (λ-terms, for short) are de-

fined as follows:

• Variables x, y, z, . . . are λ-terms.

• If x is a variable and s is a λ-term, then

λx.s is a λ-term.

• If s, t are λ-terms, then E→(s, t),

< s, t >,E∧
1 (s), E

∧
2 (s) are λ-terms.

E→(s, t) is the application of s and t, and it

is usually written as (st). E∧
1 , E

∧
2 are projec-

tions, and they are usually written, for exam-

ple, as π1(s), π2(s). Our notation comes from

[Troelstra 92].

We shall define substitution. With α-

conversion, we assume that a variable does not

occur free and bound in a λ-term.

Definition 2.1.2 (Substitution) For any λ-

terms s, t and a variable x, the substitution of t

for the free occurrences of x in s (written s[x :=

t]) is defined as follows, where x ̸≡ y:

x[x := t] ≡ t,

y[x := t] ≡ y,

(λy.u)[x := t] ≡ λy.(u[x := t]),

(λx.u)[x := t] ≡ λx.u,

E→(u, v)[x := t] ≡ E→(u[x :=

t], v[x := t]),

< u, v > [x := t] ≡< u[x := t], v[x :=

t] >,

E∧
i (u)[x := t] ≡ E∧

i (u[x := t]) for

i = 1, 2.

Definition 2.1.3 (Types) Types are defined

as follows:

• Atomic types R,Q, . . . , R1, R2, . . . are

types.

• If A and B are types, then A → B and

A ∧B are also types.

Next we define the property of typability of

λ-terms.

Definition 2.1.4 (Typable)

• A statement is of the form s : A with a

λ-term s and a type A.

• A context is a finite set of statements

such that x1 : A1, . . . , xn : An where all

x1, . . . , xn are distinct variables. We write

Γ,∆,Π for any context.

• A λ-term s is typable as type A if a se-

quent Γ ⊢ s : A is derivable for some con-

text Γ by the following type assignment

rules.

Definition 2.1.5 (Type assignment rules)

• Axiom

Γ, x : A ⊢ x : A

• → I

Γ, x : A ⊢ s : B

Γ ⊢ λx.s : A→ B
→ I



• → E

Γ ⊢ s : A→ B ∆ ⊢ t : A
Γ ∪∆ ⊢ E→(s, t) : B

→ E

∪ is the set theoretical union operator.

We sometimes write Γ,∆ in place of Γ ∪∆.

• ∧I
Γ ⊢ s : A Γ ⊢ t : B
Γ ⊢< s, t >: A ∧B

∧I

• ∧E1

Γ ⊢ s : A ∧B
Γ ⊢ E∧

1 (s) : A
∧E1

• ∧E2

Γ ⊢ s : A ∧B
Γ ⊢ E∧

2 (s) : B
∧E2

We shall introduce βη equality relation ≃.

Definition 2.1.6 (βη equality relation)

• β-rule

E→(λx.s, t) ≃ s[x := t]

E∧
1 (< s, t >) ≃ s

E∧
2 (< s, t >) ≃ t

• η-rule

λx.E→(s, x) ≃ s if x ̸∈ FV (s)

< E∧
1 (s), E

∧
2 (s) >≃ s

• Congruence rules

s ≃ t
E→(u, s) ≃ E→(u, t)

s ≃ t
E→(s, u) ≃ E→(t, u)

s ≃ t
< u, s >≃< u, t >

s ≃ t
< s, u >≃< t, u >

s ≃ t
E∧

1 (s) ≃ E∧
1 (t)

s ≃ t
E∧

2 (s) ≃ E∧
2 (t)

• ξ-rule

s ≃ t
λx.s ≃ λx.t

• Reflection rule

s ≃ s

• Symmetry rule

s ≃ t
t ≃ s

• Transitivity rule

s ≃ t t ≃ u
s ≃ u

– A redex is a λ-term of the form

E→(λx.s, t) or E∧
i (< s, t >) for i = 1, 2.

– A λ-term s is in normal form, if s con-

tains no redex.

2.2 Phase semantics for proofs of

IL→∧

In this subsection, we shall introduce phase

semantics for proofs of the implicational con-

junctive fragment. Operations → and ∧ are

introduced in a manner similar to those opera-

tions in phase semantics for provability, namely

based on the → elimination rule and the set

theoretical intersection operator.

The domain of our models consists of un-

typed λ-terms with contexts. The reason why

we need not only λ-terms but also contexts

shall be stated as Remark 3.3.1 in the end of

the proof of the completeness theorem.

Definition 2.2.1 (Phase model) A phase

model is (M,P, ∗) such that:

• M is a set.

• P = {(M�s)|M ⊆M and s is an untyped

λ-term }. We sometimes call this set the

domain of labeled λ-terms.

• There are some operations for any α, β ⊆
P defined as follows:

– α → β = {(M � s)|(M ∪ N �

E→(s, t)) ∈ β for any (N � t) ∈ α},

– E∧
i (α) = {(M�s)|(M�E∧

i (s)) ∈ α}
for i = 1, 2,

– α ∧ β = E∧
1 (α) ∩ E∧

2 (β).

• c is a closure operator from the power set

of P to the power set of P such that:

– if s ∈ αc and s ≃ t, then t ∈ αc.

• Further we assume that αc satisfies the

monotonicity property, namely if (M �

s) ∈ αc and M ⊆ N then (N � s) ∈ αc.

• α ⊆ P is called closed if α = βc for some

β ⊆ P.

• We call (M,P) phase space.

• ∗ is an interpretation function such that:



– R∗ = α for some closed set α,

– (A→ B)∗ = A∗ → B∗,

– (A ∧B)∗ = A∗ ∧B∗.

Lemma 2.2.1 For any α and β, α → βc and

αc ∧ βc are closed, namely:

if (M � s) ∈ α→ βc and s ≃ t, then (M � t) ∈
α → βc; and if (M � s) ∈ αc ∧ βc and s ≃ t,

then (M � t) ∈ αc ∧ βc.

Proof: Assume (M � s) ∈ α→ βc and s ≃ t,

then we have (M ∪ N � E→(s, u)) ∈ βc for

any (N � u) ∈ α. Since βc is closed and we

have E→(s, u) ≃ E→(t, u) from the hypothesis

s ≃ t, we have (M ∪ N � E→(t, u)) ∈ βc for

any (N � u) ∈ α. Hence (M � t) ∈ α→ βc.

Let (M�s) ∈ αc∧βc, namely (M�E∧
1 (s)) ∈

αc and (M � E∧
2 (s)) ∈ βc. From the hy-

pothesis s ≃ t, we have E∧
1 (s) ≃ E∧

1 (t) and

E∧
2 (s) ≃ E∧

2 (t). Since α
c and βc are closed, we

have (M �E∧
1 (t)) ∈ αc and (M �E∧

2 (t)) ∈ βc,

namely (M � t) ∈ αc ∧ βc.

From this lemma and the definition of the

interpretation function, any interpretation A∗

of type A is closed.

3 Soundness and complete-

ness of IL→∧

In this section, we shall prove the soundness

theorem and the completeness theorem. Our

argument below is essentially an extension of

the completeness argument of phase semantics

for provability in [Okada 96,99,02].

We shall also prove the normal form theorem

for IL→∧ with the following form: if a λ-term

s is typable, then there is a λ-term t in nor-

mal form such that s ≃βη t . This theorem is

obtained from the soundness theorem and the

completeness theorem.

3.1 Soundness theorem

We shall show the soundness theorem.

Theorem 3.1.1 (Soundness theorem) If

x1 : A1, . . . , xk : Ak ⊢ s : B, then, for any

phase model (M,P, ∗), (
∪

1≤i≤k Mi � s[x1 :=

s1, . . . , xk := sk]) ∈ B∗ for any (Mi�si) ∈ A∗
i .

Proof: We shall prove this theorem by in-

duction on the construction of derivation for

x1 : A1, . . . , xk : Ak ⊢ s : B. We shall

abbreviate x1 : A1, . . . , xk : Ak as Γ and

y1 : B1, . . . , yl : Bl as ∆. We shall also ab-

breviate
∪

1≤i≤k Mi as
∪
Mk if 1 ≤ i ≤ k is

clear from the context.

1. When Γ, x : A ⊢ x : A.

We should show (
∪
Mk ∪ M � x[x1 :=

s1, . . . , xk := sk, x := t]) ∈ A∗ for any

(M � t) ∈ A∗ and for any (Mi � si) ∈ A∗
i ,

but this is obvious from the monotonicity

condition.

2. When
Γ, x : A ⊢ s : B

Γ ⊢ λx.s : A→ B
→ I.

From the induction hypothesis, we have

(
∪
Mk ∪N �s[x1 := s1, . . . , xk := sk, x :=

t]) ∈ B∗ for any (Mi � si) ∈ A∗
i , (N �

t) ∈ A∗. Because B∗ is closed and

s[x1 := s1, . . . , xk := sk, x := t] ≃
E→(λx.s, t)[x1 := s1, . . . , xk := sk], we

have (
∪
Mk ∪ N � E→(λx.s, t)[x1 :=

s1, . . . , xk := sk]) ∈ B∗, for any (Mi�si) ∈
A∗

i , (N � t) ∈ A∗, this means (
∪
Mk �

λx.s[x1 := s1, . . . , xk := sk]) ∈ A∗ → B∗,

for any (Mi � si) ∈ A∗
i from the definition

of →.

3. When
Γ ⊢ s : A→ B ∆ ⊢ t : A

Γ ∪∆ ⊢ E→(s, t) : B
→ E.

From the induction hypothesis, we have

(
∪
Mk�s[x1 := s1, . . . , xk := sk]) ∈ (A→

B)∗ for any (Mi � si) ∈ A∗
i , and (

∪
Nl �

t[y1 := t1, . . . , yl := tl]) ∈ A∗ for any (Nj�



tj) ∈ B∗
j . Hence it is immediate, from

the definition of →, that (
∪
Mk ∪

∪
Nl �

E→(s, t)[x1 := s1, . . . , xk := sk, y1 :=

t1, . . . , yl := tl]) ∈ B∗.

4. When
Γ ⊢ s : A Γ ⊢ t : B
Γ ⊢< s, t >: A ∧B

∧I.

From the induction hypothesis, we have

(
∪
Mk � s[x1 := s1, . . . , xk := sk]) ∈ A∗

and (
∪
Mk � t[x1 := s1, . . . , xk := sk]) ∈

B∗ for any (Mi � si) ∈ A∗
i . Since s[x1 :=

s1, . . . , xk := sk] ≃ E∧
1 (< s, t >)[x1 :=

s1, . . . , xk := sk] and t[x1 := s1, . . . , xk :=

sk] ≃ E∧
2 (< s, t >)[x1 := s1, . . . , xk :=

sk], and since A∗, B∗ are closed, we have

E∧
1 (< s, t >)[x1 := s1, . . . , xk := sk] ∈

A∗ and E∧
2 (< s, t >)[x1 := s1, . . . , xk :=

sk] ∈ B∗. Hence, from the definition, we

have < s, t > [x1 := s1, . . . , xk := sk] ∈
A∗ ∧B∗.

5. When
Γ ⊢ s : A ∧B
Γ ⊢ E∧

1 (s) : A
∧E1.

From the induction hypothesis, we have

(
∪
Mk � s[x1 := s1, . . . , xk := sk]) ∈

A∗ ∧B∗ for any (Mi � si) ∈ A∗
i . From the

definition, we have (
∪
Mk � E∧

1 (s)[x1 :=

s1, . . . , xk := sk]) ∈ A∗.

6. When
Γ ⊢ s : A ∧B
Γ ⊢ E∧

2 (s) : B
∧E2.

From the induction hypothesis, we have

(
∪
Mk � s[x1 := s1, . . . , xk := sk]) ∈

A∗ ∧B∗ for any (Mi � si) ∈ A∗
i . From the

definition, we have (
∪
Mk � E∧

2 (s)[x1 :=

s1, . . . , xk := sk]) ∈ B∗.

3.2 Completeness theorem

In this subsection, we shall prove the complete-

ness theorem. Here we consider “complete-

ness” of the form (Γ, x : A� x) ∈ A∗ ⊆ [[A]] for

any Γ with x : A ̸∈ Γ and for any A, where A∗ is

the interpretation of A in the canonical model

called the inner-value of A and [[A]] is a cer-

tain set in the canonical model called the outer-

value of A in [Okada 96]. Note that Girard’s

original version of the completeness theorem is

of the form A∗ = [[A]] in [Girard 87], where

[[A]] = {Γ|Γ ⊢ A is provable}. 1 However,

this original form of the completeness theorem

does not imply the proof normalization theo-

rem. Okada introduced, with respect to phase

semantics for provability, the completeness the-

orem of the form A ∈ A∗ ⊆ [[A]], where [[A]] =

{Γ|Γ ⊢ A is provable without cut-rule }, then
he proved the cut-elimination theorem via

soundness and completeness. See [Okada

96,99,02]. In order to prove the normal form

theorem, we shall apply this technique to our

phase semantics for proofs.

We construct a canonical model (M,P, ∗) as
follows:

• M is the set of statements of the form x :

A for any variable term x and any type A.

• P = {(Γ� s)|Γ ⊆M and s is an untyped

λ-term }.

• On this set, we shall consider the following

outer-values:

– [[A]]T = {(Γ�s)|s ≃ t for some t such

that Γ ⊢ t : A},

– [[A]]W = {(Γ � s)|s ≃ t for some t in

normal form such that Γ ⊢ t : A}.

• We shall write simply [[A]] without the sub-

scription, when the definition or the prop-

erty to be shown holds for both cases.

• Then we shall define an interpretation

function as R∗ = [[R]].

According to the definition of outer-values,

there are two canonical models, namely

(M,P, ∗) with the interpretation R∗ = [[R]]T

and with the interpretation R∗ = [[R]]W . We

1 Girard considered in one-sided sequent calculus.



call the later the canonical model for the nor-

mal form theorem.

The above construction indeed produce

phase models.

Lemma 3.2.1 These models satisfy the defi-

nition of phase model.

In order to show this lemma, it is only neces-

sary to prove the following two facts: A∗ is

closed for any A; and if (Γ � s) ∈ A∗ and

Γ ⊆ ∆, then (∆� s) ∈ A∗.

• A∗ is closed for any A.

Proof: We shall prove this fact by induction

on the complexity of A.

1. When A ≡ R.

Since R∗ = [[R]], we shall show that (Γ �

s) ∈ [[R]] and s ≃ t, then (Γ� t) ∈ [[R]].

Let (Γ� s) ∈ [[R]] and s ≃ t, then we have

s ≃ u for some u (in normal form) such

that Γ ⊢ u : R. Hence we have t ≃ s ≃ u

for some u (in normal form) such that Γ ⊢
u : R. Hence (Γ� t) ∈ [[R]] = R∗.

2. When A ≡ B → C.

Since C∗ is closed from the induction hy-

pothesis, B∗ → C∗ is closed from the

lemma 2.2.1.

3. When A ≡ B ∧ C.

Since B∗ and C∗ are closed from the in-

duction hypothesis, B∗∧C∗ is closed from

the lemma 2.2.1.

• If (Γ� s) ∈ A∗ and Γ ⊆ ∆, then (∆� s) ∈
A∗.

We shall show this fact by induction on the

complexity of A.

1. When A ≡ R.

Let (Γ � s) ∈ R∗ = [[R]]. Then we have

s ≃ v for some v (in normal form) such

that Γ ⊢ v : R. From Γ ⊆ ∆, we also have

s ≃ v for some v (in normal form) such

that ∆ ⊢ v : R, namely (∆ � s) ∈ [[R]] =

R∗.

2. When A ≡ B → C.

Let (Γ� s) ∈ B∗ → C∗, namely (Γ ∪ Π�

E→(s, t)) ∈ C∗ for any (Π�t) ∈ B∗. From

the induction hypothesis for C∗, we have

(Γ∪Π∪∆�E→(s, t)) ∈ C∗ for any (Π�

t) ∈ B∗ and for any ∆ such that Γ ⊆ ∆.

Hence we have (Γ ∪ ∆ � s) ∈ B∗ → C∗.

Since Γ ⊆ ∆, we have (∆�s) ∈ B∗ → C∗.

3. When A ≡ B ∧ C.

Let (Γ � s) ∈ B∗ ∧ C∗, namely (Γ �

E∧
1 (s)) ∈ B∗ and (Γ � E∧

2 (s)) ∈ C∗.

From the induction hypothesis for B∗ and

C∗, we have (∆ � E∧
1 (s)) ∈ B∗ and

(∆ � E∧
2 (s)) ∈ C∗ for any ∆ such that

Γ ⊆ ∆. Hence, from the definition, we

have (∆� s) ∈ B∗ ∧ C∗.

Therefore each (P,M, ∗) is a phase model.

In order to express the completeness theo-

rem, we shall introduce some notations.

We

introduce a meta expression E(s0 . . . snsn+1),

which roughly means a λ-term obtained from

s0 by repeated elimination rules.

Definition 3.2.1

E(s0) means a λ-term s0;

E(s0 . . . sn+1) means E→(E(s0 . . . sn), sn+1) or

E∧
i (E(s0 . . . sk)) for some k ≤ n, for i = 1, 2.

We also introduce a meta expression

for the corresponding type E(A0 . . . An) of

E(s0 . . . sn), if si has type Ai for each i.

E(A0) ≡ A0

E(A1 . . . An+1A0) ≡ E(A1 . . . An(An+1 → A0))

ifE(s0 . . . sn+1) is

E→(E(s0 . . . sn), sn+1)

≡ E(A1 . . . An(A0 ∧An+1))

ifE(s0 . . . sn+1) is

E∧
1 (E(s0 . . . sn))

≡ E(A1 . . . An(An+1 ∧A0))

ifE(s0 . . . sn+1) is

E∧
2 (E(s0 . . . sn))

Note that if E(s0 . . . sn) is given as a con-



crete λ-term, then we can find the correspond-

ing type E(A1 . . . AnA0) as a concrete type. 2

Theorem 3.2.1 (Completeness theorem)

(Γ, x : A � x) ∈ A∗ ⊆ [[A]] for any Γ with

x : A ̸∈ Γ and for any A.

Proof: We show the conjunction of the fol-

lowing two facts by induction on the complex-

ity of A.

• If for any (Γi � si) ∈ [[Bi]] for each 0 ≤
i ≤ n, then (

∪
Γn,Γ, x : E(B1 . . . BnA) �

E(xs1 . . . sn)) ∈ A∗ for any A,Bi and for

any Γ with x : E(B1 . . . BnA) ̸∈ Γ ∪
∪

Γn.

• A∗ ⊆ [[A]].

In particular, we have (Γ, x : A � x) ∈ A∗

from the above fact when n = 0.

1. When A ≡ R.

Since R∗ = [[R]], we show (
∪
Γn,Γ, x :

E(B1 . . . BnR)� E(xs1 . . . sn)) ∈ [[R]].

From the hypothesis (Γi�si) ∈ [[Bi]], there

is a λ-term vi (in normal form) such that

vi ≃ si and Γi ⊢ vi : Bi for each i. From

congruence rules, we have E(xs1 . . . sn) ≃
E(xv1 . . . vn), and we can find the cor-

responding type E(B1 . . . BnR). Then

from the axiom Γ, x : E(B1 . . . BnR) ⊢
x : E(B1 . . . BnR), we obtain

∪
Γn,Γ, x :

E(B1 . . . BnR) ⊢ E(xv1 . . . vn) : R by re-

peated applications of elimination rules of

the following forms:

2 If E(s0 . . . sn) is given as a concrete λ-term, for ex-

ample, E∧
1 (E∧

2 (E→(E→(x, s1), s2))),

then

we can find the corresponding type E(B1B2B3B4R)

as a concrete type.

From E∧
1 (E∧

2 (E→(E→(x, s1), s2))),

E(B1B2B3B4R) is E(B1B2B3(R ∧B4)).

Then from E∧
2 (E→(E→(x, s1), s2)), E(B1B2B3(R ∧

B4)) is E(B1B2(B3 ∧ (R ∧B4))).

Then from E→(E→(x, s1), s2), E(B1B2(B3∧(R∧B4)))

is E(B1(B2 → (B3 ∧ (R ∧B4)))).

Then from E→(x, s1), E(B1(B2 → (B3 ∧ (R ∧ B4))))

is B1 → (B2 → (B3 ∧ (R ∧B4))).

∪
Γi,Γ, x : E(

−→
BnR) ⊢ E(x−→vi) : Bi+1 → E(Bi+2 . . . BnR)

Γi+1 ⊢ vi+1 : Bi+1∪
Γi+1,Γ, x : E(

−→
BnR) ⊢ E→(E(x−→vi), vi+1) : E(Bi+2 . . . BnR)

→ E

or

∪
Γi,Γ, x : E(

−→
BnR) ⊢ E(x−→vi) : E(Bi+2 . . . BnR) ∧ Bi+1∪

Γi+1,Γ, x : E(
−→
BnR) ⊢ E∧

1 (E(x−→vi)) : E(Bi+2 . . . BnR)
∧E1

or

∪
Γi,Γ, x : E(

−→
BnR) ⊢ E(x−→vi) : Bi+1 ∧ E(Bi+2 . . . BnR)∪

Γi+1,Γ, x : E(
−→
BnR) ⊢ E∧

2 (E(x−→vi)) : E(Bi+2 . . . BnR)
∧E2

3

For [[ ]]T :

since

we have E(xs1 . . . sn) ≃ E(xv1 . . . vn)

and
∪
Γn,Γ, x : E(B1 . . . BnR) ⊢

E(xv1 . . . vn) : R, we have (
∪
Γn,Γ, x :

E(B1 . . . BnR)� E(xs1 . . . sn)) ∈ [[R]]T .

For [[ ]]W :

since vi is in nor-

mal form for each i, E(xv1 . . . vn) is also in

normal form. Hence we have (
∪

Γn,Γ, x :

E(B1 . . . BnR)� E(xs1 . . . sn)) ∈ [[R]]W .

R∗ ⊆ [[R]] is obvious from the definition.

2. When A ≡ B → C.

We show (
∪
Γn,Γ, x : E(B1 . . . Bn(B →

C))� E(xs1 . . . sn)) ∈ B∗ → C∗.

Since x : E(B1 . . . Bn(B → C)) is x :

E(B1 . . . BnBC), we show (
∪
Γn,∆,Γ, x :

E(B1 . . . BnBC) � E→(E(xs1 . . . sn), t) ∈
C∗ for any (∆�t) ∈ B∗. This is true, since

E→(E(xs1 . . . sn), t) is E(xs1 . . . snt) and

we can apply the induction hypothesis for

3 For example,

Γ, x : E(B1B2B3B4R) ⊢ x : B1 → (B2 → (B3 ∧ (R ∧ B4))) Γ1 ⊢ v1 : B1

Γ1,Γ, x : E(B1B2B3B4R) ⊢ E→(x, v1) : B2 → (B3 ∧ (R ∧ B4)) Γ2 ⊢ v2 : B2∪
Γ2,Γ, x : E(B1B2B3B4R) ⊢ E→(E→(x, v1), v2) : B3 ∧ (R ∧ B4)∪
Γ3,Γ, x : E(B1B2B3B4R) ⊢ E∧

2
(E→(E→(x, v1), v2)) : R ∧ B4∪

Γ4,Γ, x : E(B1B2B3B4R) ⊢ E∧
1

(E∧
2

(E→(E→(x, v1), v2))) : R



B and C.

Next, we shall prove B∗ → C∗ ⊆ [[B →
C]].

Let (Γ � s) ∈ B∗ → C∗, namely (Γ ∪
∆ � E→(s, t)) ∈ C∗ for any (∆ � t) ∈
B∗. In particular, using the induction hy-

pothesis and the above fact, we can take

(x : B � x) ∈ B∗ and then we have

(Γ ∪ {x : B} � E→(s, t)) ∈ C∗ ⊆ [[C]] for

x : B ̸∈ Γ, namely x ̸∈ FV (s). 4

Hence we have E→(s, x) ≃ v for some v

(in normal form) such that Γ, x : B ⊢
v : C. Then from ξ rule, we have

λx.E→(s, x) ≃ λx.v. Since x ̸∈ FV (s),

we have λx.E→(s, x) ≃ s from the η rule.

Hence we have s ≃ λx.v.

Furthermore, we have the following deriva-

tion:

Γ, x : B ⊢ v : C

Γ ⊢ λx.v : B → C
→ I

.

For [[ ]]T :

therefore (Γ� s) ∈ [[B → C]]T .

For [[ ]]W :

since v is in normal form, λx.v is also in

normal form. Hence (Γ�s) ∈ [[B → C]]W .

3. When A ≡ B ∧ C.

We show ((
∪

Γn,Γ, x : E(B1 . . . Bn(B ∧
C))� E(xs1 . . . sn)) ∈ B∗ ∧ C∗.

There are two cases:

• If E(xs1 . . . sn) is E
∧
1 (E(xs1 . . . sn−1)),

then E(B1 . . . Bn(B ∧ C)) is

E(B1 . . . BnCB). Hence from the induc-

tion hypothesis forB, we have (
∪
Γn,Γ, x :

E(B1 . . . Bn(B∧C))�E(xs1 . . . sn)) ∈ B∗.

• If E(xs1 . . . sn) is E
∧
2 (E(xs1 . . . sn−1)),

then E(B1 . . . Bn(B ∧ C)) is

E(B1 . . . BnBC). Hence from the induc-

tion hypothesis for C, we have (
∪
Γn,Γ, x :

E(B1 . . . Bn(B∧C))�E(xs1 . . . sn)) ∈ C∗.

4 Here note that we need the condition x : B ̸∈
FV (s) for the η equality.

Therefore, we

have (
∪
Γn,Γ, x : E(B1 . . . Bn(B ∧ C)) �

E(xs1 . . . sn)) ∈ B∗ ∧ C∗.

We show B∗ ∧ C∗ ⊆ [[B ∧ C]].

Let (Γ � s) ∈ B∗ ∧ C∗, namely (Γ �

E∧
1 (s)) ∈ B∗ and (Γ � E∧

2 (s)) ∈ C∗. We

have (Γ�E∧
1 (s)) ∈ [[B]] and (Γ�E∧

2 (s)) ∈
[[C]] from the induction hypothesis B∗ ⊆
[[B]] and C∗ ⊆ [[C]].

Hence we have E∧
1 (s) ≃ u for some u (in

normal form) such that Γ ⊢ u : B, and

we have E∧
2 (s) ≃ v for some v (in nor-

mal form) such that Γ ⊢ v : C. From

the congruence rule and the η-rule, we

have s ≃< E∧
1 (s), E

∧
2 (s) >≃< u, v >, and

s ≃< u, v >.

Furthermore, we have the following deriva-

tion:

Γ ⊢ u : B Γ ⊢ v : C
Γ ⊢< u, v >: B ∧ C

∧I

For [[ ]]T :

there fore (Γ� s) ∈ [[B ∧ C]]T .

For [[ ]]W :

since u and v are in normal form, < u, v >

is also in normal form. Hence (Γ � s) ∈
[[B ∧ C]]W .

3.3 Normal form theorem with

respect to ≃βη for IL→∧

We show the normal form theorem of the fol-

lowing form:

Theorem 3.3.1 (Normal form theorem)

If a λ-term s is typable, then there is a λ-term

t in normal form such that s ≃βη t.

Proof: Let x1 : A1, . . . , xk : Ak ⊢ s : B

be derivable, then from the soundness theo-

rem, for any interpretation ∗, (
∪

1≤i≤k Mi �

s[x1 := s1, . . . , xk := sk]) ∈ B∗ for any (Mi �

si) ∈ A∗
i . In particular, (

∪
1≤i≤k Γi � s[x1 :=



s1, . . . , xk := sk]) ∈ B∗ for any (Γi � si) ∈ A∗
i

holds in the canonical model for the normal

form theorem. Then from the completeness

theorem (xi : Ai � xi) ∈ A∗
i and B∗ ⊆ [[B]]W ,

we have (x1 : A1, . . . , xk : Ak � s) ∈ [[B]]W .

Thus there is a term t in normal form such

that s ≃ t.

Remark 3.3.1 We need contexts even if we

consider only the implicational fragment. If

we do not consider contexts, in order to show

B∗ → C∗ ⊆ [[B → C]], we should show

that for any t ∈ B∗, if E→(s, t) ∈ C∗ then

s ∈ [[B → C]].

Let B ≡ R,C ≡ Q, s ≡ λz.E→(z, w), t ≡
E→(x, y) for atomic types R,Q and variable

terms x, y, z, w. Then we have E→(s, t) ≡
E→(λz.E→(z, w), E→(x, y)) ∈ [[Q]] and t ≡
E→(x, y) ∈ [[R]], however s ≡ λz.E→(z, w) ̸∈
[[R → Q]] since s ≡ λz.E→(z, w) should have

type of the form (X → Y )→ Y .

Further we have s ≡ λz.E→(z, w) ∈ R∗ →
Q∗. In order to show this, we should show

that for any u ∈ [[R]], E→(λz.E→(z, w), u) ∈
[[Q]]. Let u ∈ [[R]], then u has type R, hence

u has any type. On the other hand, the

variable term w also has any type. Hence

E→(u,w) ∈ [[Q]]. Since [[Q]] is closed under

≃, we have E→(λz.E→(z, w), u) ∈ [[Q]]. Hence

s ≡ λz.E→(z, w) ∈ R∗ → Q∗.

4 An Extension

to a stronger form of the

normalization theorem

By modifying the above argument for sound-

ness and completeness with respect to phase

semantics for proofs, we can also show the weak

normalization theorem of the form: if a λ-term

s is typable, then s is reducible to a normal

form. This form of the weak normalization the-

orem is proved by making the following small

changes for the definition of semantics and for

the completeness argument of Section 3:

• For the definition of semantics, the closure

condition of the form

if s ∈ αc and s ≃ t, then t ∈ αc

is replaced with

if s ∈ αc and s ← t, then t ∈ αc, here

s ← t means t can be obtained from s by

one step expansion.

• For the completeness argument, the defi-

nition of outer-values is replaced by

[[A]]T = {(Γ � s)|s is reducible to some t

such that Γ ⊢ t : A},
[[A]]W = {(Γ � s)|s is reducible to some t

in normal form such that Γ ⊢ t : A}.

Then we can show the above form of the weak

normalization theorem by almost the same ar-

gument as that of Section 3.

As for the type assignment system, we need

the η-rule in order to prove the completeness

theorem in Section 3. However, in the above

setting, the η-rule is not needed.
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