Verification of cryptographic protocols: techniques, tools and link to cryptanalysis

Véronique Cortier
INRIA project Cassis, Loria
CNRS, Nancy, France
Context: cryptographic protocols

- **Widely used**: web (SSH, SSL, ...), pay-per-view, electronic purse, mobile phone, ...

- **Should ensure**: confidentiality, authenticity, integrity, anonymity, ...
Context: cryptographic protocols

- **Widely used**: web (SSH, SSL, ...), pay-per-view, electronic purse, mobile phone, ...

- **Should ensure**: confidentiality authenticity integrity anonymity, ...

- **Presence of an attacker**
 - may read every message sent on the net,
 - may intercept and send new messages.
Credit Card Payment Protocol

- The waiter introduces the credit card.
- The waiter enters the amount m of the transaction on the terminal.
- The terminal authenticates the card.
- The customer enters his secret code.
 If the amount m is greater than 100 euros (and in only 20% of the cases)
 - The terminal asks the bank for the authentication of the card.
 - The bank provides the authentication.
More details

4 actors: the Bank, the Customer, the Card and Terminal.

Bank owns
- a signing key K_B^{-1}, secret,
- a verification key K_B, public,
- a secret symmetric key for each credit card K_{CB}, secret.

Card owns
- **Data**: last name, first name, card’s number, expiration date,
- Signature’s Value $VS = \{hash(Data)\}_{K_B^{-1}}$,
- secret key K_{CB}.

Terminal owns the verification key K_B for bank’s signatures.
Credit card payment Protocol (in short)

The terminal reads the card:

1. \(Ca \rightarrow T : Data, \{hash(Data)\}_{K_B^{-1}} \)
Credit card payment Protocol (in short)

The terminal reads the card:

1. $Ca \rightarrow T : \text{Data}, \{hash(\text{Data})\}_{K_B^{-1}}$

The terminal asks for the secret code:

2. $T \rightarrow Cu : \text{secret code}$?

3. $Cu \rightarrow Ca : 1234$

4. $Ca \rightarrow T : \text{ok}$
Credit card payment Protocol (in short)

The terminal reads the card:

1. $Ca \rightarrow T : Data, \{hash(Data)\}^{K_B^{-1}}$

The terminal asks for the secret code:

2. $T \rightarrow Cu : secret\ code?$
3. $Cu \rightarrow Ca : 1234$
4. $Ca \rightarrow T : ok$

The terminal calls the bank:

5. $T \rightarrow B : auth?$
6. $B \rightarrow T : N_b$
7. $T \rightarrow Ca : N_b$
8. $Ca \rightarrow T : \{N_b\}^{K_{CB}}$
9. $T \rightarrow B : \{N_b\}^{K_{CB}}$
10. $B \rightarrow T : ok$
Some flaws

The security was initially ensured by:

- the cards were very difficult to reproduce,
- the protocol and the keys were secret.

But

- cryptographic flaw: 320 bits keys can be broken (1988),
- logical flaw: no link between the secret code and the authentication of the card,
- fake cards can be built.
Some flaws

The security was initially ensured by:

- the cards were very difficult to reproduce,
- the protocol and the keys were secret.

But

- cryptographic flaw: 320 bits keys can be broken (1988),
- logical flaw: no link between the secret code and the authentication of the card,
- fake cards can be build.

How does the “YesCard” work?

Logical flaw

1. \[Ca \rightarrow T : \text{Data}, \{hash(\text{Data})\}_{K_B^{-1}} \]
2. \[T \rightarrow Ca : \text{secret code?} \]
3. \[Cu \rightarrow Ca : 1234 \]
4. \[Ca \rightarrow T : ok \]
How does the “YesCard” work?

Logical flaw

1. \(Ca \rightarrow T \) : \(\text{Data, } \{hash(\text{Data})\}_{K_B^{-1}} \)
2. \(T \rightarrow Ca \) : secret code?
3. \(Cu \rightarrow Ca' \) : 2345
4. \(Ca' \rightarrow T \) : ok
How does the “YesCard” work?

Logical flaw

1. $Ca \rightarrow T : \text{Data}, \{hash(\text{Data})\}_{K_B^{-1}}$
2. $T \rightarrow Ca : \text{secret code?}$
3. $Cu \rightarrow Ca' : 2345$
4. $Ca' \rightarrow T : ok$

Remark: there is always somebody to debit.
→ creation of a fake card (Serge Humpich).
How does the “YesCard” work?

Logical flaw

1. \(Ca \rightarrow T : \text{Data}, \{\text{hash(Data)}\}_{K_B^{-1}} \)
2. \(T \rightarrow Ca : \text{secret code?} \)
3. \(Cu \rightarrow Ca' : 2345 \)
4. \(Ca' \rightarrow T : ok \)

Remark: there is always somebody to debit.
→ creation of a fake card (Serge Humpich).

1. \(Ca' \rightarrow T : XXX, \{\text{hash(XXX)}\}_{K_B^{-1}} \)
2. \(T \rightarrow Cu : \text{secret code?} \)
3. \(Cu \rightarrow Ca' : 0000 \)
4. \(Ca' \rightarrow T : ok \)
Map

1. Formal approaches
2. Tools and case study
3. Link between formal approaches and cryptanalysis
Formal approaches

- Messages are abstracted using terms.
 These terms are build over a fixed signature.
 E.g., $\Sigma = \{< >, \text{enc}, \text{dec}, \ldots\}$.

The attacker can do symbolic manipulations on terms.

This approach allows to detect any logical attack that does not rely on weaknesses of the encryption algorithm.
Formal approaches

- Messages are abstracted using terms. These terms are built over a fixed signature. E.g., $\Sigma = \{< >, \text{enc, dec, ...}\}$.

- The attacker can do symbolic manipulations on terms.

$$
\frac{S \vdash \text{enc}(M, k)}{S \vdash M} \quad \frac{S \vdash k^{-1}}{S \vdash M} \quad \frac{S \vdash \langle M_1, M_2 \rangle}{S \vdash M_i} \quad i = 1, 2
$$
Formal approaches

- Messages are abstracted using terms. These terms are build over a fixed signature. E.g., $\Sigma = \{<>, \text{enc}, \text{dec}, \ldots\}$.

- The attacker can do symbolic manipulations on terms.

$$
\frac{S \vdash \text{enc}(M, k)}{S \vdash M} \quad \frac{S \vdash k^{-1}}{S \vdash k^{-1}} \quad \frac{S \vdash \langle M_1, M_2 \rangle}{S \vdash M_i \quad i = 1, 2}
$$

This approach allows to detect any logical attack that does not rely on weaknesses of the encryption algorithm.
Protocol description

Protocol:

\[
\begin{align*}
T & \rightarrow Ca : \ N_b \\
Ca & \rightarrow T : \ \{N_b\}_{K_{CB}}
\end{align*}
\]

Secrecy properties:

\[
S \vdash x \\
S \vdash \{x\}_{K_{CB}}
\]

\[
S \vdash s?\]
Decidability and complexity results

- In general, secrecy preservation is undecidable.

- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01] → constraint solving

- For an unbounded number of sessions
 - for one-copy protocols, secrecy is DEXPTIME-complete [CortierComon RTA03] [SeildVerma LPAR04] → tree automata, resolution theorem proving
 - for message-length bounded protocols, secrecy is DEXPTIME-complete [Durgin et al FMSP99] [Chevalier et al CSL03]
Some cryptographic primitives have algebraic properties.

- **XOR**
 \[
 x \oplus (y \oplus z) = (x \oplus y) \oplus z \\
 x \oplus y = y \oplus x \\
 x \oplus x = 0 \\
 x \oplus 0 = x
 \]
Adding algebraic operators

Some cryptographic primitives have algebraic properties.

- **XOR**
 \[x \oplus (y \oplus z) = (x \oplus y) \oplus z \]
 \[x \oplus y = y \oplus x \]
 \[x \oplus x = 0 \]
 \[x \oplus 0 = x \]

- **Modular exponentiation**
 \[\exp(\exp(g, x), y) = \exp(g, x \cdot y) \]
 \[\exp(g, x \cdot y) = \exp(g, y \cdot x) \]
Adding algebraic operators

Some cryptographic primitives have algebraic properties.

- **XOR**
 \[x \oplus (y \oplus z) = (x \oplus y) \oplus z \]
 \[x \oplus y = y \oplus x \]
 \[x \oplus x = 0 \]
 \[x \oplus 0 = x \]

- **Modular exponentiation**
 \[\exp(\exp(g, x), y) = \exp(g, x \cdot y) \]
 \[\exp(g, x \cdot y) = \exp(g, y \cdot x) \]

- **Homomorphism**
 \[h(x \cdot y) = h(x) \cdot h(y) \]
Adding algebraic operators

Some cryptographic primitives have algebraic properties.

- **XOR**
 \[x \oplus (y \oplus z) = (x \oplus y) \oplus z \]
 \[x \oplus y = y \oplus x \]
 \[x \oplus x = 0 \]
 \[x \oplus 0 = x \]

- **Modular exponentiation**
 \[\text{exp}(\text{exp}(g, x), y) = \text{exp}(g, x \cdot y) \]
 \[\text{exp}(g, x \cdot y) = \text{exp}(g, y \cdot x) \]

- **Homomorphism**
 \[h(x \cdot y) = h(x) \cdot h(y) \]

→ These properties are modeled using *equational theories* or by extending the intruder power.
Some results with algebraic operators

Deducibility
- homomorphism NP-complete, homomorphism + XOR or Abelian groups EXPTIME [Lafourcade et al RTA05]
- convergent subterm theories, extension to AC properties [AbadiCortier Icalp04, CSFW05]

Bounded number of sessions
- Commutativity co-NP-complete [Chevalier et al ARSPA04]
- Exclusive Or co-NP-complete [Chevalier et al LICS03] [ComonShmatikov LICS03]
- Abelian groups + modular exponentiation (Diffie-Hellman) co-NP-complete [Chevalier et al FSTTCS03]

Unbounded number of sessions
- Exclusive Or decidable for one-copy protocols [ComonCortier RTA03]
1. Formal approaches

2. Tools and case study

3. Link between formal approaches and cryptanalysis
The European project Avispa

Automated Validation of Internet Security Protocols and Applications

In collaboration with:

- Artificial Intelligence Laboratory, DIST, Univ. of Genova, Italy
- Eidgenoessische Technische Hochschule Zuerich (ETHZ), Zurich, Swiss
- Siemens Aktiengesellschaft, Munich, Germany
The European project Avispa

Automated Validation of Internet Security Protocols and Applications

In collaboration with:

- Artificial Intelligence Laboratory, DIST, Univ. of Genova, Italy
- Eidgenoessische Technische Hochschule Zuerich (ETHZ), Zurich, Swiss
- Siemens Aktiengesellschaft, Munich, Germany

Four verification tools are proposed:

- On-the-fly Model-Checker (OFMC)
- Constraint-Logic-based Attack Searcher (CL-AtSe)
- SAT-based Model-Checker (SATMC)
- Tree Automata based on Automatic Approximations for the Analysis of Security Protocols (TA4SP)
The Avispa Platform: www.avispa-project.org
Results

- over 80 protocols analyzed (selected by Siemens and discussed by the IETF) in few minutes or few seconds for most of them
- tools for both a bounded number of sessions (search for attacks) and an unbounded number of sessions (security proof)
- first tool that allows algebraic properties (XOR)
- new attacks have been discovered
- publicly available: web interface, download, protocol library, ...
- already used by 45 sites including several companies (France Telecom, Siemens, SAP,...)

Other case study: Validation of a contactless electronic purse of France Telecom (RNTL project PROUVE)
1. Formal approaches
2. Tools and case study
3. **Link between formal approaches and cryptanalysis:**
 A new branch of research in the Cassis team
Formal and Cryptographic approaches

<table>
<thead>
<tr>
<th></th>
<th>Formal approach</th>
<th>Cryptographic approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages</td>
<td>terms</td>
<td>bitstrings</td>
</tr>
<tr>
<td>Encryption</td>
<td>idealized</td>
<td>algorithm</td>
</tr>
<tr>
<td>Adversary</td>
<td>idealized</td>
<td>any polynomial algorithm</td>
</tr>
<tr>
<td>Proof</td>
<td>automatic</td>
<td>by hand, tedious and error-prone</td>
</tr>
</tbody>
</table>

Link between the two approaches?
Formal model: several abstractions

Messages are modeled by terms.

- \(\{m\}_k \): message \(m \) encrypted by \(k \)
- \(\langle m_1, m_2 \rangle \): pair of \(m_1 \) and \(m_2 \)
- ...

→ no collisions:

\[
\forall m, m', k, k' \quad \{m\}_k \neq \{m'\}_{k'}, \{\{m\}_k\}_k \neq m, \langle m, m' \rangle \neq \{m\}_k, \ldots
\]
Formal model: several abstractions

Messages are modeled by terms.

- \(\{m\}_k \): message \(m \) encrypted by \(k \)
- \(\langle m_1, m_2 \rangle \): pair of \(m_1 \) and \(m_2 \)
- ...

→ no collisions:

\[\forall m, m', k, k' \quad \{m\}_k \neq \{m'\}_{k'}, \quad \{\{m\}_k\}_k \neq m, \langle m, m' \rangle \neq \{m\}_k, \ldots \]

Perfect encryption assumption:

Nothing can be learned from \(\{m\}_k \) except if \(k \) is known.

→ The intruder can perform only specific actions like pairing and encrypting messages or decrypting whenever he has the inverse key.
Goal: soundness of the formal model

Composition of two approaches

- Ideal protocol
 - Implemented protocol
 - Cryptographers: verification of the cryptographic primitives
 - Formal approach: verification of idealized protocols
 - signature algorithm
 - encryption algorithm
Three approaches

1. A computationally sound logic for proving security properties for cryptographic protocols [Datta et al Icalp05]
 This enables a symbolic analysis of the protocol that has a computational interpretation
Three approaches

1. A computationally sound logic for proving security properties for cryptographic protocols [Datta et al Icalp05]
 This enables a symbolic analysis of the protocol that has a computational interpretation

2. Computational soundness of a Dolev-Yao like model [Cortier Warinschi ESOP05]
 Existing formal models with asymmetric encryption and signatures are computationally sound, which allows the use of existing automatic tools
Three approaches

1. A computationally sound logic for proving security properties for cryptographic protocols [Datta et al Icalp05]
 This enables a symbolic analysis of the protocol that has a computational interpretation

2. Computational soundness of a Dolev-Yao like model [CortierWarinschi ESOP05]
 Existing formal models with asymmetric encryption and signatures are computationally sound, which allows the use of existing automatic tools

3. Computationally Sound Implementations of Equational Theories against Passive Adversaries [BaudetCortierKremer Icalp05]
 In particular, soundness of the Exclusive Or and soundness of deterministic symmetric encryption.
Three approaches

1. A computationally sound logic for proving security properties for cryptographic protocols [Datta et al Icalp05]
 This enables a symbolic analysis of the protocol that has a computational interpretation

2. Computational soundness of a Dolev-Yao like model [CortierWarinschi ESOP05]
 Existing formal models with asymmetric encryption and signatures are computationally sound, which allows the use of existing automatic tools

3. Computationally Sound Implementations of Equational Theories against Passive Adversaries [BaudetCortierKremer Icalp05]
 In particular, soundness of the Exclusive Or and soundness of deterministic symmetric encryption.
Secrecy Properties

Formal models : property on traces

A data s is secret if the adversary (which can only do symbolic manipulations on terms) can not produce s.

Concrete model : indistinguishability

The adversary (any polynomial time algorithm) should not be able to guess a bit of the secret.
Hypotheses on the Implementation

- **asymmetric encryption**: IND-CCA2
 - the adversary cannot distinguish between $\{n_0\}_k$ and $\{n_1\}_k$ even if he has access to encryption and decryption oracles.
Hypotheses on the Implementation

- asymmetric encryption: IND-CCA2
 → the adversary cannot distinguish between \(\{n_0\}_k \) and \(\{n_1\}_k \)
even if he has access to encryption and decryption oracles.

- signature: existentially unforgeable under chosen-message attack
 i.e. one can not produce a valid pair \((m, \sigma)\)
Hypotheses on the Implementation

- asymmetric encryption: IND-CCA2
 → the adversary cannot distinguish between \(\{n_0\}_k \) and \(\{n_1\}_k \) even if he has access to encryption and decryption oracles.

- signature: existentially unforgeable under chosen-message attack
 i.e. one can not produce a valid pair \((m, \sigma)\)

- parsing:
 - each bit-string has a label which indicates his type (identity, nonce, key, signature, ...)
 - one can retrieve the (public) encryption key from an encrypted message.
 - one can retrieve the signed message from the signature
Combination result

The perfect public key encryption corresponds to the IND-CCA2 security notion

Theorem: [Cortier-Warinschi Esop’05] (work initiated by Micciancio-Warinschi TCC’04)

- for protocols with only public key encryption and signatures
- if a protocol is secure in the formal approach (proof given by a tool for example),
- if the public key encryption algorithm is IND-CCA2,
- if the signature is existentially unforgeable,

then the protocol is secure in the cryptographic approach.
Some future directions

- Group protocols - open-ended data structures (transaction list, message transducers, ...)

- Contract-signing protocol - complex properties such as fairness and abuse-freeness (no party can prove to a third party that it has the power to both enforce and cancel the contract)

- Link between the symbolic and computational models - further work: refinement of the symbolic models, new security properties, new cryptographic primitives, what are the limits?
French collaborations on that subject

- LIENS, ENS Ulm
- LIF, Marseille
- LSV, ENS de Cachan (RNTL project PROUVE)
- Verimag, Grenoble (RNTL project PROUVE)