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Introduction

Native speakers of a natural language have certain intuitions about what
can be inferred on the basis of a sentence uttered. For instance, consider
the following example.

(1) The Japanese student disappeared.

Suppose that Lisa, who teaches at a university, utters (1) in a conversation.
From this utterance, the hearer can naturally infer the propositions indicated
in (2), (3), and (4), respectively.

(2) Someone disappeared.

(3) There is a Japanese student (in Lisa’s class).

(4) The Japanese student in Lisa’s class disappeared from her class.

Here three kinds of inferences and, parallel with them, three kinds of propo-
sitions inferred, can be distinguished. The proposition in (2) is an entail-
ment of (1), and the proposition in (3) is a presupposition of (1). Regarding
the proposition in (4), there seems to be no established terminology among
philosophers and linguists; here we call it an enrichment of (1). (In this
Introduction, we use the term “enrichment” in a broad sense, to describe
data as shown in (4). In Chapter 3, we will introduce more fine-grained
notions such as saturation and free enrichment, which can be regarded as
subclasses of enrichment in this broad sense.)

This dissertation is divided into three chapters. Each chapter is devoted
to discussing these three types of inference: entailment (Chapter 1), pre-
supposition (Chapter 2), and enrichment (Chapter 3), respectively. Before
entering into the details, we will first briefly explain the main theme of each
chapter.

9



10 Introduction

Entailment relations are of central importance in the enterprise of the
formal semantics of natural language. The problem of determining whether
one sentence intuitively entails another—in the sense that one could not
accept the first without also being committed to the second—would re-
quire vast amounts of world knowledge. However, an important class of
entailments seems to follow general patterns that arise from the way various
“logical” expressions combine with other expressions to make up complex
sentences. Formal semantics has largely been concerned with characterizing
and formalizing such logical and structural aspects of entailment relations.

In modern logic, entailment relations are characterized from two view-
points: the model-theoretic one and the proof-theoretic one. However, since
Montague’s invention of the field, most approaches within natural language
semantics are based on model-theoretic conceptions. Thus, in linguistics,
“formal semantics” usually means “model-theoretic semantics.” Accord-
ingly, the notion of the validity of inferences is only characterized in model-
theoretic terms, and little is known about relevant proof-theoretic notions
such as provability and proof as applicable to natural language inferences.
The central aim of Chapter 1 is to fill this gap, by offering a simple in-
ference system for a syllogistic fragment of natural language, a fragment
containing quantificational sentences that is of fundamental importance in
formalization of reasoning with natural language sentences.

Presuppositions have received a great deal of attention, both from philoso-
phers and from linguists. Presuppositions are distinguished from entailments
in that they survive in a certain environments. For an illustration, consider
the following sentences.

(5) a. The Japanese student didn’t disappear.

b. Did the Japanese student disappear?

c. If the Japanese student disappeared, Lisa would be surprised.

From an utterance of any one of (5a)–(5c), the hearer can naturally infer
the proposition in (3), i.e., that there is a Japanese student in Lisa’s class.
By contrast, the proposition in (2), which is an entailment of (1), cannot be
inferred from any one of (5a)–(5c). In general, among propositions which



Introduction 11

can be naturally inferred from an utterance of sentence S, those that can
survive even when S is negated, questioned, or supposed are presuppositions
of the utterance of S. Thus, entailments and presuppositions are primarily
distinguished in terms of inferences.

Chapter 2 of this dissertation is an attempt to analyze presuppositions
and their interaction with entailments from a proof-theoretical viewpoint.
We propose a formal framework based on natural deduction systems, and
explore the possibility this offers to analyze some presupposition phenomena.
Our framework is intended to be an alternative to dynamic frameworks,
such as dynamic semantics and discourse representation theory, which are
currently standard within formal approaches to presuppositions.

The presupposition in (3) is triggered by the occurrence of the definite
description the Japanese student in sentence (1). It is generally true of
definite descriptions that appear in argument position as in (1), that they
license such inferences, i.e., the so-called existence presuppositions. Chapter
2 is focused on existence presuppositions triggered by definite descriptions.

We often say that one sentence entails another sentence. But we will as-
sume that an entailment relation is a relation between propositions (or, more
generally, that it is a relation between a set of propositions and a proposi-
tion). When we say that (1) entails (2), where (1) is the sentence a speaker
utters, it should be taken as meaning that the proposition expressed by an
utterance of (1) entails the proposition indicated in (2). The same point
applies to the case of presuppositions. When we say that (1) presupposes
(3), where (1) is the sentence a speaker utters, it should be taken as meaning
that the proposition expressed by an utterance of (1) presupposes the propo-
sition indicated in (2). In this way, we can separate two questions, namely,
the question of what proposition is expressed by the utterance of sentence S
on a given occasion, and the question of what entailment or presupposition
relations the proposition expressed by S has with other propositions.

To be more precise, by uttering the sentence in (1), Lisa communicates
to the hearer the proposition that the Japanese student in her class dis-
appeared from her class, i.e., the proposition indicated in (4). That is to
say, the proposition expressed by Lisa’s utterance, which has entailment
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or presupposition relations with other propositions, is not the “minimal”
proposition that the Japanese student disappeared, but rather the pragmat-
ically enriched one.

How can the enriched proposition as in (4) be inferred from the utterance
of (1)? This question is the main topic of Chapter 3. Our approach to this
question is based on a Contextualist viewpoint. In particular we will build
on the framework of Relevance Theory, which is one of the most developed
versions of Contextualism. As is well known, Relevance Theory is based on a
representational or deductive perspective on inferences in natural language.
The main aim of Chapter 3 is to show that there is a semantic constraint
on how the process of enrichment works, and to explore the consequences of
admitting such a constraint in light of the recent debates in the semantics-
pragmatics interface.

Throughout this dissertation, we emphasize the role of intermediate rep-
resentations in analyzing inferences in natural language. Currently, many
semanticists and philosophers of language favor the “direct” approach to
natural language semantics over the “translational” approach, claiming that
intermediate levels of representation are essentially redundant. As is well
known, Richard Montague, in his paper “English as a formal language”
(1970), showed how a fragment of English can be model-theoretically inter-
preted without first translating it into an intermediate logical representa-
tion. Also, David Lewis, in a seminal paper (Lewis 1970), argued against
the translational approach to natural language semantics on philosophical
grounds.

Despite these facts, there seem to be methodological advantages to em-
ploying intermediate representations, whether they are formal representa-
tions (i.e., formulas in a logical language) as used in Chapter 1 and Chapter
2, or informal representations (i.e., disambiguated natural language sen-
tences) as used in Chapter 3. Formal representations, such as formulas of
first-order logic, are essential when we use a formal proof system to make a
certain prediction about natural language inferences in a precise way. Fur-
thermore, intermediate representations make it possible to describe semantic
phenomena we are concerned with in a clear and transparent way. The fact
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that intermediate representations are redundant and theoretically eliminable
does not mean that they are useless in theorizing about natural language
inferences.

Overview for Chapter 1

Chapter 1 is concerned with entailment relations in a syllogistic fragment of
natural languages, a fragment that has been widely discussed in the context
of studies of natural language inferences. We introduce an inference system,
called the Generalized Syllogistic inference system GS. The system is based
upon two primitive relations between terms, inclusion and exclusion. We
show the completeness and normalization theorem of GS, and then provide
a characterization of the structure of normal proofs. Based on this result,
we show that inferences in a syllogistic fragment of natural language are
faithfully translated into inferences in GS.

As stated above, most approaches to entailment relations in natural lan-
guages are solely based on the model-theoretic conception. Thus, the notion
of the validity of inferences is only characterized in model-theoretic terms,
and only a few attempts have addressed the relevant proof-theoretic notions
that are applicable to natural language inferences.

Indeed, there are several enterprises to fill this gap. One is the study of
syllogisms from a modern logical viewpoint, which was started by Lukasiewicz
(1951) and given natural deduction formulations by Corcoran (1972) and
Smiley (1973), among others. In connection with this, more recently, nat-
ural logic, including the so-called calculus of monotonicity proposed in van
Benthem (1986) and Sanchez (1991), has been developed by some linguists
and logicians. The main aim of these studies is to characterize the natural
language inferences of the forms as closely as possible to surface forms: that
is to say, to construct an inference system whose syntax closely mirrors that
of natural languages.

Our approach is consonant with these approaches, in that a proof system
plays a dominant role, but one essential difference is that we decompose
syllogistic inferences and the categorical statements constituting them in
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terms of more basic relations (i.e., inclusion and exclusion relations), whereas
most approaches in modern logical studies of syllogisms and natural logic
take surface forms as primitive and do not attempt to reduce them into more
primitive forms. As a consequence, the inference systems proposed in these
approaches have some additional axioms or inference rules concerned with
negation other than those concerned with inclusion and exclusion relations.

Another important difference is that our system is closely related to an
inference system for Euler diagrams. The field of diagrammatic logic was ini-
tiated by philosophers and logicians in the 1990s. It is well known that Euler
diagrams can be used to represent not only Aristotelian categorical state-
ments but also the syllogistic reasoning based on them. However, the exact
formulation of inference rules operating on Euler diagrams was not clear
until recently. Mineshima, Okada, and Takemura (2012a) made a first at-
tempt to give a complete inference system to Euler diagrammatic reasoning.
The system is called the “Generalized Diagrammatic Syllogistic inference
system,” abbreviated as GDS. We will show the correspondence between the
inference system GS and the diagrammatic inference system GDS. Thus, the
system GS can serve as a bridge between natural logic and diagrammatic
logic. This opens an interesting possibility to connect studies of natural
language inferences with studies of visual/diagrammatic inferences, thereby
making it possible to compare these two kinds of inferences from a unified
and rigorous logical (proof-theoretical) viewpoint.

Overview for Chapter 2

Chapter 2 is concerned with a proof-theoretic analysis of presuppositions in
natural language. We focus on the interpretation of definite descriptions.
We introduce a natural deduction based framework for dealing with exis-
tence presuppositions of definite descriptions. We show that our framework
can handle a large class of phenomena, as discussed in the literature, and
at the same time avoid some problems inherent in the standard dynamic
approaches to presuppositions.

As is well known, the notion of presupposition as currently studied in
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philosophy and linguistics can be traced back to some of Frege’s writings, and
has received special attention since Strawson’s classic paper “On Referring”
(1950). However, it was only relatively recently that systematic theories
of presuppositions appeared in connection with the development of formal
semantics of natural language. In particular, several new approaches to the
so-called projection problems of presuppositions have been launched since
the 1980s. These new approaches emphasize that presupposition phenomena
motivate the so-called dynamic conception of meaning, according to which
the meaning of a sentence should be regarded as context change potentials
or context update conditions, rather than as traditional truth-conditions.

There are two influential approaches along this line: Discourse Represen-
tation Theory and Dynamic Semantics. Discourse Representation Theory
(DRT) was originally invented by Kamp (1981), and was augmented with
a mechanism to handle presuppositions by van der Sandt (1992). The idea
underlying Dynamic Sematics goes back to Stalnaker (1974) and Karttunen
(1974), but its explicit formulation within dynamic semantics was done by
the classical work of Heim (1983). Both approaches emphasize that standard
logical systems are not suited to deal with presupposition phenomena. The
main issue here is how to represent contexts that interact with the asserted
content of an utterance in a complicated way. In particular, the problem is
how to handle local contexts, i.e., contexts that are updated in the middle
of a sentence, rather than given prior to an utterance.

In contrast to dynamic approaches, we opt to preserve the standard log-
ical systems. The basic idea is to use the natural deduction systems devel-
oped in the tradition of Gentzen’s proof theory; we apply them to analyses
of presupposition phenomena in natural language. Our proposal is based on
the natural deduction system of first-order ε-calculus and on constructive
type theory. We will concentrate on the existence presupposition of definite
descriptions, since there is a well-established proof system (i.e., ε-calculus)
that deals with descriptions in the mathematical domain. Furthermore, the
existence presupposition serves as a good test case for a more general theory
of presuppositions.
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Overview for Chapter 3

Recent studies in the semantics and pragmatics of natural language have
shown that there is a considerable gap between the linguistic meaning of
a sentence and the proposition expressed by an utterance of that sentence
(i.e., “what is said” in Gricean terms, or “explicature” in relevance-theoretic
terms). This raises the question: What kinds of pragmatic tasks are involved
in the determination of the proposition expressed by an utterance? There
are two influential approaches to this question, which we call “Indexicalism”
and “Contextualism.” Contextualism holds that purely pragmatic processes
called “free enrichment” are involved in the derivation of the proposition
expressed. Indexicalism, on the other hand, denies the existence of such
processes, and maintains that no pragmatic processes are allowed to affect
the proposition expressed by an utterance unless the linguistic meaning of
the sentence itself so demands.

It is well known that the current relevance theory takes the position of
Contextualism. However, in our view, the standard version of Contextual-
ism is in fact very radical in that it holds that there are almost no linguistic
factors or constraints involved in the way the process of free enrichment
works. In this chapter, we will argue that both Indexicalism and the stan-
dard version of Contextualism are mistaken in their conception of the way
linguistic semantics is related to the pragmatic processes involved in the
determination of the proposition expressed.

Based on a close analysis of predicational copular sentences, we will show
that there is an interesting constraint on the applicability of free enrichment,
and argue that the existence of such a constraint poses serious problems to
both Indexicalism and the standard version of Contextualism. More specif-
ically, we argue that free enrichment is blocked for property concepts, i.e.,
those concepts that are expressed by property expressions such as predicate
nominals and adjectives. We will then propose a new version of Contextu-
alism that is compatible with the claim that there is a semantic constraint
on free enrichment. We also argue that this constraint is based on a differ-
ence in semantic function between what we call “object-directed concepts”
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and “property concepts.” In our framework, the so-called “over-generation”
problems against Contextualism pointed out by Stanley (2002, 2005) can
be avoided without stipulating any ad hoc mechanism. We also discuss and
reject Hall’s (2008) pragmatic account of the over-generation problem. The
distinctive features of our conception of free enrichment will be made clear
by comparing it with Hall’s (2008) pragmatic approach within the standard
relevance theory.





Chapter 1

A Syllogistic Inference System

with Inclusion and Exclusion

19





1. Introduction to Chapter 1

Entailment relations are of central importance in the enterprise of natural
language semantics. In modern logic, entailment relations are characterized
from two viewpoints: model-theoretic and the proof-theoretic. Since the
work of Richard Montague (Montague 1974), however, most approaches to
formalizing entailment relations in natural languages have been based solely
on model-theoretic conceptions. Thus, the notion of validity is only charac-
terized in model-theoretic terms, and few attempts have been made at the
relevant proof-theoretic notions, such as provability and proof, as applied to
natural language inferences. the aim of this chapter is to offer a simple in-
ference system for syllogistic fragment of natural language, thereby making
a connection between proof theory and natural language semantics.

As is well known, there is an influential approach applying proof theory
to natural language syntax, which started with Lambek calculus (Lambek
1958) and has been more fully explored in the recent literature of catego-
rial grammar such as Type-Logical Grammar (cf. Jäger 2005; Barker and
Jacobson 2007). But our interest here is in applying proof-theoretic meth-
ods to natural language semantics. The goal is to represent and analyze,
in proof-theoretic terms, the relevant semantic notions such as entailments,
rather than syntactic structures of sentences,

Indeed, there have been several prior attempts in this direction. One is
the study of syllogisms from a modern logical viewpoint which was started
by  Lukasiewicz (1957) and then given their natural deduction formulations
by Corcoran (1972, 1974) and Smiley (1974), among others. In connection
with this, the so-called monotonicity calculus, originally proposed by van
Benthem (1986) and Sánchez Valencia (1991), has been developed by some

21



22 1. Introduction to Chapter 1

linguists and logicians.1 There have also been recent important develop-
ments in the logic and AI literature, including the program of natural logic,
which extend syllogistic logics to cover more expressive fragments of natu-
ral language (cf. Nishihara and Morita 1988; Nishihara, Morita, and Iwata
1990; Moss 2008, 2010a, 2010c; Pratt-Hartmann and Moss 2009; Francez,
Dyckhoff, and Ben-Avi 2010). One of the main aims of these studies is to
characterize natural language inferences with forms as close as possible to
their surface forms.2

Our approach agrees with these approaches in that a proof system plays
a role in developing natural language semantics. However, an essential differ-
ence is that we decompose syllogistic inferences and categorical statements
constituting them in terms of two primitive relations, i.e., inclusion and ex-
clusion relations, whereas the approaches we just mentioned take surface
forms as primitive and do not attempt to reduce them into more primitive
forms. In our approach, syllogistic inferences are characterized in a reductive
way, in terms of the structure of proofs in our underlying inference system.
We call this system “Generalized Syllogistic inference system”, abbreviated
as GS.3

It should be noted that the traditional approaches to formalization of
categorical syllogisms, including  Lukasiewicz (1957), Corcoran (1972, 1974),
Smiley (1973), Westerst̊ahl (1989) and Moss (2008), among others, essen-
tially rely on the axioms and inference rules of full (classical) propositional
logic, in particular, the rule of reductio ad absurdum. By contrast, a re-
markable feature of GS is that it is “logic free” in the sense that only atomic
formulas and their conjunction appear in proofs; essential steps in a GS-proof

1For recent overviews, see van Eijck (2007), van Benthem (2008) and Moss (2010b).
2One important origin of these studies is the semantics of generalized quantifiers started

by Barwise and Cooper (1981). Some connections between generalized quantifiers and

syllogistic forms of inferences are investigated by van Eijck (1985) and Westerst̊ahl (1989).
3An extended discussion of GS is found in Mineshima, Okada and Takemura (2012b).

Recently, exclusion relations have also been investigated in the context of textual inference

in natural language processing. In particular, MacCartney and Manning (2008) general-

ized the so-called monotonicity calculus (see van Benthem 1986; Sànchez Valencia 1991)

by incorporating exclusion relations.
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do little more than inferring an atomic formula from other atomic formulas
given as premises. Our treatment of categorical syllogisms within GS shows
that traditional categorical syllogisms can be reconstructed in such a simple
way.

Another important characteristic is that our system is closely related
to the inference system for Euler diagrams (called GDS) by Mineshima,
Okada, and Takemura (2012a), which is an attempt to provide a complete
inference system for Euler diagrams defined in terms of relations between
objects such as circles (contours) and points.4 There is a close connection
between the two types of inferences, that is, natural language inferences
and diagrammatic inferences, in that there are certain restrictions on nested
occurrences of operators involved, such as negation, implication, and quan-
tifiers; see van Benthem 2008 for some discussion. Although restrictions on
nested structures may cause a loss of expressive power, the resulting system
could become a more efficient and human-oriented tool in communication
and reasoning. In view of this connection, it seems to be interesting to de-
velop an underlying proof system for these two types of inferences. Indeed,
the system GS serves as such a system; it provides a bridge between nat-
ural logic and diagrammatic logic, or more specifically, between linguistic
syllogistic inferences and Euler-style diagrammatic inferences. This opens
an interesting possibility to connect studies of natural language inferences
with studies of visual/diagrammatic inference, thereby making it possible to
compare these two kinds inferences in a unified and rigorous logical (proof-
theoretical) viewpoint.

Introduction to GS

Let us informally explain by examples how categorical sentences and syl-
logisms composed of them can be represented in the system GS. In our
approach, the categorical sentences in syllogisms are analyzed in terms of
two primitive relations: inclusion (<) and exclusion ( à).5 To begin with, a
categorical sentence of the form

4See also Mineshima, Okada, Sato and Takemura (2008) and Mineshima, Okada, and

Takemura (2009) for earlier proposals.
5Our notation of à derives from Gergonne (1817). For the purpose of the abstract
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(1) All A are B

is represented as A < B, and a categorical sentence of the form

(2) No B are C

is represented as B à C. Here A,B and C are general terms denoting sets
of individuals, and the symbols < and à are semantically interpreted as
the subset and disjointness relations, respectively. Figure 1.1 below shows
the well known correspondence between universal categorical sentences and
Euler diagrams.

D1: All A are B

A < B

A

B

D2: No B are C

A à B

B C

Fig. 1.1 Correspondence between universal sentences and Euler diagrams.

It should be emphasized here that categorical sentences such as (1) and
(2) are a special case of quantificational sentences in natural language. Ac-
cording to the standard treatment in logic textbooks, such sentences have
been analyzed using representations in first-order predicate logic, which es-
sentially involve quantification over individuals. In the field of natural lan-
guage semantics, by contrast, quantifiers are analyzed as denoting relations
between sets, i.e., what is called generalized quantifiers (Barwise and Cooper
1981). Thus, a sentence of the form All A are B can be analyzed as having

representation of Euler diagrams, Gergonne introduced some symbols for binary relations,

which are widely called “Gergonne relations,” i.e., exclusion (A à B), identity (A I B),

overlap (A X B), proper containment (A C B), and proper inclusion (A

C

B) in his nota-

tion. See Faris (1955) for analyses of Gergonne relations from a modern standpoint. In

Section 5.1, we will briefly discuss Gergonne’s approach to representing Euler diagrams,

in comparison with ours.
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a logical form All(A,B), rather than as having the first-order representa-
tion ∀x(Ax → Bx). All(A,B) means that A ⊆ B, where A and B are
sets denoted by terms A and B, respectively. Similarly, No A are B can
be analyzed as having a relational logical form No(A,B), expressing that
A ∩ B = ∅. The point is that the semantic primitives of quantificational
sentences can be regarded as the relations between sets, such as subset re-
lation and disjointness relation. The relational representations of universal
categorical sentences in our approach such as A < B and A à B, are con-
sistent with, and could be regarded as a proof-theoretical counterpart of,
such a semantic conception of quantified sentences developed in generalized
quantified theory. Note that the modern reconstructions of Aristotelian cat-
egorical syllogisms ( Lukasiewicz, 1958; Corcoran, 1972; Smiley, 1973) and
recent development of natural logic (e.g. Moss 2008; Pratt-Hartmann and
Moss 2009) take as a primitive logical form the relational structure of a
quantified sentence, such as the one schematically represented as Q(A,B).
As we will see below, such a relational approach suggests that syllogistic
inferences can be formulated as a certain kind of relational inferences in a
perspicuous way, without reference to first-order quantifiers and individuals
terms. We will push forward this research tradition, with a detailed analysis
of the structure of proofs built from inclusion and exclusion.

Our approach differs from the previous studies on Aristotelian syllogisms
and natural logic in the treatment of existential sentences. To see it, consider
existential sentences of the forms

(3) Some A are B

and

(4) Some A are not B.

These sentences are diagrammatically represented by D3 and D4, respec-
tively, in Figure 1.2. These diagrams suggest that Some A are B is decom-
posed into two primitive assertions, a < A and a < B, and Some A are not B

into a < A and a à B, where a is a singular term denoting a witness of the
existential sentence. In our system, singular terms are semantically inter-
preted as a singleton set, which enables us to treat < as the subset relation



26 1. Introduction to Chapter 1

D3: Some A are B

a < A, a < B

A B

•a

D4: Some A are not B

a < A, a à B

B C

•a

Fig. 1.2 Correspondence between existential sentences and Euler diagrams.

in a uniform way.
Although the syntax of GS is quite simple, it is sufficient to represent a

categorical syllogism (more generally, a chain of categorical syllogisms). We
represent proofs in GS in a tree-form, as is usual in Gentzen-style natural
deduction systems. For example, a syllogism called Celarent

All A are B

No B are C

No A are C

is represented in GS simply as

B à C A < G
A à C (<)

.

As an example involving an existential sentence, consider a syllogism Darii:

Some A are B

All B are C

Some A are C

This syllogism is simulated as:

Some A are B
a < A, a < B

a < A

Some A are B
a < A, a < B

a < B
All B are C
B < C

a < C
(<)

a < A, a < C
Some A are C
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Here, in order to make clear the translation between categorical sentences
and formulas of GS, we attach a categorical sentence with each assumption
and conclusion. The crucial inference rules here are the ones concerned with
the transitivity of inclusion and exclusion relations, labeled as (<) and ( à),
respectively. A detailed translation procedure will be given in Section 3.2.

It should be noted that these two inference rules can also account for
syllogistic inferences involving a categorical sentences with a proper name.
Thus, a syllogism involving a proper name Socrates

Socrates is a Greek.

All Greeks are mortal.

Socrates is mortal.

is simply interpreted in GS as

s < G G < M
s < M .

Here the singular term s stands for Socrates, the general term G for Greek,
and the general term M for man. This example shows that in GS, both a
singular term such as Socrates and a general term such as man and Greek

can appear equally on the left and right sides of an inclusion relation < or an
exclusion relation à. As noted before, in the semantics of GS, singular terms
are interpreted as denoting a singleton set, and thus they can be regarded
as special cases of general terms. In this respect, our treatment of singular
terms is similar to the Leibnizian view on singular terms revived by Fred
Sommers, where a particular proposition Socrates is mortal is represented
as a kind of general proposition Some Socrates is mortal, or equivalently,
as Every Socrates is mortal.6 Note that in GS the translations of these two
propositions are collapsed into a formula s < M . Note also that by allowing
a singular term to appear on both the right and left sides of < and à, we
can represent a sentence involving only as in (5), an identity sentence as in
(6), and a sentence for non-identity as in (7).

6See Sommers (1982: chap.1) and Englebretsen (1981).
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(5) Only Socrates is wise W < s

(6) Cicero is Tully c < t

(7) Cicero is not Tully c à t

Here for simplicity, we take the positive component—known as the preja-
cent—of (5), i.e., the proposition that Socrates is wise, to be part of the
entailment.

The structure of Chapter 1

The outline of this chapter is as follows.

In Section 2, we define the semantics and proof theory of GS and proves
a completeness theorem. We also show a normalization theorem for our
system GS in an analogous way to a standard natural deduction system.
Then we characterize the structure of normal proof in GS.

In Section 3, we present systems of categorical syllogisms with and with-
out existential import, called CS and CS+, respectively. We show the faithful
embeddability of CS and CS+ into GS using the notion of normal proofs in
GS. The fragment of GS corresponding to categorical syllogism is called a
syllogistic fragment of GS.

To relate GS to a well established proof system, in Section 4 we show
that the syllogistic fragment of GS can be embedded into a propositional
fragment of minimal logic (called ML), where by minimal logic we mean
intuitionistic logic minus the absurdity rule. The basic idea is to translate
a GS-formula A < B into A→ B in propositional logic, and A à B into
A → ¬B. Thus, the inclusion and exclusion relations between terms are
treated like two kinds of implication between propositions.

In Section 5, we introduce an inference system for Euler diagrams, termed
as GDS. The main result of this section is to show the faithful embeddabil-
ity of GDS into GS and thereby to establish the relationships between the
linguistic and diagrammatic inference systems we are concerned with in this
chapter.

In Section 6, we consider an extension of GS with intersection. This
extended system of GS allows a term of the form A u B which denotes an
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intersection of the denotations of A and B. In this system, we can represent
categorical sentences with modifying phrases such as relative clauses. The
main result is a completeness theorem for this extended system.

The relationships between GS and other inference systems are summa-
rized in Figure 1.3.

Diagrammatic Inferences

Diagrammatic Inference System (GDS)
Natural Language Inferences

Categorical Syllogism (CS)

Underlying Inference System (GS)
for inclusion (<) and exclusion ( à) relations between terms

Natural Deduction System (ML)
for a propositional (∧, →) fragment of minimal logic

Fig. 1.3 Relationships between GS and other inference systems





2. Generalized syllogistic inference system GS

In this section, we introduce the proof theory and semantics of GS. In Section
2.1, we present the proof theory of GS, and show a normalization theorem,
based upon which, we investigate the structures of normal proofs in GS.
In Section 2.2, we present the semantics of GS, and prove a completeness
theorem.

We first present the language of GS. Throughout this chapter, the binary
relation symbol ≡ is used to denote syntactic identity.

Definition 2.1 The language of GS contains singular terms, denoted by
a, b, c, . . ., general terms, denoted by A,B,C, . . ., and relation symbols be-
tween terms, < (inclusion) and à (exclusion). Formulas of GS are defined
as follows.

(i) If s and t are terms, then s < t and s à t are formulas. These are
called atomic formulas.

(ii) If P1, . . . , Pn are atomic formulas (n ≥ 1), then {P1, . . . , Pn} is a for-
mula. A singleton {P} is identified with P .

We call a formula of the form s < t an inclusion formula (<-formula) and a
formula of the form s à t an exclusion formula ( à-formula). For all terms
s, t, s à t ≡ t à s, i.e., s à t and t à s are syntactically identical.

Notation. We use syntactic variables (possibly with subscripts) s, t, u, . . .
to denote terms, P,Q, . . . to denote atomic formulas, P,Q, . . . to denote
formulas, and Γ,∆, . . . to denote a set of formulas.

31
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Remark 2.2 To keep the proof theory of GS as simple as possible, we
disregard the order of terms in exclusion formulas and identity s à t with
t à s at syntactic level. Alternatively, we could treat s à t and t à s as
distinct formulas and adopt an inference rule that derives t à s from s à t.
Here, we prefer the current approach, because it considerably simplifies the
proof structures in GS. Additionaly, as we will see later, it will make the
translation of the diagrammatic inference system GDS into GS much simpler.

The language of GS is summarized in Table 2.1.

Variables Form

Term s, t, u, . . .

Singular term a, b, c, . . .

General term A,B,C, . . .

Atomic formula P,Q, . . . s < t | s à t
Formula P,Q, . . . {P1, . . . , Pn}
A set of formulas Γ,∆, . . .

Table 2.1 Terms and formuas of GS

Our definition of formulas differs from the standard one in that we regard
a set of atomic formulas as a formula. This makes comparisons of GS with
categorical syllogisms and Euler diagrams easier. As we will see in later sec-
tions, both a categorical sentence and an Euler diagram can be interpreted
as a GS-formula. The intended meaning of a formula of the form

{P1, . . . , Pn}

is the conjunction
P1 ∧ . . . ∧ Pn

of atomic formulas. See also Definition 2.13 of semantics below.

2.1 The proof theory of GS

We present the proof theory of GS. Proofs of GS are given in tree form. The
axiom and inference rules are given below.
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Definition 2.3 (Axiom and inference rules of GS)

Axiom (ax): s < s.
Inference rules:

s < t t < u
s < u

(<)
s < t t à u

s à u (à) s < a
a < s

(C)

P Q
P ∪Q (+)

P
P ′ (−)

where P 6= Q in (+), and P ′ ⊂ P in (−).1

We call the term t in (<) and ( à) a middle term. An inspection of the
rules shows that except for (−), the rules that eliminate a term appearing
in a premise are (<) and ( à), and the only term eliminated is the middle
term t. Note also that no rule introduces a new term in the conclusion.

By our definition the lower formula of (+) and the upper formula of (−)
are non-atomic, whereas an upper formula of (+) and the lower formula of
(−) may be atomic.

The (C) rule allows us to infer a < A (“a is A”) from A < a (“Only a is
A”) and a < b (“a is b”) from b < a (“b is a”).

As stated above, by the formula {P1, . . . , Pn} we mean the conjunc-
tion P1 ∧ · · · ∧ Pn, so that the (+) and (−) rules are generalizations of
∧-introduction and ∧-elimination rules in Gentzen’s natural deduction sys-
tem.

Next we define inductively the notion of a proof in GS. A proof π in GS

is a formula-tree: the last formula of the tree is called the conclusion of π
and the topmost formulas of the tree are called the assumptions of π.

Definition 2.4 (Proof) A proof in GS of a formula P (conclusion) from
a set of formulas Γ (assumptions) is defined inductively as follows:

1. A formula P is a proof of P from {P}.

2. An axiom P, i.e., a formula of the form s < s, is a proof of P from the
empty set.

1Throughout this chapter, we use ⊂ to denote a proper subset relation, i.e., (.
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3. Let π1 be a proof of P1 from Γ1, and π2 be a proof of P2 from Γ2. If
Q is obtained by an application of (<), ( à) or (+) to P1 and P2, then
the following formula-tree (i) is a proof of Q from Γ1 ∪ Γ2.

4. Let π be a proof of P from Γ. If Q is obtained by an application of
(−) or (C) to P, then the following formula-tree (ii) is a proof of Q
from Γ.

(i) Γ1.... π1

P1

Γ2.... π2

P2

Q

(ii) Γ.... π
P
Q

For each application α of inference rule I in a proof π, we say that a
formula appearing on the upper side of α is a premise of α, and that the
formula appearing on the lower side of α is the conclusion of α. Sometimes,
instead of saying “a premise (conclusion) of an application of the rule I”,
we just say “a premise (conclusion) of the rule I” for the sake of brevity.

The length of a proof π is defined as the number of applications of infer-
ence rules in π.

Definition 2.5 (Provability) A formula Q is provable from Γ in GS, writ-
ten as Γ ` Q, if there is a proof in GS of Q from Γ or a subset of Γ.

Notation. For the sake of brevity, when a formula {P1, . . . , Pn} appears in a
proof tree, we commonly omit the brackets and abbreviate it as P1, . . . , Pn.

Example 2.6 The following proof establishes that

{a < A, a < B} , A < C, B < D, D < E, E à F ` a à F .

a < A, a < B

a < A
(−)

A < C
a < C

(<)

a < A, a < B

a < B
(−)

B < D
a < D

(<)

a < C, a < D
(+)

a < D
(−)

D < E E à F
D à F (<)

a à F (à)
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One of the important results of Gentzen-style natural deduction (Gentzen
1934) is the normalization theorem, according to which every proof can be
converted to a normal form (cf. Prawitz 1965, 1971; von Plato 2008). A
proof in normal form does not make a detour, that is, it is never the case
that an elimination rule immediately follows an introduction rule. Given
that the (+) and (−) rules are generalizations of the ∧-introduction and
∧-elimination rules of Gentzen’s natural deduction, we can give a similar
rewriting procedure of a GS-proof into an appropriate form of a normal
GS-proof. In a normal GS-proof, it is never the case that the (−) rule im-
mediately follows the (+) rule.

Definition 2.7 (Normal GS-proof) A formula P is a cut formula in π if
P is the conclusion of an application of (+) and the premise of an application
of (−). Suppose that a proof π contains a cut formula as shown on the left
below. We can then transform π into the form on the right:

.... π1

P1

.... π2

P2

P1 ∪ P2
(+)

Q (−)

�



.... πi

Pi

Q (−) when Q ⊆ Pi for i = 1 or 2

.... π1

P1

Q1
(−)

.... π2

P2

Q2
(−)

Q (+)
when Q = Q1 ∪Q2 such that

Q1 ⊆ P1 and Q2 ⊆ P2

where in the resulting figures, if Pi = Q (resp. Pi = Qi) for i = 1, 2, it

should be understood that the (−) rule is not applied and Pi

Q (resp. Pi

Qi
) is

replaced by Pi.

We say that a GS-proof π is in the normal form if it contains no cut
formulas.

Note that if P1 and P2 are atomic, it holds that either Q = P1 or
Q = P2, and the transformation procedure is essentially the same as the one
for conjunction in Gentzen’s natural deduction system. Thus, in a similar
way to normalization in a natural deduction system (see Prawitz 1965,1971;
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Troelstra and Schwichtenberg 2000), we obtain the normalization theorem
of GS.

Theorem 2.8 (Normalization) Every proof π in GS can be transformed
into a normal proof with the same conclusion as π.

Proof. Let π be a proof in GS of P from Γ. We define the degree of a
formula {P1, . . . ,Pn} as n. Let Q be a cut formula in π with a maximal
degree, say k, in π. We apply the transformation procedure as stated in
Definition 2.7 to Q. It is easily seen that the resulting figure is still a proof
in GS with conclusion P. Note that a new cut formula may arise from this
transformation, but the degree of this cut formula is lower than k. So by an
application of the transformation procedure, the number of cut formulas of
degree k is reduced by one. Hence, by a finite number of applications of the
transformation procedure, we obtain a normal proof of P.

Example 2.9 Consider the proof in Example 2.6, which contains a cut
formula. By the transformation procedure, it is rewritten as the following
normal proof.

a < A, a < B

a < B
(−)

B < D
a < D

(<)
D < E E à F

D à F (à)

a à F (à)

A normal proof in GS has a specific structure. We say that a sequence
P1,P2, . . . ,Pn of formula occurrences in a proof π is a path in π if (1) P1

is an assumption (top-formula) of π, (2) Pi occurs immediately above Pi+1

for each i < n, and (3) Pn is the conclusion (end-formula) of π.
In general, a path in a normal proof consists of three parts: (i) the

deletion part in which the premises are decomposed into atomic formulas by
applications of the (−) rule, (ii) the transitive part in which atomic formulas
are derived by applications of the (<) or ( à) rules, and (iii) the addition part
in which the atomic formulas derived in the transitive part are combined
by applications of the (+) rule. More precisely, we can characterize the
structure of a normal proof in the following way.
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Corollary 2.10 (The structure of normal proofs) Let π be a normal
proof in GS and β = P1,P2, . . . ,Pn be a path in π. Then, β can be divided
into three parts (where each part is possibly empty):

1. the deletion part, P1,P2, . . . ,Pi−1, in which each formula is the premise
of (−) and hence non-atomic;

2. the transitive part, Pi,Pi+1, . . . ,Pi+k, in which each formula is atomic;
more specifically, Pi is an axiom or a premise of (<), ( à), or (C) and
the other formulas Pj , except the last one (i.e., i+1≤ j < i+k), are
premises of (<), ( à), or (C);

3. the addition part, Pi+k,Pi+k+1, . . . ,Pn, in which each formula except
the last one is a premise of (+).

Furthermore, the transitive part is separated into two parts, i.e., the inclu-
sion part consisting of applications of (<) or (C) and the exclusion part
consisting of applications of ( à). The inclusion part precedes the exclusion
part. More precisely, there is a formula occurrence Pm which separates the
transitive part into two (possibly empty) parts, so that:

(i) each formula Pj in the inclusion part (i ≤ j < m), is an axiom or a
premise of (<) or (C);

(ii) Pm, provided that m 6= i+ k, is a premise of ( à);

(iii) each formula Pj in the exclusion part, except the last one (m< j <

i+ k), is a premise of ( à).

Proof. We first show that in β each formula that is a premise of (−) precedes
each formula that is a premise of (<) or ( à). Suppose for contradiction that
in β there is a formula Q that is a premise of (−) and which succeeds a
formula that is a premise of (<) or ( à). Since a premise of (−) should be
non-atomic, there must be an intervening formula that is a premise of (+)
and immediately precedes Q. But then Q is a cut formula in π, contradicting
the assumption that π is normal.

Next, it can be seen that in β each formula that is a premise of (<)
or ( à) precedes each formula that is a premise of (+). Otherwise, there is
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a formula that is a premise of (+) and which precedes a formula that is a
premise of (<) or ( à). But a premise of (<) or ( à) should be atomic; so
there must be a formula that is a premise of (−) and which immediately
follows the premise of (+). Again, this is impossible since π is normal.

Finally, by inspection of the (<), ( à), and (C) rules, it is easily verified
that in the transitive part of β, each formula that is an axiom or a premise
of (<) or (C) precedes each formula that is a premise of ( à).

The following are immediate consequences of Theorem 2.8 and Corollary
2.10.

Corollary 2.11

1. Let P be an atomic formula. If Γ ` P , then Γ ` P without using (+).
2. Let Γ be a set of atomic formulas and let P be an atomic formula. If

Γ ` P , then Γ ` P without using (+) and (−).

Proof. By Theorem 2.8 and Corollary 2.10.

2.2 The semantics of GS

Now we introduce the set-theoretical semantics of GS.

Definition 2.12 A model M is a pair (U, I) where U is a non-empty set
(the domain of M) and I is an interpretation function assigning to each term
s a non-empty subset of U ; in particular, I(a) is a singleton for all singular
term a.

Definition 2.13 We define the satisfaction relation |= by:

M |= s < t if I(s) ⊆ I(t);
M |= s à t if I(s) ∩ I(t) = ∅;
M |= {P1, . . . , Pn} if M |= Pi for each Pi with 1 ≤ i ≤ n.
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Note that if s is a singular term, I(s) is a singleton, hence I(s) ⊆ I(t) is
equivalent to I(s) ∈ I(t) and I(s) ∩ (t) = ∅ is equivalent to I(s) 6∈ I(t).

We say that (1) a model M satisfies a set of formulas Γ, written as
M |= Γ, if M |= P for every formula P in Γ; (2) a set of formulas Γ
is semantically consistent if there is a model M that satisfies Γ; (3) P is
a semantically valid consequence of Γ, written as Γ |= P, if every model
satisfying Γ also satisfies P.

Theorem 2.14 (Soundness) If Γ ` P in GS, then Γ |= P.

Proof. By a straightforward induction on the length of the proof from Γ
to P. The axiom clearly holds in each model, and if the premises of an
inference rule hold in a model, so does the conclusion.

When a set of formulas is semantically inconsistent, any formula P is
a semantically valid consequence thereof. In general, however, there is no
proof in GS of P from such an inconsistent set, since GS does not have an
inference rule corresponding to the absurdity rule (i.e. Ex Falso Quodlibet)
of a natural deduction system. Accordingly, for the completeness of GS, we
impose a model existence condition for the set of assumptions.

Theorem 2.15 (Completeness) Let Γ be a semantically consistent set of
formulas of GS. If Γ |= P, then Γ ` P in GS.

It is obvious that the soundness theorem (Theorem 2.14) also holds under
the condition of the semantic consistency of given assumptions.

The rest of this section is devoted to proving Theorem 2.15. We start
with showing some useful results on the semantically consistent set of for-
mulas in GS.

Lemma 2.16 Let Γ be a semantically consistent set of formulas. Then
neither of the following holds in GS for any term s and t:

(1) Γ ` s à s.

(2) Γ ` s < t and Γ ` s à t.
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(3) There is a term u such that Γ ` s à t, Γ ` u < s and Γ ` u < t.

Proof. For (1), assume to the contrary that Γ ` s à s holds. Since Γ is
semantically consistent, there is a model M = (U, I) which satisfies Γ. By
the soundness theorem, we have Γ |= s à s, so M |= s à s, i.e., I(s) = ∅.
However, I(s) 6= ∅ by Definition 2.12, hence this is a contradiction. (2) and
(3) are reduced to (1) using the ( à) rule.

In order to show Theorem 2.15, we construct a syntactic model, called
canonical model. In GS, an equality relation between terms can be expressed
by a formula of the form {s < t, t < s}. So we first define an equivalence
relation ∼ on a set of GS-terms.

Definition 2.17 Let Γ be a set of formulas in GS. We define a binary
relation ∼ on the set of GS-terms by:

1. when s and t are general terms, s ∼ t if and only if s and t are the
same terms, i.e., s ≡ t;

2. when at least one of s and t is a singular term, s ∼ t if and only if
Γ ` {s < t, t < s}.

The following are immediate consequence of the definition.

Lemma 2.18 Let Γ be a set of GS-formulas.

1. ∼ is an equivalence relation on the set of GS-terms.

2. If s1 ∼ s2 and t1 ∼ t2, then Γ ` s1 2 t1 if and only if Γ ` s2 2 t2 for
2 ∈ {<, à}.

We will introduce several kinds of canonical models. The first one is the
following.

Definition 2.19 (Canonical model MΓ) Let Γ be a semantically con-
sistent set of of formulas of GS. Let s be the equivalence class of s, i.e.,
s = {t | s ∼ t}. Let MΓ = (UΓ, IΓ) be defined as follows:

1. UΓ = {s | s is a term}
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2. For any term t, IΓ(t) = {s | Γ ` s < t in GS}

Note that the well-definedness of IΓ follows from Lemma 2.18(2).
The following lemma confirms that MΓ satisfies the condition of GS-

models in Definition 2.12.

Lemma 2.20 Let MΓ = (UΓ, IΓ) be as described in Definition 2.19.

(a) For every term t, IΓ(t) 6= ∅.

(b) For every singular term a, IΓ(a) is a singleton.

Proof. (a) is immediate by the fact that s < s is an axiom in GS. For (b),
suppose that s ∈ IΓ(a) and u ∈ IΓ(a). Then by definition Γ ` s < a and
Γ ` u < a, so by using the (C) rule, we have Γ ` a < s and Γ ` a < u. This
implies s ∼ a and u ∼ a. Hence s = a = u.

Lemma 2.21 If Γ is a semantically consistent set of formulas of GS, then
MΓ is a model of Γ.

Proof. Let Γ be a semantically consistent set of formulas, and suppose P ∈ Γ.
We show that MΓ |= P. We may assume that P is of the form {P1, . . . , Pn}
where P1, . . . , Pn are atomic formulas (when n = 1, P ≡ P1). We claim
that MΓ |= Pi for each Pi with 1 ≤ i ≤ n. This implies that MΓ |= P by
definition. Note that by the assumption that P ∈ Γ, we have Γ ` Pi (when
n = 1 this is immediate; when n > 2, apply the (−) rule to P). We have
two cases according to whether Pi is of the form s < t or s à t.

(Case 1) Pi is of the form s < t. We show that MΓ |= s < t, i.e., IΓ(s) ⊆
IΓ(t). Let u ∈ IΓ(s). By the definition of IΓ(s) we have Γ ` u < s. Since we
have Γ ` s < t, using the (<) rule we obtain Γ ` u < t, that is, u ∈ IΓ(t).

(Case 2) Pi is of the form s à t. We show that MΓ |= s à t, i.e., IΓ(s) ∩
IΓ(t) = ∅. Assume for contradiction that u ∈ IΓ(s) and u ∈ IΓ(t) for some u.
Then we have Γ ` u < s and Γ ` u < t. By Lemma 2.16(3), this contradicts
the assumption that Γ ` u à t, as required.

Example 2.22 (Canonical model MΓ) Consider:
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Γ = {B < A,C < A,A à D, a < B, b < a} .

In the canonical model MΓ, we have:

IΓ(A) =
{
A,B,C, a

}
, IΓ(B) =

{
B, a

}
, IΓ(C) =

{
C

}
,

IΓ(D) =
{
D

}
, IΓ(a) = {a} , IΓ(b) = {a} .

Note that by the (C) rule we have Γ ` {a < b, b < a}, i.e., a ∼ b, hence
a = b. The construction of MΓ may be illustrated by the following kind of
directed graph.2

A D
I�

BC
6

a b-�

Here each node represents a term appearing in Γ, and two types of edges, →
and à, represent the relations between terms defined by: s→ t if Γ ` s < t,
and s à t if Γ ` s à t. Note that the →-relation is a preorder, i.e., a reflexive
and transitive relation. IΓ(t) corresponds to the downset ↓ t := {s | s→ t}.
In this graph representation, we omit the reflexive and transitive edges for
→. We also leave implicit the à-edges to be drawn between D and all the
other terms, except that between D and A, because they are inferable.

In the canonical model MΓ, IΓ(s) ⊆ IΓ(t) implies Γ ` s < t, but IΓ(s) ∩
IΓ(t) = ∅ does not imply Γ ` s à t. For instance, consider the canonical
model in Example 2.22. Here we have IΓ(C) ∩ IΓ(B) = ∅ but Γ 6` B à C.
That is to say, in the canonical model MΓ, the semantic validity of à-relation
does not imply the provability of à-relation, and hence such a model is not
enough to establish completeness.

We say that s is indeterminate with respect to t given Γ, written as
s ./Γ t, when the following holds:

Γ 6` s < t and Γ 6` t < s and Γ 6` s à t.
2This kind of directed graph is introduced in Mineshima, Okada and Takemura (2009)

for the purpose of the abstract representation of Euler diagrams.
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The problem with the canonical model MΓ is that we have IΓ(s)∩ IΓ(t) = ∅
even when s ./Γ t holds. So let us consider a modified canonical model M ′

Γ

where the interpretation of any pair of terms s and t that are indeterminate
has an intersection, i.e, I ′Γ(s) ∩ I ′Γ(t) 6= ∅. Unfortunately, this is again not
a satisfactory model. Let us consider the set of formulas Γ in Example
2.22. Here we have C ./Γ a, thus we would have some u ∈ I ′Γ(C) ∩ I ′Γ(a).
But then, since I ′Γ(a) must be a singleton by definition 2.12, we would have
I ′Γ(a) = {u}, hence I ′Γ(a) ⊆ I ′Γ(C), i.e., M ′

Γ |= a < C, contrary to what we
want.

In order to overcome this difficulty, we define a slightly extended notion
of model, which we call quasi-model of GS.

Definition 2.23 (Quasi-model) A quasi-model of GS is just as described
in Definition 2.12 except that the condition for singular terms is deleted, i.e.,
for every singular term a, I∗(a) may not be a singleton. The satisfaction
relation |= is defined for quasi-models in the same way as in Definition 2.13.

We define a canonical quasi-model for a set of formulas Γ.

Definition 2.24 (Canonical quasi-model M∗
Γ) Let Γ be a semantically

consistent set of formulas of GS. Let s = {t | s ∼ t}. A canonical quasi-model
M∗

Γ = (U∗
Γ, I

∗
Γ) for Γ is defined as follows:

1. U∗
Γ = {s | s is a term} ∪

{{
s, t

}
| s and t are terms

}
2. For all term t, I∗Γ(t) = {s | Γ ` s < t}∪ {{s, u} | Γ ` u < t and s ./Γ u}

Note that by the clause 2, I∗Γ(a) may not be a singleton for a singular term
a.

Notation. We use x, y, . . . as a variable over elements in the domain U∗
Γ.

Example 2.25 (Canonical quasi-model) Consider again

Γ = {B < A,C < A,A à D, a < B, b < a} .
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In the canonical quasi-model M∗
Γ, we have:

I∗Γ(A) =
{
A,B,C, a,

{
C,B

}
,
{
C, a

}}
,

I∗Γ(B) =
{
B,

{
C,B

}
,
{
C, a

}}
,

I∗Γ(C) =
{
C,

{
C,B

}
,
{
C, a

}}
,

I∗Γ(D) =
{
D

}
,

I∗Γ(a) =
{
a,

{
C, a

}}
,

I∗Γ(b) =
{
a,

{
C, a

}}
.

Here C is indeterminate with respect to B given Γ. Thus, we have
{
C,B

}
∈

I∗Γ(s) for every term s such that Γ ` C < s or Γ ` B < s. Similarly,
{
C, a

}
is included in any I∗Γ(s) such that Γ ` C < s or Γ ` a < s.

Lemma 2.26 If Γ is a semantically consistent set of formulas of GS, then
M∗

Γ is a model of Γ.

Proof. As in Lemma 2.21, it is sufficient to prove the following:
1. If Γ ` s < t, then I∗Γ(s) ⊆ I∗Γ(t).
2. If Γ ` s à t, then I∗Γ(s) ∩ I∗Γ(t) 6= ∅.

1. Let x ∈ I∗Γ(s). When x ≡ u for a term u, the proof is the same as Case
1 in the proof of Lemma 2.21. Otherwise, by the definition of IΓ(s),
we have x ≡ {u, v} for some u and v such that Γ ` u < s and u ./Γ v.
Since Γ ` s < t, we have Γ ` u < t using the (<) rule. Hence by the
definition of I∗Γ(t), we have {u, v} ∈ I∗Γ(t).

2. Assume to the contrary that there exists an x such that x ∈ I∗Γ(s) and
x ∈ I∗Γ(t). When x ≡ u for some term u, the proof is the same as
Case 2 of the proof of Lemma 2.26. Otherwise, we have x ≡ {u, v} for
some terms u and v. We may assume without loss of generality that
Γ ` u < s and u ./Γ v. Since {u, v} ∈ IΓ(t), we have either Γ ` u < t

or Γ ` v < t. Given Γ ` u < s, the former case contradicts Γ ` s à t
by Lemma 2.16(3). In the latter case, together with Γ ` s à t, we get
Γ ` s à v by the ( à) rule. Since Γ ` u < s, we obtain Γ ` u à v by
the ( à) rule. This is a contradiction to u ./Γ v, as required.
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In order to pass from a model MΓ to a quasi-model M∗
Γ, it is desired to

have: for any formula P, if MΓ |= P, then M∗
Γ |= P. Unfortunately, this

claim does not generally hold. For example, when s ./Γ t holds, we have
MΓ |= s à t but M∗

Γ 6|= s à t, since
{
s, t

}
∈ I∗Γ(s) ∩ I∗Γ(t). However, under

the assumption that Γ |= P, the claim holds. In order to prove it, we need
the following lemma.

Lemma 2.27 Let Γ be a semantically consistent set of formulas, and let u
and t be terms in GS. If Γ 6` u à v holds, there is a model M in GS such
that M |= Γ and M 6|= u à v.

Proof. We construct a canonical model Mu,v whose domain consists of the
set of terms in GS and whose interpretation function Iu,v is defined as follows:
(I) When there is a singular term b such that b ∼ v: for any term t,

1. Iu,v(t) = {u} if v ∼ t.
2. Iu,v(t) = IΓ(t) ∪ {u} if Γ ` v < t and Γ 6` t < v.
3. Iu,v(t) = IΓ(t), otherwise.

(II) When there is no singular term b such that b ∼ v: for any term t,

1. Iu,v(t) = IΓ(t) ∪ {u} if Γ ` v < t.
2. Iu,v(t) = IΓ(t), otherwise.

Note that in (I) t may be a singular term or a general term, while in (II), t
must be a general term.

It is easily seen that Mu,v is a GS-model; in particular, Iu,v(a) is a sin-
gleton for any singular term a. Note that non-singleton interpretations may
arise in (I.2) and (II.1), but in both cases, t cannot be a singular term by
definition.

It can also be easily verified that Mu,v 6|= u à v. In the case of (I),
Iu,v(v) = {u} (by Clause I.1) and Iu,v(u) = {u} (by Clause I.3). In the case
of (II), u ∈ Iu,v(v) (by Clause II.1) and u ∈ Iu,v(u) (by Clause II.2). Hence
in both cases, we have Iu,v(u) ∩ Iu,v(v) 6= ∅.

Now we show that Mu,v |= Γ. It is sufficient to prove the following:

(1) If Γ ` s < t, then Mu,v |= s < t.
(2) If Γ ` s à t, then Mu,v |= s à t.
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For (1), suppose Γ ` s < t. We show Iu,v(s) ⊆ Iu,v(t).

We first consider the case of canonical model Mu,v in (I), so assume that
there is a singular term b such that b ∼ v. We distinguish the cases according
to the relation holding between v and s with respect to Γ.

(a) When v ∼ s holds, Iu,v(s) = {u} (by Clause I.1). Given Γ ` s < t,
we obtain Γ ` v < t by using the (+) rule. So we have u ∈ Iu,v(t),
whether Γ ` t < v holds or not. Hence Iu,v(s) ⊆ Iu,v(t).

(b) When Γ ` v < s and Γ 6` s < v, we have Iu,v(s) = IΓ(s) ∪ {u} (by
Clause I.2), and given Γ ` s < t, we have Γ ` v < t. Now Γ 6` t < v;
otherwise, we would obtain Γ ` s < v, contradicting our assumption.
So Iu,v(t) = IΓ(t) ∪ {u}. Since IΓ(s) ⊆ IΓ(t) by Lemma 2.21, we have
Iu,v(s) ⊆ Iu,v(s), as desired.

(c) Otherwise (i.e., s 6∼ v and Γ 6` v < s), we have Iu,v(s) = IΓ(s). We
also have t 6∼ v, since otherwise, we would have Γ ` s < v; but then,
given that there is a singular term b such that b ∼ v, we could prove
Γ ` v < s, which would be a contradiction. Hence, Iu,v(s) = IΓ(s) ⊆
IΓ(t) ⊆ Iu,v(t).

Next we consider the case of (II), so let us assume that there is no
singular term b such that b ∼ v. When Γ ` v < s, the proof is the same as
in (b) above. Otherwise, we have Iu,v(s) = IΓ(s). Note that IΓ(t) ⊆ Iu,v(t)
by definition, and IΓ(s) ⊆ IΓ(t) by Lemma 2.21. Hence Iu,v(s) ⊆ Iu,v(s).
This completes the proof of the claim (1).

For the claim (2), suppose Γ ` s à t. We show Mu,v |= s à t, that is,
Iu,v(s) ∩ Iu,v(t) = ∅.

In the case of (I), assume that there is a singular term b such that b ∼ v.
We distinguish the following cases:

(a′) When s ∼ v holds, Iu,v(s) = {u}. Given Γ ` s à t, we have Γ ` v à t.
Then by Lemma 2.16, we have Γ 6` v < t, so Iu,v(t) = IΓ(t) (by Clause
I.3). Thus, if Iu,v(s) ∩ Iu,v(t) 6= ∅, then u ∈ IΓ(t), i.e., Γ ` u < t.
Hence we have Γ ` u à v, which is a contradiction to our assumption.
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(b′) When Γ ` v < s, we have Iu,v(s) = IΓ(s) ∪ {u}, and also, Iu,v(t) =
IΓ(t) by the same reasoning as in (a′). Suppose for contradiction that
r ∈ Iu,v(s) ∩ Iu,v(t) for some term r. Then we have Γ ` r < t, and
either Γ ` r < s or r = u. The former case contradicts Γ ` s à t by
Lemma 2.16. In the latter case, we have u ∈ IΓ(t), i.e., Γ ` u < t.
Then, since Γ ` v < s and Γ ` s à t, we would get Γ ` u à v, in
contradiction to our assumption.

(c′) When s 6∼ v and Γ 6` v < s, we have Iu,v(s) = IΓ(s). The only case we
need to consider is the case in which t 6∼ v and Γ 6` v < t hold, so we
may assume that Iu,v(t) = IΓ(t). But then the assertion follows from
Lemma 2.26.

In the case of (II), let us assume that there is no singular term b such
that b ∼ v. It is sufficient to check the following cases: (i) Γ ` v < s and
Γ ` v < t; (ii) Γ ` v < s and Γ 6` v < t; (iii) Γ 6` v < s and Γ 6` v < t. Case
(i) immediately contradicts Γ ` s à t by Lemma 2.16. In Case (ii), we have
Iu,v(s) = IΓ(s)∩ {u} and Iu,v(t) = IΓ(t). So the proof is the same as in (b′)
above. In Case (iii), the proof is the same as (c′) above. This completes the
proof of Lemma 2.27.

Remark. When v ∼ a holds for some singular term a, I(v) must be a
singleton even when v is a general term. So in defining the canonical model
Mu,v, we need to divide the cases of (I) and (II), depending on whether or
not there is a singular term b such that b ∼ v, rather than whether v is a
singular term or a general term.

Lemma 2.28 Let Γ be a semantically consistent set of formulas of GS, and
let P be a formula. If Γ |= P and MΓ |= P, then M∗

Γ |= P.

Proof. It is enough to prove the claim for any atomic formula P . So we have
two cases.

(Case 1) P is of the form s < t. We show M∗
Γ |= s < t, i.e., I∗Γ(s) ⊆ I∗Γ(t).

Let x ∈ I∗Γ(s).
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1. When x ≡ u for a term u, by the definition of I∗Γ(s) we have Γ ` u < s,
so by the definition of IΓ(s) we have u ∈ IΓ(s). By assumption we have
MΓ |= s < t, i.e., IΓ(s) ⊆ IΓ(t). So we have u ∈ IΓ(t), i.e., Γ ` u < t,
hence by the definition of I∗Γ(t) we obtain u ∈ I∗Γ(t).

2. Otherwise, by the definition of I∗Γ(s), we have x ≡ {u, v} for terms u
and v. We may assume without loss of generality that Γ ` u < s and
u ./Γ v. Then u ∈ IΓ(s), which implies u ∈ IΓ(t) by our assumption.
So Γ ` u < t, hence {u, v} ∈ I∗Γ(t).

(Case 2) P is of the form s à t. Note that we have MΓ |= s à t, that is,
IΓ(s)∩ IΓ(t) = ∅. We show that M∗

Γ |= s à t, i.e., I∗Γ(s)∩ I∗Γ(t) = ∅. Assume
to the contrary that there exists some x such that x ∈ I∗Γ(s) and x ∈ I∗Γ(t).

1. When x ≡ u for a term u, by the definition of I∗Γ(s) and I∗Γ(t) we
have Γ ` u < s and Γ ` u < t. So u ∈ IΓ(s) and u ∈ IΓ(t), that is,
IΓ(s) ∩ IΓ(t) 6= ∅, which is a contradiction.

2. Otherwise, we have x ≡ {u, v} for some terms u and v. There are four
possible cases, of which the following two are representative:
(i) When Γ ` u < s and Γ ` u < t, we have u ∈ IΓ(s) and u ∈ IΓ(t),
which contradicts IΓ(s) ∩ IΓ(t) = ∅.
(ii) When Γ ` u < s and Γ ` v < t, by soundness we have Γ |= u < s

and Γ |= v < t. By assumption Γ |= s à t, hence Γ |= u à v. Since we
have u ./Γ v, by Lemma 2.27 we can construct a canonical model Mu,v

such that Mu,v |= Γ and Mu,v 6|= u à v. Hence we have Mu,v |= u à v
as well, which is a contradiction.

Finally, we proceed to prove the completeness of GS.

Proof of Theorem 2.15. Suppose Γ |= P. Then using Lemma 2.21 we have
MΓ |= P, and so by Lemma 2.28 we have M∗

Γ |= P. We may assume that
P has the form {P1, . . . , Pn} where P1, . . . , Pn are atomic formulas. Thus
we have M∗

Γ |= Pi for each Pi (1 ≤ i ≤ n). We claim that Γ ` Pi. It then
follows that Γ ` {P1, . . . , Pn} by repeated applications of the (+) rule, which
completes the proof of Theorem 2.15.
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(Case 1) When Pi is of the form s < t, we already have I∗Γ(s) ⊆ I∗Γ(t). Since
Γ ` s < s by Axiom (ax), we have s ∈ I∗Γ(s). Since s is a term, this implies
that Γ ` s < t.

(Case 2) When Pi is of the form s à t, we have I∗Γ(s) ∩ I∗Γ(t) = ∅. Assume
for contradiction that Γ 6` s à t. We claim that Γ 6` s < t. If Γ ` s < t,
we have Γ |= s < t by soundness, so MΓ |= s < t by Lemma 2.21. It then
follows that M∗

Γ |= s < t by Lemma 2.28, hence I∗Γ(s) ⊆ I∗Γ(t). But this is a
contradiction to I∗Γ(s) ∩ I∗Γ(t) = ∅, since I∗Γ(s) 6= ∅ under our semantics. In
the same way, we have Γ 6` t < s, thus s ./Γ t. We also have Γ ` s < s by
Axiom (ax). Hence by the definition of I∗Γ(s), we have

{
s, t

}
∈ I∗Γ(s). By

the same reasoning, we have
{
s, t

}
∈ I∗Γ(t), hence I∗Γ(s) ∩ I∗Γ(t) 6= ∅. This is

a contradiction, as required.





3. GS and categorical syllogisms

In this section, we show that categorical syllogisms correspond to a fragment
of GS using proof-theoretic methods. We first consider a system of categor-
ical syllogisms without existential import (CS), and then consider the case
of a system with existential import (CS+).

3.1 An inference system CS for categorical syllogism

We introduce a simple formulation of an inference system of categorical
syllogisms, called CS. First we present the language of CS. The terms of
CS are only general terms, denoted by A,B,C, . . . as in GS. Categorical
sentences in CS are defined as follows.

Definition 3.1 (Categorical sentences) A categorical sentence has one
of the following forms: All A are B, No A are B, Some A are B, or Some A

are not B, where A and B are distinct general terms. We call All A are B

and No A are B universal sentences, and Some A are B and Some A are not

B existential sentences. We use variables S, T,R, . . . to denote categorical
sentences.

A categorical syllogism (or simply a syllogism for short) is composed of two
premises and one conclusion. We write it in tree form, for example,

All B are C Some A are B
Some A are C .

The validity of some patterns of syllogisms depends on the so-called ex-
istential import of the subject term of universal sentences, which allows the

51
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derivation of Some A are B from All A are B. For simplicity, we first ex-
clude such patterns and only consider categorical syllogisms that are valid
without existential import. In Section 3.3, we will introduce a system CS+ of
categorical syllogisms with existential imports. All valid patterns of categor-
ical syllogisms are listed in Table 3.1 below, where `∗ indicates the patterns
whose validity depends on the existential import of a subject term A. These
patterns are provable in CS+.

As is well known, in Prior Analytics, Aristotle showed that all valid syl-
logisms are reduced to syllogisms of the first figure, which he calls perfect
syllogisms (see Parsons 2008 for a detailed historical overview of Aristo-
tle’s syllogistic). They consists of four patterns: Barbara, Celarent, Darii,
and Ferio under the traditional mnemonic names. In modern formulations
of categorical syllogisms, such as  Lukasiewicz’s (1957) axiomatic system or
various natural deduction systems (cf. Corcoran 1972, 1974; Smiley 1974;
Martin 1997), the syllogisms of the first figure are taken as axioms or infer-
ence rules; all other valid syllogisms are then derivied using classical logical
rules, including the rule of Reductio ad absurdum. Here instead, we re-
gard two additional valid patterns, i.e., Baroco and Bocardo, as primitive
inference rules of CS. We also need conversion rules for Some A are B and
No A are B.

Definition 3.2 (Inference rules) The inference rules of CS are the fol-
lowing.

All A are B All B are C
All A are C

Barbara

All A are B No B are C
No A are C

Celarent

Some A are B All B are C
Some A are C

Darii

Some A are B No B are C
Some A are not C

Ferio

Some A are not B All C are B
Some A are not C

Baroco

All B are A Some B are not C
Some A are not C

Bocardo

Some B are A
Some A are B

conv1

No B are A
No A are B

conv2

It is easy to check that all other valid patterns of categorical syllogisms
(with no existential import) are derived from these rules.
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We consider not only a single syllogism but also a chain of syllogisms
with multiple premises (i.e., what is traditionally called sorites), where the
conclusion of a syllogism can be a premise for the subsequent one, forming a
sequence of syllogisms. Accordingly, a proof of CS is given in an analogous
way to that of GS: it is a tree beginning with categorical sentences and
proceeding by one of the inference rules in Definition 3.2.

Definition 3.3 (Proof) Proofs of CS are defined inductively as follows.

1. A categorical sentence S is a proof from premise S to conclusion S.

2. Let π1 be a proof of S from S1, . . . , Sn, and let π2 be a proof of T from
T1, . . . , Tn. If a categorical sentence R is derived by an application of
Barbara, Celarent, Darii, Ferio, Baroco, or Bocardo to S and T , then the
following tree is a proof of R from S1, . . . , Sn, T1, . . . , Tn.

S1 · · · Sn.... π1

S

T1 · · · Tm.... π2

T
R

3. Let π be a proof of S from S1, . . . , Sn. If a categorical sentence T is
derived by an application of conv1 or conv2 to S, then the following
tree is a proof of T from S1, . . . , Sn.

S1 · · · Sn.... π
S
T

Definition 3.4 (Provability) A categorical sentence S is provable from
S1, . . . , Sn, written as S1, . . . , Sn ` S, if there is a proof of S in CS from
S1, . . . , Sk with 1 ≤ k ≤ n

Note that by this definition of provability, premises S1, . . . , Sn may contain
a superfluous one, as in GS.
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Figure Mnemonic Form

I Barbara All B are C, All A are B ` All A are C

—— All B are C, All A are B `∗ Some A are C

Celarent No B are C, All A are B ` No A are C

—— No B are C, All A are B `∗ Some A are not C

Darii All B are C, Some A are B ` Some A are C

Ferio No B are C, Some A are B ` Some A are not C

II Cesare No C are B, All A are B ` No A are C

—— No C are B, All A are B `∗ Some A are not C

Camestres All C are B, No A are B ` No A are C

—— All C are B, No A are B `∗ Some A are not C

Festino No C are B, Some A are B ` Some A are not C

Baroco All C are B, Some A are not B ` Some A are not C

III Darapti All B are C, All B are A `∗ Some A are C

Felapton No B are C, All B are A `∗ Some A are not C

Disamis Some B are C, All B are A ` Some A are C

Datisi All B are C, Some B are A ` Some A are C

Bocardo Some B are not C, All B are A ` Some A are not C

Ferison No B are C, Some B are A ` Some A are not C

IV Bramantip All C are B, All B are A `∗ Some A are C

Camenes All C are B, No B are A ` No A are C

—— All C are B, No B are A `∗ Some A are not C

Dimaris Some C are B, All B are A ` Some A are C

Fesapo No C are B, All B are A `∗ Some A are not C

Fresison No C are B, Some B are A ` Some A are not C

Table 3.1 List of all valid patterns of categorical syllogisms. The relation `∗

indicates the patterns whose validity depends on existential import.
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Example 3.5 The proof

Some A are B All B are C
Some A are C

Darii
No C are D

Some A are not D
Ferio

All E are D
Some A are not E

Baroco

establishes that in CS we have:

Some A are B, All B are C, No C are D, All E are D ` Some A are not E.

3.2 The relation between GS and CS

We present a sound and faithful embedding of CS into GS. We provide a
translation procedure between proofs in CS and those in GS. In this way, we
establish the embedding in a purely syntactic way, i.e., without appealing
to semantic notions.

Theorem 3.6 (Soundness) Every proof in CS of S from S1, . . . , Sn can
be translated into a proof in GS of S◦ from S◦

1 , . . . , S
◦
n, where the translation

(·)◦ from a categorical sentence in CS into a formula in GS is defined by:

(All A are B)◦ = A < B,

(No A are B)◦ = A à B,

(Some A are B)◦ = {c < A, c < B} ,

(Some A are not B)◦ = {d < A, d à B} .

Here we impose the following restrictions: (i) every premise S◦
i (1 ≤ i ≤ n)

is assigned a different singular term, and (ii) any singular term appearing
in the conclusion S◦ also appears in one of the premises S◦

1 , . . . S
◦
n.

Proof. By induction on the length of a proof in CS. The base case is imme-
diate: if S is a proof in CS, so is S◦ in GS. For the induction step, it suffices
to show that each inference rule of CS is translated into a combination of
inference rules of GS.

1. All A are B All B are C
All A are C

Barbara is translated into A < B B < C
A < C

(<)
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2. All A are B No B are C
No A are C

Celarent is translated into A < B B à C
A à C (à)

3. Some C are B All B are A
Some C are A

Darii and All B are A Some B are not C
Some A are not C

Bocardo

are translated into a < B, a2C

a2C
(−)

a < B, a2C

a < B
(−)

B < A
a < A

(<)

a2C, a < A
(+)

where 2 is < in Darii and à in Bocardo.

4. Some A are B No B are C
Some A are not C

Ferio and Some A are not B All C are B
Some A are not C

Baroco

are translated into a < A, a21B

a < A
(−)

a < A, a21B

a21B
(−)

C 22B
a à C

a < A, a à C (+)

where 21 is < in Ferio and à in Baroco, and 22 is à in Ferio and < in
Baroco.

5. Since the order of terms in Some A are B and No A are B is irrelevant in
GS, conv1 and conv2 are collapsed into a single formula:

Some B are A
Some A are B

conv1 is translated into {a < A, a < B}.

No B are A
No A are B

conv2 is translated into A à B.

Example 3.7 A proof in CS

No C are D
Some B are C All B are A

Some A are C
Disamis

Some A are not D
Ferio

is translated in GS as follows.

a < B, a < C

a < B B < A
a < A

a < B, a < C

a < C
a < A, a < C

(+)

a < A
(−)

a < B, a < C

a < B B < A
a < A

a < B, a < C

a < C
a < A, a < C

(+)

a < C
(−)

C à D
a à D

a < A, a à D
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Note that this proof is not in normal form. As indicated by (+) and (−),
two cut formulas appear in the proof.

When we translate a categorical sentence into a formula in GS, we need
to assign different singular terms to different existential sentences. However,
we do not need to be concerned about such a clash of singular terms when
we consider valid syllogisms in CS, since as we show in Lemma 3.9, at most
one existential sentence can appear in the premises of valid syllogisms in CS.

As noted in Section 1, a remarkable feature of GS is that it is logic
free in that only atomic formulas (i.e., a formula of the form s < t or
s à t) and their conjunction appear in a proof. Essential steps in a GS-
proof consist of applications of (<) and ( à), which do nothing more than
inferring an atomic formula from other atomic formulas in given premises.
In this respect, our treatment of categorical syllogisms differs from other
approaches in the literature. Thus, in the seminal work of  Lukasiewicz
(1957), categorical syllogisms are reconstructed using the axioms of the full
(classical) propositional logic. Also in the work of Corcoran (1972, 1974)
and Smiley (1973), where categorical syllogisms are formalized in natural
deduction systems, rather than in the Frege-Hilbert style axiomatization,
negation and the inference rule of reductio ad absurdum play an essential
role. In recent developments of natural logic, Westerst̊ahl (1989) and Moss
(2008) also rely on the axioms of propositional logic in their formalization
of inferences in the syllogistic fragment of natural language.

The rest of this subsection is devoted to proving the converse direction
of Theorem 3.6, that is, the faithfulness of the translation (·)◦ from CS to
GS. For this purpose, we introduce the notion of syllogistic formulas in GS.

Definition 3.8 (Syllogistic formula) We call formulas in GS of the form
A < B or A à B universal, and formulas of the form {c < A, c < B} or
{c < A, c à B} existential. They are collectively called syllogistic formulas
in GS. We also say that they are in the syllogistic fragment of GS.

We show some useful results on the normal proofs in the syllogistic frag-
ment of GS.
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Lemma 3.9 Let P1, . . . ,Pn be syllogistic formulas in GS such that the sin-
gular terms appearing in the Pi (1 ≤ i ≤ n) differ from each other. Let π
be a normal proof in GS of a syllogistic formula P from P1, . . . ,Pn.

1. If the conclusion P is universal, then the assumptions P1, . . . ,Pn are
also universal. More specifically:

(i) If P is an <-formula, then all the assumptions are <-formulas.

(ii) If P is an à-formula, then one of the assumptions is an à-formula
and the other assumptions are all <-formulas.

2. If the conclusion P is existential, then one of the assumptions is exis-
tential and the other assumptions are all universal.

Proof. Claims 1(i) and 1(ii) are immediate from Corollary 2.10 by inspection
of the (<) and ( à) rules. Note that a formula of the form A < a, where a is
a singular term, does not appear in proofs of the syllogistic fragment of GS.
For Claim 2, it is easily verified that in each inference rule I of GS, every
term occurring in the conclusion of an application of I also occurs in some
premise of that application of I, and hence occurs in some assumption of
the proof as well. Thus, if the conclusion P of π contains a singular term,
say c, then so does one of the assumptions (which must be an existential
formula). Now suppose for contradiction that the assumptions have another
existential formula, which contains a singular term different from c, say d.
(We may assume that it has the form {d < A, d2B} where 2 is < or à.)
Since d does not appear in the conclusion P, there should be a formula of
the form C < d in π which is a premise of (<) or ( à). But as noted above,
this is impossible in the syllogistic fragment of GS.

The set of general terms appearing in the premises and conclusion of
a proof in CS has a specific form. For example, we have Some A1 are A2,

No A2 are A3 6` Some A2 are not A3 in CS. Here, term A2 shared by the
two premises is not eliminated in the conclusion. By contrast, we have
(Some A1 are A2)◦, (No A2 are A3)◦ ` (Some A2 are not A3)◦ in GS with a
suitable choice of singular terms for existential sentences. To avoid such a
discrepancy, we appeal to the notion of cyclicity.
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Definition 3.10 (Cyclicity) Let P,P1, . . . ,Pn be syllogistic formulas in
GS. We denote by gtm(P) a set of general terms appearing in P. We say
that a sequence P1, . . . ,Pn,P of syllogistic formulas is a cycle if gtm(P1) =
{A1, A2} , . . . , gtm(Pn) = {An, An+1} , gtm(P) = {An+1, A1}, where Ai 6≡
Aj for all 1 ≤ i, j ≤ n+ 1.

If a sequence σ = P1, . . . ,Pn,P is a cycle, σ contains n+1 general terms,
and each general term has exactly two occurrences in σ.

The normalization procedure in GS preserves the cyclicity of the assump-
tions and conclusion of a proof. That is, we have:

Lemma 3.11 Let P,P1, . . . ,Pn be syllogistic formula in GS. Let π be a
proof in GS of P from P1, . . . ,Pn such that the sequence P1, . . . ,Pn,P is a
cycle. If π′ is normal proof of π, then π′ has the same assumptions as π.

Proof. Suppose for contradiction that there is a formula Pi that is among
the assumptions P1, . . . ,Pn of π but not among the assumptions of π′. Let
gtm(Pi) = {Ai, Aj}. We first observe that neither Ai nor Aj appears in the
conclusion P of π′. Otherwise, Ai [resp. Aj ] would appear in the conclusion
but not in any assumption of π′; this is clearly impossible since no inference
rules in GS introduce a new term in their conclusion. Accordingly, we may
assume, without loss of generality, that some formulas Pk with Ai ∈ gtm(Pk)
and Pm with Aj ∈ gtm(Pm) are among the assumptions of π′, and no other
assumptions in π′ contain Ai nor Aj . By Lemma 3.9 at least one of Pk and
Pm must be a universal formula. Suppose, without loss of generality, that
Pk is a universal formula. Then, since Ai does not appear in the conclusion
of π′, Ai must be eliminated in π′ as a middle term in an application of (<)
or ( à). But then, there must be another universal formula containing Ai

among the assumptions of π′. This is a contradiction, as required.

Now, we explain by examples how to translate a proof in GS into a proof
in CS. Let π be a normal proof in GS from S◦

1 , . . . , S
◦
n to S◦ such that the

sequence S◦
1 , . . . , S

◦
n, S

◦ is a cycle and all singular terms appearing in S◦
i

(1 ≤ i ≤ n) are different from each other. If the conclusion S◦ is a universal
formula, i.e., a formula of the form A < B or A à B, by Lemma 3.9(1) the



60 3. GS and categorical syllogisms

assumptions S◦
1 , . . . , S

◦
n are all universal formulas, and π is composed only

of applications of (<) and ( à). Thus, it is immediate to translate π into a
proof in CS. For example,

A5 < A4

A1 < A2 A2 < A3

A1 < A3
(<)

A3 à A4

A1 à A4
(à)

A1 à A5
(à)

is translated into:

All A5 are A4

All A1 are A2 All A2 are A3

All A1 are A3
Barbara

No A3 are A4

No A1 are A4
Celarent

No A4 are A1
conv2

No A5 are A1
Celarent

More problematic is the case in which the conclusion S◦ is an existential
formula, namely, a formula of the form {c < A1, c2A2}, where 2 is < or
à. In this case, translating π into a CS-proof is not trivial since there are
applications of (+) and (−) in π, and accordingly, there may be applications
of the (<) or ( à) rule to non-syllogistic formulas of the form c < B or c à B
in π.

Example 3.12 Consider:

c < A2, c < A3

c < A2
(−)

A2 < A1

c < A1
(<)

c < A2, c < A3

c < A3
(−)

A3 à A4

c à A4
(à)

A5 < A4

c à A5
(à)

c < A1, c à A5
(+)

This proof involves applications of (<) and ( à) to non-syllogistic formulas,
although all the premises and the conclusion are syllogistic.

To translate this kind of proofs into one in CS, we introduce derived rules
whose premises and conclusion are restricted to syllogistic formulas.

Lemma 3.13 (Derived rules) The following are derived rules in GS.
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a < A, a < B B < C

a < A, a < C
(<1)

a à A, a < B B < C

a à A, a < C
(<2)

a < A, a < B B à C
a < A, a à C (à1)

a < A, a à B C < B

a < A, a à C (à2)

Proof. Note that each rule corresponds to a categorical syllogism: (<1) to
Darii, (<2) to Bocardo, ( à1) to Ferio, and ( à2) to Baroco. So each can be
justified as shown in the proof of Theorem 3.6.

In each derived rule, we call a formula of the form a < A or a à A, which
appears both in a premise and the conclusion a minor premise of that rule.

Using the derived rules, the above example can be transformed into

a < A2, c < A3 A2 < A1

c < A1, c < A3
(<1)

A3 à A4

c < A1, c à A4
(à1)

A5 < A4

c < A1, c à A5
(à2)

where only syllogistic formulas appear in each step. Note that since a se-
quence P1, P2 means the set {P1, P2}, the order of formulas in a sequence is
immaterial in applying the derived rules.

Notation. In the sequel, by s2 t we denote an atomic formula containing s
and t, i.e., s < t, t < s, or s à t. Note that different occurrences of 2 in a
proof tree may denote different relations.

We say that a proof in GS is syllogistic if it begins with syllogistic for-
mulas and proceeds by the rules (<), ( à), (<1), (<2), ( à1), and ( à2). We
prove the following lemma.

Lemma 3.14 Let P,P1, . . . ,Pn be syllogistic formulas. Let π be a GS-
proof of P from P1, . . . ,Pn, such that (i) the sequence P1, . . . ,Pn,P is a
cycle, and (ii) the singular terms appearing in Pi (1 ≤ i ≤ n) are different
from each other. Then π can be transformed into a syllogistic proof of P
from P1, . . . ,Pn.
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Proof. By Theorem 2.8, π can be transformed into a normal proof π′. By
Lemma 3.11, π′ has the same assumptions, P1, . . . ,Pn, as π. We show that
π′ can be transformed into a syllogistic proof of P from P1, . . . ,Pn. We
divide the cases according to the form of P.

If P is a universal formula, by Lemma 3.9(1), P1, . . . ,Pn are universal
formulas as well, and π′ consists only of applications of (<) and ( à), and
hence π′ is already syllogistic.

If P is an existential formula, by Definition 3.8, P has the form c <

A, c 2B (where A 6≡ B). By Corollary 2.10, there are paths α = Pi,Q1, . . .,
Qk,P and β = Pj ,R1, . . . ,Rm,P such that Pi and Pj are existential formu-
las, Q1, . . . ,Qk (resp. R1, . . . ,Rm) is the transitive part of α (resp. β), and
the singular term c occurs in each formula in α and β. We see that Pi ≡ Pj .
Otherwise, the assumptions contain two existential formulas, which is a con-
tradiction to Lemma 3.9(2). Moreover, since a formula of the form A < c

does not occur in a proof in the syllogistic fragment of GS, each formula
in the transitive part is of the form c < Al with 1 ≤ l ≤ k,Ak ≡ A (resp.
c2Bl with 1 ≤ l ≤ m,Bm ≡ B).

It can also be seen that Q1 6≡ R1. Suppose for contradiction, that
Q1 ≡ R1 ≡ c < A1 so that c < B1 occurs only in the assumption and not
in the transitive part of any path in π′. By cyclicity there would be another
assumption containing B1, and no other assumptions can contain B1. By
Lemma 3.9(2), the assumption containing B1 would be a universal formula.
Thus it must be a premise of (<) or ( à), and hence there must be another
premise containing B1 so as to eliminate it as a middle term. This is a
contradiction.

Thus, π′ has the following form:

c < A1, c2B1

c < A1
(−)

.... π
1
1

A1 < A2

c < A2
(<)

.....
c < Ak−1

.... π
1
k−1

Ak−1 < A

c < A
(<)

c < A1, c2B1

c2B1
(−)

.... π
2
1

B1 2B2

c2B2
I1

.....
c2Bm−1

.... π
2
m−1

Bm−1 2B

c2B
Im−1

c < A, c2B
(+)
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Note that π1
1, . . . , π

1
k−1 and π2

1, . . . , π
2
m−1 are already syllogistic, since their

end formulas are all universal. If k = m = 1, π′ consists of a single formula
P, and our assertion is trivial. So we can assume that k ≥ 2 or m ≥ 2.

We transform the proof π′ into a syllogistic form. The transformation
consists of permuting applications of the (−) rule, and thereby removing all
applications of (<) and ( à) whose premise and conclusion are non-syllogistic
formulas. For this purpose, we introduce the following transformation rules.

a < A, a < B

a < B
(−)

B < C
a < C

(<) �

a < A, a < B B < C

a < A, a < C
(<1)

a < C
(−)

a à A, a < B

a < B
(−)

B < C
a < C

(<) �

a à A, a < B B < C

a à A, a < C
(<2)

a < C
(−)

a < A, a < B

a < B
(−)

B à C
a à C (à) �

a < A, a < B B à C
a < A, a à C (à1)

a à C (−)

a < A, a à B
a à B (−)

C < B
a à C (à) �

a < A, a à B C < B

a < A, a à C (à2)

a à C (−)

Starting with the topmost applications of (<) and ( à) to non-syllogistic
formulas (i.e., the topmost application of (<) in the path α on the left and
the application of I1 in the path β on the right), we repeatedly apply the
transformation rules and permute the applications of (−). Note that the
resulting proof has the same premises and conclusion as π′.

Now we obtain:

c < A1, c2B1

....
A1 < A2

c < A2, c2B1
(<1)

.....
c < Ak−1, c2B1

....
Ak−1 < A

c < A, c2B1
(<1)

c < A
(−)

c < A1, c2B1

....
B1 < B2

c < A1, c2B2
I∗1

.....
c < A1, c2Bm−1

....
Bm−1 2B

c < A1, c2B
I∗m−1

c2B
(−)

c < A, c2B
(+)



64 3. GS and categorical syllogisms

We take a subproof ending with c < A, c2B1 on the left path and a subproof
ending with c < A1, c2B which depends on the assumption c < A1, c2B1

on the right path. Call these π1 and π2, respectively, and note that they are
syllogistic. Finally, we combine π1 and π2:

c < A1, c2B1.. . .. . .. . .. . .. . ......
π1

c < A, c2B1.. . .. . .. . .. . .. . ......
π2[c < A1 := c < A]

c < A, c2B

where by π2[c < A1 := c < A] we denote the proof obtained from π2 by
substituting all occurrences of c < A1 with c < A. Note that since c < A1

is a minor premise of each application I∗ of the derived rules in π2, the
figure obtained by this substitution is still a proof in GS. Hence we have a
syllogistic proof of c < A, c2B.

Now we are in a position to show the faithfulness of the translation (·)◦.

Theorem 3.15 (Faithfulness) Let S, S1, . . . , Sn be categorical sentences
in CS. Let π be a proof in GS of S◦ from S◦

1 , . . . , S
◦
n, such that (i) the

sequence S◦
1 , . . . , S

◦
n, S

◦ is a cycle, and (ii) all singular terms appearing in
S◦

i (1 ≤ i ≤ n) are different from each other. Then π can be translated into
a proof in CS of S from S1, . . . , Sn.

Proof. By Lemma 3.14 π can be transformed to a syllogistic proof π′ in
GS, in which only syllogistic formulas appear. We show that π′ can be
translated into a proof in CS by induction on the length of π′. The base
case is immediate: if π′ consists only of a formula S◦, S is a proof in CS.
For the induction step, we divide the cases according to the last inference
rule applied in π′.
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1. The last inference of π′ is (<). We have the following proof in GS.

....
A < B

....
B < C

A < C
(<)

By the induction hypothesis, we have a proof of All A are B and a
proof of All B are C in CS. So we obtain a proof of All A are C by
Barbara.

2. The last inference is ( à), which is of the form:

....
A < B

....
B à C

A à C (à)

Since the order of terms matters in categorical sentences, there are two
possible translations for a premise B à C, that is,

(No B are C)◦ = B à C or (No C are B)◦ = B à C.

Similarly the conclusion A à C has two translations. So we need to
consider four cases, of which we only show the following two cases:

(i) (No B are C)◦ = B à C and (No A are C)◦ = A à C
.... (I.H.)

All A are B

.... (I.H.)
No B are C

No A are C
Celarent

(ii) (No B are C)◦ = C à B and (No A are C)◦ = A à C.

.... (I.H.)
All A are B

.... (I.H.)
No C are B
No B are C

conv2

No A are C
Celarent

For the cases where (No C are A)◦ = A à C, the desired proof is
obtained by applying conv2 to the conclusion of (i) and (ii).
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3. The last inference is (<1). It has the form:
....

a < A, a < B

....
B < C

a < A, a < C
(<1)

Premise {a < A, a < B} and conclusion {a < A, a < C} have two pos-
sible translations, respectively: i.e., for the former, (Some A are B)◦

and (Some B are A)◦. So we need to distinguish four cases, of which
the most complex is the following one:

.... (I.H.)
Some B are A
Some A are B

conv1

.... (I.H.)
All B are C

Some A are C
Darii

Some C are A
conv1

4. The last inference is (<2). It has the form:
....

a à A, a < B

....
B < C

a à A, a < C
(<2)

By the induction hypothesis, we have a proof of Some B are not A and
a proof of All B are C in CS. Hence by Bocardo we can obtain a proof
of Some C are not A.

5. The last inference is ( à1), which is of the form:
....

a < A, a < B

....
B à C

a < A, a à C (à1)

Premise {a < A, a < B} and B à C each have two possible transla-
tions, so we have four cases. The basic case is the following:

.... (I.H.)
Some A are B

.... (I.H.)
No B are C

Some A are not C
Ferio

The other three proofs are obtained by applying conv2 to one or both
of the premises.
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6. The last inference is ( à2). It has the form:

....
a < A, a à B

....
C < B

a < A, a à C (à2)

By the induction hypothesis, we have a proof of Some A are not B and
a proof of All C are B in CS. Hence by Baroco we can obtain a proof
of Some A are not C. This completes the proof.

3.3 Categorical syllogisms with existential import

In this section we consider an extension of our categorical syllogism to in-
clude the existential import. There is a long standing debate on the status
of existential import of quantified sentences in natural language.1 Here we
consider a system in which the existential import is simply treated as an
entailment relation and inference rules traditionally called subaltern are ad-
mitted. Thus CS is extended with the following rules.

All B are A
Some A are B

subalt1
No B are A

Some A are not B
subalt2

We call the resulting system CS+. By admitting subalt1 and subalt2, we
have an additional eight valid patterns of categorical syllogisms, and hence
overall twenty four valid patterns of categorical syllogisms. See Table 3.1 in
Section 3.1 for the list of all the valid patterns.

As in CS, we consider a chain of syllogisms with existential import. The
notions of proof and provability are extended to CS+ in an obvious way.

Example 3.16 In CS+, Darapti

All B are C,All B are A ` Some A are not C

of the third figure is derived in the following way.

1See Geurts (2007) for a recent overview and discussion.
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All B are C
All B are A

Some A are B
subalt1

Some A are C
Darii

To interpret these extended syllogisms in GS, we need to provide different
translations to universal sentences All A are B and No A are B in CS+ from
the ones in CS. We denote by S• the translation of a categorical statement
S in CS+.

Theorem 3.17 (Soundness) Let π be a proof in CS+ of S from S1, . . . Sn.
Then π can be translated into a proof in GS of S• from S•

1 , . . . S
•
n, where

a categorical sentence S in CS+ is translated into a formula S• in GS as
follows:

(All A are B)• = {a < A,A < B}

(No A are B)• = {a < A, b < B,A à B}with a and b different

(Some A are B)• = {c < A, c < B}

(Some A are not B)• = {d < A, d à B} .

Here we impose the following restrictions: (i) every premise S•
i (1 ≤ i ≤ n)

is assigned different singular terms, and (ii) any singular term appearing in
the conclusion S• also appears in one of the premises S•

1 , . . . S
•
n.

Proof. The proof is by induction on the length of π. Each inference rule
in CS+ can be translated into a combination of inference rules of GS in a
similar way to that shown in Lemma 3.6.

1. Barbara is translated into:

a < A,A < B

a < A
(<)

a < A,A < B

A < B
(−)

b < B,B < C

B < C
(−)

A < C
(<)

a < A,A < C
(+)

2. Celarent is translated into:
a < A, A < B

a < A
(−)

b < B, c < C, B à C

c < C
(−)

a < A, c < C
(+)

a < A, A < B

A < B
(−)

b < B, c < C, B à C

B à C
(−)

A à C
(à)

a < A, c < C, A à C
(+)
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3. Darii and Bocardo are translated into:

a < B, a2C

a2C
(−)

a < B, a2C

a < B
(−)

b < B,B < A

B < A
(−)

a < A
(<)

a2C, a < A
(+)

where 2 is < for Darii and à for Bocardo.

4. Ferio and Baroco are translated into:

a < A, a21B

a < A
(−)

a < A, a21B

a21B
(−)

Γ, C 22B

C 22B
(−)

a à C (à)

a < A, a à C (+)

where for Ferio (Baroco), 21 is < ( à), 22 is à (<), and Γ is c < C (b <

B, c < C).

5. subalt1 is translated into:

a < B,B < A

a < B
(−)

a < B,B < A

B < A
(−)

a < A
(<)

a < B,B < A

a < B
(−)

a < A, a < B
(+)

6. subalt2 is translated into:

b < B, a < A,B à A
a < A

(−)

b < B, a < A,B à A
a < A

(−)
b < B, a < A,B à A

B à A (−)

a à B (à)

a < A, a à B (+)

We call a formula of the form {a < A,A < B} an A-formula and a for-
mula of the form {a < A, b < B,A à B} an N-formula in GS. The formula
of these forms and existential formulas given in Definition 3.8 are collectively
called E-syllogistic formulas in GS.

For the faithfulness of the translation (·)• from CS+ to GS, we introduce
derived inference rules in GS in an analogous way to those in CS.



70 3. GS and categorical syllogisms

Lemma 3.18 (Derived rules) The following are derived rules in GS.

a < A,A < B b < B,B < C

a < A,A < C
(<+

1 )
a < A,A < B b < B, c < C,B à C

a < A, c < C,A à C (à+
1 )

a < A, a < B b < B,B < C

a < A, a < C
(<+

2 )
a < A, a < B b < B, c < C,B à C

a < A, a à C (à+
2 )

a à A, a < B b < B,B < C

a à A, a < C
(<+

3 )
a < A, a à B c < C,C < B

a < A, a à C (à+
3 )

a < A,A < B

a < A, a < B
(<+

4 )
a < A, b < B,A à B

a < A, a à B (à+
4 )

Proof. Observe that each rule corresponds to an inference rule in CS+, i.e.,
(<+

1 ) to Barbara, (<+
2 ) to Darii, (<+

3 ) to Bocardo, (<+
4 ) to subalt1, ( à+

1 ) to
Celarent, ( à+

2 ) to Ferio, ( à+
3 ) to Baroco, and ( à+

4 ) to subalt2. So each is
justified as shown in Theorem 3.17.

In an analogous way to Lemma 3.9, we have the following.

Lemma 3.19 Let P1, . . . ,Pn be E-syllogistic formulas in GS such that sin-
gular terms appearing in Pi (1 ≤ i ≤ n) are different from each other. Let
π be a normal proof in GS of an E-syllogistic formula P from P1, . . . ,Pn.

1. If P is an A-formula, then all the assumptions are A-formulas.

2. If P is an N-formula, then one of the assumptions is an N-formula and
the other assumptions are A-formulas.

3. If P is an existential formula, then one of the assumptions is an existen-
tial formula and the other assumptions are A-formulas or N-formulas.

Proof. Similarly to the proof of Lemma 3.9.

Lemma 3.11 can be extended to E-syllogistic formulas.
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Lemma 3.20 Let P,P1, . . . ,Pn be E-syllogistic formula in GS. Let π be a
proof in GS of P from P1, . . . ,Pn such that (i) the sequence P1, . . . ,Pn,P is
a cycle and (ii) any singular term appearing in Pi (1 ≤ i ≤ n) is different
from each other. If π′ is normal proof of π, then π′ has the same assumptions
as π.

Proof. The proof proceeds in a similar way to that of Lemma 3.11. Suppose,
for contradiction, that some formula Pi (1 ≤ i ≤ n) is not among the
assumptions of π′. Let gtm(Pi) = {Ai, Ai+1}. We observe that neither Ai

nor Ai+1 appears in the conclusion of π′. Thus we may assume, without
loss of generality, that there are assumptions, say Pj and Pk, which contain
Ai and Ai+1, respectively, and no other assumptions contain Ai nor Ai+1.
By Lemma 3.19 at least one of Pj and Pk must be an A-formula or N-
formula. Suppose then, without loss of generality, that Pj , which contains
Ai, is an A-formula. (The same argument holds for the case when Pj is an
N-formula.) Since Ai does not appear in the conclusion of π′, Ai must be
eliminated in π′ either (i) by an application of (<), in which case Ai appears
as a middle term, or (ii) by an application of (−). The former case leads to
a contradiction, as we saw in the proof of Lemma 3.11. In the latter case, Pj

must be of the form a < B1, B1 < Ai. Since the singular term a cannot be
eliminated by any rule, a must appear in the conclusion P of π′. We divide
the argument into two cases, depending on whether (1) the conclusion P is
an A- or N-formula, or (2) P is an existential formula.
(1) Suppose, for concreteness, that the conclusion is an A-formula of the
form a < Bm, Bm < C, where m ≥ 1. Then π′, which is a normal proof by
our assumption, would look like:

a < B1, B1 < Ai

a < B1
(−)

....
a < Bm−1

Γ1....
Bm−1 < Bm

a < Bm
(<)

Γ2....
Bm < C

a < Bm, Bm < C
(+)

Here we see that the general term Bm, which appears in the conclusion P,
must also appear in two assumptions Pi′ ∈ Γ1 and Pj′ ∈ Γ2 with i′ 6= j′. This



72 3. GS and categorical syllogisms

is a contradiction to our assumption that P1, . . . ,Pn,P is a cycle. Note that
the same argument applies to the case where the conclusion is an N-formula
of the form a < Bm, b < C,Bm à C.
(2) When the conclusion is an existential formula, it should be of the form
a < B, a2C, where 2 ∈ {<, à} and B 6≡ C. Then in order to derive both
a < B and a2C, there must be a general term Bi (1 ≤ i) that appears in
three different assumptions. That is, π′ must be of the form

....
a < Bi−1

Γ1....
Bi−1 < Bi

a < Bi
(<)

Γ2....
Bi < B′

a < B′ (<)
....

a < B

....
a < Bi−1

Γ1....
Bi−1 < Bi

a < Bi
(<)

Γ3....
Bi < C ′

a < C ′ (<)
....

a2C
a < B, a2C

(+)

where B′ 6≡ C ′ and Γ1,Γ2,Γ3 must contain different assumptions in which
Bi appears. Again, this is a contradiction to our assumption.

We say that a GS-proof beginning with E-syllogistic formulas as assump-
tions and proceeding by the rules introduced in Lemma 3.18, i.e., (<+

1 ),
(<+

2 ), (<+
3 ), (<+

4 ), ( à+
1 ), ( à+

2 ), ( à+
3 ), and ( à+

4 ), is an E-syllogistic proof in
GS. Note that by this definition E-syllogistic proofs do not involve applica-
tions of (<), ( à), (+), nor (−) rules.

Lemma 3.21 Let P,P1, . . . ,Pn be E-syllogistic formulas in GS and, π be a
GS-proof of P from P1, . . . ,Pn such that (i) the sequence σ = P1, . . . ,Pn,P
is a cycle and (ii) all singular terms appearing in Pi (1 ≤ i ≤ n) are different
from each other. Then π can be transformed into an E-syllogistic proof with
the same assumptions and conclusion.

Proof. The proof proceeds in a similar way to that of Lemma 3.14. By
Theorem 2.8, π can be transformed into a normal proof π′. It is seen that
by cyclicity condition, π′ has the same assumption, P1, . . . ,Pn, as π.

We show that π′ can be transformed into an E-syllogistic proof of P from
P1, . . . ,Pn. We distinguish the cases according to the form of P.
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(Case 1) P is an A-formula, i.e., a formula of the form {a < A,A < B}.

By Lemma 2.10, using the same reasoning as in the case of Lemma
3.14, we have a path α = Pi,Q1, . . . ,Qk,P and β = Pj ,R1, . . . ,Rm,P such
that Pi contains s < A (resp. Pj contains A < B1) and Q1, . . . ,Qk (resp.
R1, . . . ,Rm) is the transitive part, in which each formula Ql is of the form
sl < A with 1 ≤ l ≤ k, sk ≡ a (resp. Rl is of the form A < Bl with
1 ≤ l ≤ m, Bm ≡ B). By cyclicity of σ, we have Pi ≡ Pj .

By Lemma 3.19(1), Pi (≡ Pj) is an A-formula, so it has the form {c <

A,A < B1}. Moreover, we have c ≡ a. Otherwise the transitive part of α
contains both c < A and a < A with c 6≡ a. But this is clearly impossible.
(Note that no formula of the form u < c appears in the syllogistic fragment
of GS.) So the transitive part of α consists only of the formula a < A. Thus
π′ looks like:

a < A,A < B1

a < A
(−)

a < A,A < B1

A < B1
(−)

.... π1

B1 < B2

A < B2
(<)

.....
A < Bm−1

.... πm−1

Bm−1 < B

A < B
(<)

a < A,A < B
(+)

The assumptions on which each πi (1 ≤ i ≤ m−1) depends are all A-formulas,
and in πi there can only be applications of the (<) rule, except the (−) rule
applied to these assumptions.

We introduce a transformation procedure to reduce applications of (<)
by permuting down applications of (−). Take a topmost application of (<)
in π′: it has the form on the left, which can be transformed into the form
on the right.

a < A,A < B

A < B
(−)

b < B,B < C

B < C
(−)

A < C
(<) �1

a < A,A < B b < C,B < C

a < A,A < C
(<+

1 )

A < C
(−)

Note that this transformation preserves the assumptions and conclusion of
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the original proof. By repeated applications of �1, we obtain:

a < A,A < B1

a < A
(−)

a < A,A < B1

.... π
∗
1

b < B1, B1 < B2

a < A,A < B2
(<+

1 )
.....

a < A,A < Bm−1

.... π
∗
m−1

bm−1 < Bm−1, Bm−1 < B

a < A,A < B
(<+

1 )

A < B
(−)

a < A,A < B
(+)

where π∗1, . . . , π
∗
m−1 are E-syllogistic proofs consisting only of applications

of (<+
1 ).

We take a subproof ending with a < A,A < B, which yields an E-
syllogistic proof of a < A,A < B with the same assumptions and conclusion
as π′.

(Case 2) P is an N-formula: it has the form {a < A, b < B,A à B}. By
Lemma 2.10, we can assume (without loss of generality) that π′ has the
form:

Γ1.... π1

a < A

Γ2.... π2

b < B
a < A, b < B

(+)

Γ3.... π3

A à B
a < A, b < B,A à B (+)

where Γ1 (Γ2) contains an assumption Pi (Pj) in which a formula of the
form s < A (t < B) appears, and Γ3 contains assumptions Pi′ and Pj′ in
which a formula of the form A < C or A à C (resp. B < C ′ or B à C ′)
appears. By cyclicity of σ, we have Pi ≡ Pi′ and Pj ≡ Pj′ . Since Pi and Pj

are syllogistic formulas, s and t must be singular terms.
We can see that Γ1 (resp. Γ2) contains no assumptions other than Pi

(resp. Pj): if there is such an assumption in Γ1, then in π1 we have a path
whose transitive part begins with the formula s < A which is a premise of an
application of (<). But then s must be a general term, which is impossible.
The same reasoning can be applied to the case of Γ2.

So in order to transform π′ into an E-syllogistic proof with the same
assumptions and conclusion as π′, we only need to consider the subproof π3
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ending with A à B. The general form of π3 is as follows (each application
of ( à) may appear in a different order).

a1 < A1, b1 < B1, A1 à B1

A1 à B1
(−)

Γ1
1.
..
.

π1
1

A2 < A1

A2 à B1
(à)

.....
Ak−1 à B1

Γ1
k..
.. π1

k

A < Ak−1

A à B1
(à)

Γ2
1.
..
.

π2
1

B2 < B1

A à B2
(à)

.....
A à Bm−1

Γ2
m..
.. π2

m

B < Bm−1

A à B
(à)

Since the premises Γ1
1, . . . ,Γ

1
k,Γ

2
1, . . . ,Γ

2
m only contain A-formulas, we

can apply the rewriting procedure �1 introduced above from a topmost
application of (<) in each π1

i (1≤ i≤k) and π2
j (1≤j≤m), and obtain proofs

π1∗
i and π2∗

j , which do not contain applications of (<). Next we apply the
transformation procedure �2 to the topmost application of ( à) in π3.

a < A, b < B, A à B

A à B
(−)

c < C, C < B

C < B
(−)

A à C
(à) �2

a < A, b < B, A à B c < C, C < B

a < A, c < C, A à C
(à+

1 )

A à C
(−)

Then we obtain:

a1 < A1, b1 < B1, A1 à B1

.... π
1∗
1

a2 < A2, A2 < A1

a2,< A2, b1 < B1, A2 < B1
(à+

1 )
.....

a < A, bm−1 < Bm−1, A à Bm−1

.... π
2∗
m

b < B,B < Bm−1

a < A, b < B,A à B (à+
1 )

A à B (−)

Hence the subtree ending with a < A, b < B,A à B yields a syllogistic proof
with the same assumptions and conclusion as π′.

(Case 3) P is an existential formula. π′ has the same form as the one de-
scribed in the proof of Lemma 3.14, except that each assumption can be
an A-formula or an N-formula. We need to check all the possible proofs
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beginning with A-formulas, N-formulas, and existential formulas as assump-
tions. Accordingly, we need the additional transformation rules, shown be-
low, which permute down applications of (−) and replace an application of
(<) and ( à) with corresponding derived rules.

a < A, a < B

a < B
(−)

b < B,B < C

B < C
(−)

a < C
(<) �

a < A, a < B b < B,B < C

a < A, a < C
(<+

2 )

a < C
(−)

a à A, a < B

a < B
(−)

b < B,B < C

B < C
(−)

a < C
(<) �

a à A, a < B b < B,B < C

a à A, a < C
(<+

3 )

a < C
(−)

a < A, a < B

a < B
(−)

b < B, c < C, B à C

B à C
(−)

a à C
(à) �

a < A, a < B b < B, c < C, B à C

a < A, a à C
(à+

2 )

a à C
(−)

a < A, a à B
a à B (−)

c < C,C < B

C < B
(−)

a à C (à) �

a < A, a à B c < C,C < B

a < A, a à C (à+
3 )

a à C (−)

a < A,A < B

a < A
(−)

a < A,A < B

A < B
(−)

a < B
(<) �

a < A,A < B

a < A, a < B
(<+

4 )

a < B
(−)

a < A, b < B,A à B
a < A

(−)
a < A, b < B,A à B

A à B (−)

a à B (à) �

a < A, b < B,A à B
a < A, a à B (à+

4 )

a à B (−)

By successively applying these transformation rules as well as �1 and �2 to
topmost applications of (<) and ( à) in the same way as described in Lemma
3.14, we can obtain a syllogistic proof whose assumptions and conclusion are
the same as π′.

This completes the proof of Lemma 3.21.
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Finally, we show the faithfulness of the translation (·)•.

Theorem 3.22 (Faithfulness) Let π be a GS-proof of S• from S•
1 , . . . , S

•
n

such that (i) the sequence S•
1 , . . . , S

•
n, S

• is a cycle and (ii) any singular term
appearing in S•

i (1 ≤ i ≤ n) is different from the others. Then π can be
translated into a proof in CS of S from S1, . . . , Sn.

Proof. The proof is similar to that for CS. By Lemma 3.21, π can be trans-
formed into a proof π′ in which only E-syllogistic formulas appear. We show
that π′ can be translated into a proof in CS+ by induction on the length
of π′. The base case is immediate: if π consists only of a formula S•, S is
clearly a proof in CS+.

For the induction step, we divide the cases according to the last inference
rule applied in π′. If the last inference is (<+

1 ), (<+
2 ), (<+

3 ), ( à+
1 ), ( à+

2 ),
or ( à+

3 ), the proof is essentially the same as that in Theorem 3.15: each
rule is translated into Barbara, Celarent, Darii, Ferio, Baroco and Bocardo,
respectively, together with conv1 and conv2 if needed.

We consider the remaining two cases.

1. The last inference is (<+
4 ). We have the following proof in GS:

....
a < A,A < B

a < A, a < B
(<+

4 )

By the induction hypothesis, we have a proof of All A are B in CS+. Hence
we can obtain a proof of Some A are B in the following way.

....
All A are B

Some B are A
subalt1

Some A are B
conv1

2. The last inference is ( à+
4 ). We have the following proof in GS:

....
a < A, b < B,A à B

a < A, a à B (à+
4 )
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By the induction hypothesis, we have a proof of No A are B or No B are A

in CS+. In the former case, by applying subalt2 and conv2, we obtain a proof
of Some A are not B. In the latter case, an application of subalt2 yields the
desired proof.



4. GS and a natural deduction system of min-

imal logic ML

In this section, we show that the syllogistic fragment of GS is naturally em-
bedded into an implicational fragment of propositional minimal logic. By
minimal logic we mean intuitionistic logic minus the absurdity rule (the
⊥ rule), i.e., the rule licensing to infer an arbitrary formula from a con-
tradiction.1 We provide a transformation procedure to convert proofs in
the syllogistic fragments of GS into proofs in a natural deduction system of
propositional minimal logic, and vice versa. We thereby make explicit the
relationship between the syllogistic fragments of GS and a well-established
system in proof theory.

4.1 The proof theory of ML

We first present the language of an implicational fragment of propositional
minimal logic, which we henceforth call ML. For the easiness of compari-
son with GS, we generalize a conjunction ∧ to be applied to a finite set of
formulas.

Definition 4.1 The language of ML contains propositional variables cor-
responding to singular and general terms in GS, denoted by a, b, c, . . . and
A,B,C, . . ., respectively, a propositional constant ⊥, and generalized con-
junction

∧
. The formulas of ML are inductively defined as follows:

1. ⊥ and all propositional variables are formulas.
1See Prawitz (1965) for the standard definition of minimal logic. See also Troelstra

and Schwichtenberg (2000) for a textbook treatment of minimal logic.
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2. If φ and ψ are formulas, then (φ→ψ) is a formula.
3. If Φ is a finite non-empty set of formulas, then (

∧
Φ) is a formula.

Notation. We use variables (possibly with subscripts) s, t, u, . . . to denote
propositional variables in lower and upper case, φ, ψ, . . . to denote a formula,
and Φ,Ψ, . . . to denote a finite set of formulas. We usually omit external
brackets of formulas. We write ¬s for s→⊥ and s ∧ t for

∧
{s, t}.

Definition 4.2 (Inference rules of ML) Inference rules of ML are intro-
duction and elimination rules for → and ∧:

[φ]....
ψ

φ→ ψ
→I

φ φ→ ψ

ψ
→E

∧
Φ

∧
Ψ∧

(Φ ∪ Ψ)
∧I

∧
Φ∧
Φ′ ∧E

where we assume the following restrictions.

– In →I, exactly one assumption φ is discharged.
– In ∧I, Φ and Ψ are non-empty and Φ 6= Ψ.
– In ∧E, Φ and Φ′ are non-empty and Φ′ ⊂ Φ.

By the restriction on →I, our system ML can be said to be contraction-free.

As usual, the introduction and elimination rules for negation are spacial
cases of →I and →E. We denote them by ¬I and ¬E.

[φ]....
⊥
¬φ ¬I

φ ¬φ
⊥ ¬E

The notion of proof in ML is defined in the same way as that of GS.

The notion of normal proof in ML is defined in a usual way, except that
the normalization procedure for conjunction is modified in a similar way as
that of GS.
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Definition 4.3 (Normal proof in ML) A formula φ is said to be a cut-
formula in a proof π when φ is the conclusion of an application of intro-
duction rule and a premise of an application of elimination rule. When π

contains a cut formula of the forms on the left below, it can be transformed
into the forms on the right:

.... π1

φ

[φ].... π2

ψ

φ→ ψ
→I

ψ
→E

�

.... π1

φ.... π2

ψ

.... π1∧
Φ1

.... π2∧
Φ2∧

(Φ1 ∪ Φ2)
∧I∧

Ψ
∧E

�



.... πi∧
Φi∧
Ψ

∧E when Ψ ⊂ Φi for i = 1 or 2

.... π1∧
Φ1∧
Ψ1

∧E

.... π2∧
Φ2∧
Ψ2

∧E∧
Ψ

∧I

when Ψ = Ψ1 ∪ Ψ2 such that
Ψ1 ⊂ Φ1 and Ψ2 ⊂ Φ2

In the resulting proof for conjunction, when Φi = Ψ (resp. Φi = Ψi) for
i = 1 or 2, it should be understood that the (∧E) rule is not applied and

thus Φi

Ψ
(resp. Φi

Ψi
) is replaced by Pi.

We say that a proof in ML is in normal form when it contains no cut
formula.

It should be noted that the normalization procedure for conjunction is
the same as the standard one (cf. Prawitz 1965) when Φ1 and Φ2 consist of
a single formula.

We have the normalization theorem for ML. The proof is essentially the
same as the one for the standard natural deduction system for minimal logic
(see Prawitz 1965; Troelstra and Schwichtenberg 2000).
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Theorem 4.4 (Normalization) Every proof π in ML can be transformed
into a normal proof with the same conclusion as π.

4.2 The relation between GS and ML

Now we give a translation of a formula in GS into a formula in ML. Here
atomic formulas of GS are translated into implicational formulas in ML.

Definition 4.5 (Translation) Each singular or general term of GS is trans-
lated into the corresponding propositional variable of ML. Then the trans-
lation (·)+ of a formula in GS into a formula in ML is defined as follows.

(s < t)+ := s→ t

(s à t)+ := s→ ¬t

{P1, . . . , Pn}+ :=
∧ {

P+
1 , . . . , P

+
n

}
Given this definition, it is straightforward to prove the soundness of the

translation (·)+.

Theorem 4.6 (Soundness) Let P1, . . . ,Pn,P be syllogistic (E-syllogistic)
formulas in GS, and let π be a proof in GS of P from P1, . . . ,Pn. Then π

can be translated into a proof in ML of P+ from P+
1 , . . . ,P+

n .

Proof. By induction of the length of π. Note that there is no formula of the
forms s < s and s < a in the syllogistic and E-syllogistic fragments of GS.
Thus it is sufficient to check (<), ( à), (+), and (−). Each rule is simulated
in the following way.

1. s < t t < u
s < u

(<) is translated as
[s] s→ t

t
→E

t→ u
u →E

s→ u →I

2. s < t t à u
s à u (à) is translated as

[s] s→ t

t
→E

t→ ¬u
¬u →E

s→ ¬u →I
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3. P Q
P ∪Q (+) is translated as

∧
P+

∧
P+∧

(P+ ∪Q+)
∧I

4. P
Q (−) is translated as

∧
P+∧
Q+ ∧E

Example 4.7 Here is an example of a translation. A proof in GS

c < A1, c < A2

c < A1
(−)

c < A1, c < A2

c < A2
(−)

A2 à A3

c à A3
(à)

c < A1, c à A3
(+)

is translated into the following proof in ML.

(c→ A1) ∧ (c→ A2)
c→ A1

∧E

[c]1
(c→ A1) ∧ (c→ A2)

c→ A2
∧E

A2
→E

A2 → ¬A3

¬A3
→E

c→ ¬A3
→I, 1

(c→ A1) ∧ (c→ ¬A3)
∧I

Next we show the converse of Theorem 4.6, i.e., the faithfulness of the
translation (·)+. The proof proceeds in a similar way to the proof of the
faithfulness of the translations from CS and CS+ to GS. As noted above,
the ∧I and ∧E rules in ML directly correspond to the (+) and (−) in GS.
Hence, in transforming a proof in ML whose assumptions and conclusion
are restricted to the translations of syllogistic (E-syllogistic) formulas, the
crucial task is the one to rewrite the steps involving applications of the →I

and →E rules in terms of the (<) and ( à) rules in GS.

Theorem 4.8 (Faithfulness) Let P be a syllogistic (E-syllogistic) formula,
and let Γ be a set of syllogistic (E-syllogistic) formulas in GS. Every proof of
P+ from Γ+ in ML can be transformed into a proof of P from Γ or a subset
of Γ in GS, where Γ+ := {P+ | P ∈ Γ}.
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Proof. By Theorem 4.4, every proof of P+ from Γ+ in ML is transformed
into a normal proof of P+ from Γ+ or a subset of Γ+. Let π be such a
normal proof. We show that π can be translated into a proof of P in GS.
Note that P+ has the form

∧ {
P+

1 , . . . , P
+
n

}
(n ≥ 1) where each P+

i is
an implicational formula of the form s → t or s → ¬t. When n ≥ 2,
the last inference rule applied in π must be ∧I, since π is normal and all
assumptions are translations of syllogistic (E-syllogistic) formulas. As noted
before, each application of ∧I can be translated as an application of (+) in
GS. Thus it is sufficient to show the translation of a proof whose conclusion
is an implicational formula. We divide cases depending on whether the
conclusion is of the form s1 → t1 or s1 → ¬t1.

(1) When the conclusion is of the form s1 → t1, π must have the following
form:

[s1]1
.... π1

s1 → s2
s2 →E

.... π2
s2 → s3

s3 →E
....π

′

sn

.... πn

sn → t1
t1

→E

s1 → t1
→I, 1

where π′ consists of repeated applications of → E (n ≥ 1). Note that
atomic formulas s1, . . . , sn, t1 can only be obtained by an application of
→ E, because π is normal and all the assumptions in π are implicational
formulas or a conjunction of implicational formulas. By the restriction on
→I, s1 is discharged exactly once, so it cannot be discharged in π1, . . . , πn.
By the normality of π, the only possibility is that each πi (1 ≤ i ≤ n)
consists of applications of ∧E, and hence, each can be translated as a proof
π∗i consisting of applications of (−). Hence we can translate π into the proof
in GS .... π

∗
1

s1 < s2

.... π
∗
2

s2 < s3
s1 < s3

(<)
.....

π′∗

s1 < sn

.... π
∗
n

sn < t1
s1 < t1

(<)
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where π′∗ consists of repeated applications of (<).

(2) The conclusion is of the form s1 → ¬t1. When ¬t1 is obtained by an
application of → E, π has essentially the same structure as in the case of
(1), hence a desired proof can be obtained in the same way as above, except
that the last inference rule applied is ( à), rather than (<).

When ¬t1 is obtained by an application of ¬I, we may assume, without
loss of generality, that π has the following form:

[s1]1
.... π

1
1

s1 → s2
s2 →E

.... π
1
2

s2 → s3
s3 →E
....π

′

sn−1

.... π
1
n−1

sn−1 → sn
sn

[t1]2

.... π
2
1

t1 → t2
t2

→E

.... π
2
2

t2 → t3
t3

→E
....π

′′

tm

.... π
2
m

tm → ¬sn
¬sn

⊥ ¬E

¬t1
¬I, 1

s1 → ¬t1
→I, 2

where n,m ≥ 1, π′ and π′′ consist of applications of →E, and π1
i (1 ≤ i ≤

n− 1) and π2
j (1 ≤ j ≤ m) consist of applications of ∧E. Note that by the

restriction on →I, s1 and t1 are different terms and each must be discharged
exactly once.

Now each π1
i and π2

j can be translated as a proof π1∗
i and π2∗

j consisting
of applications of (−), and then we can translate π into the following proof
in GS.

.... π
1∗
1

s1 < s2

.... π
1∗
2

s2 < s3
s1 < s3

(<)
....π

′∗

s1 < sn−1

.... π
1∗
n−1

sn−1 < sn

s1 < sn
(<)

.... π
2∗
1

t1 < t2

.... π
2∗
2

t2 < t3
t1 < t3

(<)

....π
′′∗

t1 < tm

.... π
2∗
m

tm à sn

t1 à sn
(à)

s1 à t1
(à)

where π′∗ and π′′∗ are solely composed of applications of (<). (When n=1,
the proof wholly consists of the subproof on the right side branch.)

This completes the proof of Theorem 4.8.



86 4. GS and a natural deduction system of minimal logic ML

We have shown a sound and faithful translation of the syllogistic and E-
syllogistic fragments of GS into ML by giving an explicit proof-transformation
procedure. What we have established so far is summarized in the following
figure.

CS

q

(·)◦

CS+

1

(·)•
GS

?

(·)+

ML

Fig. 4.1 The relationship between the inference systems.

Here each mapping (·)◦, (·)•, (·)+ stands for a sound and faithful translation
from one system to another, with suitable restrictions on the treatment of
singular terms as well as the cyclicity condition for the faithfulness of (·)◦

and (·)•.
As is suggested in Figure 4.1, it can also be shown that compositional

mappings ((·)◦)+ and ((·)•)+ provide a sound and faithful translation of
CS and CS+ into ML, with suitable provisions for the faithfulness as be-
fore. More specifically, the soundness is a straightforward consequence of
the soundness of the translations (·)◦, (·)•, and (·)+, which are established
in Theorem 3.6, Theorem 3.17, and Theorem 4.6, respectively. The faith-
fulness can be shown as a consequence of the faithfulness of (·)◦ and (·)• in
Theorem 3.15 and Theorem 3.22, respectively, and the faithfulness of (·)+ in
Theorem 4.8. For the faithfulness of the translation from GS to ML, we need
in ML suitable restrictions on the translations of propositional variables in
lower case (corresponding to singular terms in GS), as well as the cyclicity
condition formulated for propositional variables in upper case (correspond-
ing to general terms in GS). Since they are essentially similar to the ones for
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GS, we do not enter into a detailed formulation and a proof here.





5. GS and an inference system for Euler dia-

grams

In this section, we present an inference system with Euler diagrams, called
the Generalized Diagrammatic Syllogistic inference system (GDS), and es-
tablish a relationship between GS and GDS. The diagrammatic inference
system GDS is first introduced in Mineshima, Okada and Takemura (2012a),
where a completeness theorem and a normalization theorem are established
using some specific notion of normal proofs of diagrams.

After introducing some background for formalizations of diagrammatic
inferences (Section 5.1), we present the syntax of GDS (Section 5.2). The
exposition in these two subsections is self-contained, but a more detailed
discussion on the motivation behind our approach to formalizing Euler dia-
grams as well as more examples and other technical materials, can be found
in Mineshima, Okada and Takemura (2012a). In Section 5.3, we show a
faithful embeddability of GDS into GS, which is the main goal of this sec-
tion.

5.1 Background: formalization of inferences with di-

agrams

Euler diagrams were originally introduced in Euler (1768) to illustrate syllo-
gistic reasoning. As is already noted in Section 1, Euler diagrams represent
logical relations between the terms of a categorical sentence in terms of
the topological relations holding between circles. For example, universal
sentences of the form All A are B and No A are B are represented by the

89
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inclusion and the exclusion relations between circles, respectively, as seen in
D1 and D2 in Figure 5.1.

D1: All A are B

A
B

D2: No B are C

B C

D3: Some A are B

A B
•a

D3: Some A are not B

A B
•a

Fig. 5.1 Correspondence between categorical sentences and Euler diagrams.

Regarding existential sentences, there have been proposed several ver-
sions of Euler diagrams in the literature.1 In Euler’s original version of
diagrams (Euler 1768; Kneale and Kneale 1962, 349–352), which was fur-
ther developed by Gergonne (1817), it is assumed that (i) a diagram consists
only of circles and that (ii) every minimal region in a diagram denotes a non-
empty set. As a consequence, in order to represent an existential sentence
in syllogisms, one has to use more than one diagram. Thus, the sentence
Some A are B is represented by the disjunction of four diagrams, namely,
diagrams of the forms: (1) circle A is inside circle B, (2) circle B is inside
circle A, (3) circle A and circle B coincide, and (4) circle A partially overlaps
circle B (see the diagram in Figure 5.2 below). Similarly, Some B are not C

requires three diagrams. This means that when we consider a syllogism with
these two premises, we have to take into account twelve ways of combining
diagrams.

A B

Fig. 5.2 Partially overlapping circles

To avoid such a complexity, we adopt the following conventions (these
conventions will be formalized in the next section): (i) each minimal region

1See Hammer and Shin 1998; Stapleton 2005 for a survey on various systems of Euler

diagrams.
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in a diagram does not have existential import, and (ii) the existence of an
object in a region is indicated by a name point such as •a. As a consequence,
partially overlapping circles as in Figure 5.2 are semantically vacuous, i.e.,
they deliver no information about the relation between the sets denoted by
the circles. Thus, they can be used to express the fact that the semantic
relationship between the circles is indeterminate. Given these conventions,
we represent categorical sentences Some A are B and Some A are not B by
diagrams D3 and D4, respectively, in Figure 5.1 above.

Using the correspondences between Euler diagrams and categorical sen-
tences, syllogistic inferences can be naturally replaced by a task of ma-
nipulating Euler diagrams, in particular of unifying premise diagrams and
extracting information from them. For example, the syllogism Barbara

All A are B, All B are C ` All A are C

is represented diagrammatically as in Figure 5.3.

A
B

D1 R

B
C

D2	

D3 A

B

C

?

D4
A
C

Fig.5.3 Barbara with Euler diagrams

The operation of combining two diagrams D1 and D2 is an instance of an
application of unification rule. It consists in identifying the circle B and
keeping all the relations holding on the premise diagrams D1 and D2. Here
we can see that the transitivity of inclusion relations between circles plays
a crucial role in this simple inference process. As we will see below, the rule



92 5. GS and an inference system for Euler diagrams

of unification plays a central role in formalizing the reasoning with Euler
diagrams.

The logical properties of such diagrammatic inferences have been studied
in the field of diagrammatic logic, which was initiated by philosophers and
logicians in the 1990’s.2 A chief goal is to formalize the semantics and proof
theory underlying such diagrammatic representations and inferences, and
then to prove logical properties, in an analogous way to symbolic logic.

In these studies, however, the focus has been on formalizations of Venn
diagrams, originally proposed in Venn (1881), where the set-theoretical rela-
tions are represented in terms of shading, as exemplified in Figure 5.4. Here
the shaded region denotes the empty set; this means that in Venn diagrams,
the categorical sentence All A are B is interpreted as its equivalent form:
There is nothing which is A but not B.

A B

Fig. 5.4 Representation of All A are B in Venn diagrams

Venn diagrams can be abstractly defined as a set of region, i.e., by specifying
which regions are shaded and which regions are not (see Shin 1994; Howse,
Molina, and Taylor 2000, among others). Such a framework of defining
logic diagrams may be called a region-based framework. This framework has
been extended to formalizations of Euler diagrams since Hammer’s (1995)
pioneering work. (For recent developments, see Euler/Venn diagrams of
Swoboda and Allwein 2005; Spider diagrams ESD2 and SD3 of Molina 2001
and Howse, Stapleton, and Taylor 2005.) In these studies, Euler diagrams
are formalized indirectly, in terms of the methods developed in the study on
Venn diagrams. In particular, few attentions have been paid to formalization
of the inference rule of unification, such as the one illustrated in Figure 5.3.
Some systems (e.g. Hammer 1995) lack the rule of unification, hence are
not able to handle syllogistic inferences at all. Other systems (e.g. Swoboda

2See, in particular, Barwise and Etchemendy (1996), Shin (1994), and Hammer (1995).
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and Allwein 2005; Molina 2001; Howse, Stapleton, and Taylor 2005) have
the rule of unification but it is defined indirectly, in terms of operations on
Venn diagrams, i.e., what we call superposition in Mineshima, Okada and
Takemura (2012a); hence they fail to capture simple and intuitive inference
processes of unifying Euler diagrams as exemplified in Figure 5.3.3 Thus it
is fair to say that the exact formulation of inference rules directly operating
on Euler diagrams was not clear until recently.4

In contrast to the region-based approach, we introduced in Mineshima,
Okada and Takemura (2012a) a novel approach to formalizing the reason-
ing with Euler diagrams, where diagrams are directly defined in terms of
topological relations (inclusion and exclusion relations) between circles and
points. We call our framework a relation-based framework. We introduced
an Euler diagrammatic representation system EUL, and an inference system
called the Generalized Diagrammatic Syllogistic inference system GDS. Our
framework avoids some complications involved in the region-based frame-
work. In particular, categorical sentences are naturally translated without
making use of negation, and unification of Euler diagrams is directly for-
malized without making a detour to Venn diagrams. See Mineshima, Okada
and Takemura (2012a) for a more detailed discussion on advantages and
disadvantages of the region-based and relation-based frameworks.5

3In Sato, Mineshima and Takemura (2010a), we discuss some cognitive differences be-

tween reasoning with Euler diagrams and reasoning with Venn diagrams. We test subjects’

performances in syllogism solving in case where these two types of diagrams are used. The

results indicate that Euler diagrams are more effective in actual syllogistic reasoning than

the corresponding Venn diagrams. See also Sato, Mineshima and Takemura (2010b) for a

more general discussion on the efficacy of logic diagrams in deductive reasoning.
4For a discussion on the difficulty of formalizing reasoning with Euler diagrams, see

Hammer and Shin (1995).
5A detailed comparison between these two frameworks from a proof-theoretical view-

point is also found in Mineshima, Okada and Takemura (2010), where the region-based

inference system is formalized as resolution calculus, in contrast to the relation-based

system formalized as natural deduction system.
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5.2 A representation system EUL for Euler diagrams

We present a representation system for Euler diagrams EUL. In our ap-
proach, diagrams (called EUL-diagrams) are primarily defined as geometric
objects on the real plane. In order to capture the role of Euler diagrams
in deductionve inferences, we introduce a certain equivalence relation be-
tween diagrams, abstracting away the information irrelevant to the purpose
of deduction. Such “equivalent diagrams” are defined in terms of topolog-
ical relations. Thus, we distinguish two levels of “diagrams,” which have
usually been referred to as the distinction between concrete diagrams and
abstract diagrams (cf. Howse, Molina, Shin, and Taylor 2002). When dis-
ambiguation is necessary, we will call EUL-diagrams defined as geometric
objects concrete EUL-diagrams, and those defined as a set of topological
relations abstract EUL-diagrams. The formal treatment of diagrams in our
semantics and proof theory in later sections is based on the level of abstract
EUL-diagrams.

We will consider a simple diagrammatic representation system in which
the only diagrammatic objects are simple closed curves, called contours, and
points. A (concrete) EUL-diagrams is a set of contours and points enclosed
by a rectangle in the real plane. Each contour and point has a unique and
distinct name chosen from some fixed set of names, L. See, e.g., Seligman
(1995) and Flower and Howse (2002) for similar approach to definitions of
concrete diagrams.

Definition 5.1 (EUL-diagram) An EUL-diagram D = 〈C,P,L〉 consists of
a finite set C of contours on the real place (R2), a finite set P of points, and
L : C∪P → L is an injective function that returns the name of each contour
and point, such that the following conditions hold.

1. |C ∪ P | ≥ 2.
2. No two contours intersect without crossing.
3. No two contours intersect at more than finitely many points.

Each member of C is called a (named) coutour of D.
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Notation. We use A,B,C, . . . ,X, Y, . . . (possibly with subscripts) as vari-
ables ranging over names of contours and a, b, c, . . . , x, y, . . . (possibly with
subscripts) as variables ranging over names of points. Contours and points
are collectively called (diagrammatic) objects, and denoted by s, t, u (pos-
sibly with subscripts). We use a rectangle, , to represent the plane for
an EUL-diagram. We use D, E ,F , . . . (possibly with subscripts) to denote
EUL-diagrams.

Some examples of non-well-formed diagrams are given in Figure 5.5. In
(i), names A and B are assigned to the same contour, hence violating the
condition that L is a function. In (ii) and (iii), two objects have the same
name, hence violating the condition that L is injective. Various possible
restrictions on the concrete syntax of Euler diagrams are discussed in e.g.,
Stapleton, Zhang, Howse, and Rodgers (2010). Here we adopt a liberal
approach to restrictions on the concrete syntax of diagrams, as compared to
the one in e.g., Flower and Howse (2002). See Stapleton, Rodgers, Howse,
and Taylor (2007) for definitions of various properties of concrete Euler
diagrams.

(i)

A B

(ii)

A A

(iii)

A •a
•a

Fig. 5.5 Examples of non-well-formed diagrams

For an EUL-diagram D, we denote by pt(D) the set of named points of D,
by cr(D) the set of (named) contours of D, and by ob(D) the set of objects
of D, i.e., ob(D) = pt(D) ∪ cr(D).

Definition 5.2 (Minimal diagram) An EUL-diagram that contains only
two objects is called a minimal diagram. Minimal diagrams are denoted by
α, β, γ (possibly with subscripts).

Now we define spatial relations that hold between two diagrammatic
objects in the place. We call such relations EUL-relations, or sometimes
simply relations. We use the same symbols as used in GS, i.e., < and à, for
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the inclusion and exclusion relations between objects, for it would be clear
from context within which system we are using these symbols.

Definition 5.3 (EUL-relation) We denote the interior of a contour A in
R2 by i(A). EUL-relations are the following binary relations between dia-
grammatic objects:

A < B ⇐⇒ i(A) ⊆ i(B)
A à B ⇐⇒ i(A) ∩ i(B) = ∅
A ./ B ⇐⇒ i(A) ∩ i(B) 6= ∅ and i(A) 6⊆ i(B) and i(B) 6⊆ i(A)
a < A ⇐⇒ a ∈ i(A)
a à A ⇐⇒ a 6∈ i(A)
a < b ⇐⇒ a = b

a à b ⇐⇒ a 6= b

The relation < is a reflexive asymmetric relation, and both à and ./ are
irreflexive symmetric relations.

Proposition 5.4 Let D be an EUL-diagram. For any distinct objects s and
t of D, exactly one of the EUL-relations s < t, t < s, s à t or s ./ t holds.

Observe that, by Proposition 5.4, for a given EUL-diagram D, the set of
EUL-relations holding on D is uniquely determined. We denote such a set
by rel(D).

The following properties, as well as Proposition 5.4, characterize EUL-
diagrams.

Lemma 5.5 Let D be an EUL-diagram. For any objects s, t, u ∈ ob(D),
we have the following:

1. Reflexivity. s < s ∈ rel(D).
2. Transitivity. If s < t, t < u ∈ rel(D), then s < u ∈ rel(D).
3. à-downward closedness. If s à t, u < t ∈ rel(D), then s à u ∈ rel(D).
4. Point determinacy. For any point a in D, either a < s or a à s is in

rel(D).
5. Point minimality. For any point a in D other than s, s < a 6∈ rel(D).
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A B

•a

C

D1

A B

•a

C

D2

Fig. 5.6 Examples of EUL-diagrams.

Example 5.6 Consider the EUL-diagram D1 and D2 in Figure 5.6.

We have:
cr(D1) = cr(D2) = {A,B,C},
pt(D1) = pt(D2) = {a},
rel(D1) = {A ./ B,A ./ C,B ./ C, a à A, a < B, a à C},
rel(D2) = {A ./ B,A < C,B ./ C, a à A, a < B, a à C}.

For notational convenience, in describing a set of relations rel(D), we usually
omit the reflexive relation s < s for each object s. It should be understood
that the complete description of, say, rel(D1) above is:

{A ./ B,A ./ C,B ./ C, a à A, a < B, a à C,A < A,B < B,C < C, a < a} .

Next we present a natural, set-theoretical semantics for EUL.6 In this
semantics, each contour is interpreted as denoting a set of individuals, and
each point is interpreted as denoting a singleton set of an individual, as
in the interpretations of singular terms in GS. This makes it possible to
interpret the EUL-relations < and à uniformly as the subset relation and
the disjointness relation, respectively.

Definition 5.7 A model M is a pair (U, I) where U is a non-empty set (the
domain of M), and I is an interpretation function which assigns to each
object (contour and point) a non-empty subset of U ; in particular I(a) is a
singleton for all point a.

6See also Mineshima, Okada and Takemura (2009, 2012a) for a detailed exposition of

the semantic of EUL.
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It should be emphasized that we assign a non-empty set to each contour.

Definition 5.8 Let D be an EUL-diagram. M = (U, I) is a model of D,
written as M |= D, if the following (1) and (2) hold: For all objects s, t of
D,

(1) I(s) ⊆ I(t) if s < t holds on D,

(2) I(s) ∩ I(t) = ∅ if s à t holds on D.

The well-definedness of the truth-conditions follows from Proposition 5.4.
Note that when s is a named point, I(s) is a singleton, hence I(s) ⊆ I(t) is
equivalent to I(s) ∈ I(t) and I(s) ∩ I(t) = ∅ is equivalent to I(s) 6∈ I(t).

Remark 5.9 In EUL, we cannot form a diagram in which two objects coin-
cide (cf. Definition 5.1). In particular, in contrast to GS, there is no relation
of the form a < b. This means that in EUL we cannot express the identity
relation between points, I(a) = I(b), as well as the identity relation between
contours, I(A) = I(B). Note that we can express the non-identity relation
between points by a à b.

Remark 5.10 By Definition 5.8, the EUL-relation ./ does not contribute
to the truth-condition of EUL-diagrams. Informally speaking, A ./ B may
be understood as expressing

(i) I(A) ∩ I(B) = ∅ or I(A) ∩ I(B) 6= ∅,

which is true in any model. Thus, as we mentioned in Section 5.1, partially
overlapping contours of the form A ./ B can be used to express the indeter-
minacy with respect to the interpretations of contours. Note that in contrast
to some other systems with Euler and Venn diagrams (cf. Stapleton 2005),
the EUL representation system does not have any syntactic convention to
express the indeterminacy with respect to the interpretations of a point and
a contour, as well as the interpretations of two points. That is, there are no
diagrammatic devices in EUL to express

(ii) I(a) ∈ I(A) or I(a) 6∈ I(A)
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and

(iii) I(a) = I(b) or I(a) 6= I(b)

for any points a, b and any contour A.

The notion of validity is defined in a usual way.

Definition 5.11 (Validity) An EUL-diagram E is a semantically valid con-
sequence of EUL-diagrams D1, . . . ,Dn, written as D1, . . . ,Dn |= E , when the
following holds: For any model M , if M |= D1 and . . . and M |= Dn, then
M |= E .

5.3 An inference system GDS for Euler diagrams

Intuitive manipulation of Euler diagrams is formalized as applications of
inference rules in GDS. There are two kinds of inference rules in GDS: uni-
fication and deletion. For instance, consider the example of Barbara with
Euler diagrams as illustrated in Figure 5.3 of Section 5.1. Here the first
step to combine the diagrams D1 and D2 is an application of unification
rule, while the second step to eliminate the contour B to obtain the conclu-
sion is an application of deletion rule. We will call such a diagram tree a
diagrammatic proof in GDS.

Given that an Euler diagram is abstractly identified as a set of EUL-
relations, it is convenient to introduce abstract representations of diagram-
matic proofs as well, where the premises and conclusion of each step are
described in terms of the EUL-relations. For example, the following is an
abstract representation of the diagrammatic proof of Barbara in Figure 5.3.

D1 : {A < B} D2 : {B < C}
D3 : {A < B,A < C,B < C} unification

D4 : {A < C} deletion

Here by D1 : {A < B} we denote the diagram D1 whose set of relations
rel(D1) is {A < B}, and so on. We do not omit brackets {·} in the abstract
representation of a proof in GDS, so as to distinguish it from a proof in GS.
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(Note that strictly speaking, the set of relations for each diagram contains
a relation of the form s < s for each object s in that diagram; but as noted
in Section 5.2, we omit it here.)

There are two preliminary remarks on formalization of unification rule.
Firstly, in GDS the unification of two diagrams is formalized by restricting
one of the premises to be a minimal diagram, namely, a diagram composed
of two objects. Although a general formulation of unification rule that dis-
penses with such a restriction is technically possible at an abstract level,
this restriction makes it much easier to formulate the operational meaning
of unification processes. More specifically, a minimal diagram α can be
regarded as an instruction on how to modify another premise, say D, by in-
troducing a new object or by arranging the configuration of objects that are
already in D. Such an operational aspect of unification will become clear in
the definition of inference rules below.7 The completeness theorem of GDS

ensures that by the restricted form of unification, any diagrams D1, . . . ,Dn

may be unified into one diagram whose semantic information is equivalent
to the conjunction of those of D1, . . . ,Dn.

Secondly, two kinds of constraint are imposed on unification. One is
what we call the constraint for determinacy, which blocks the ambiguity
with respect to the location of a point in a unified diagram. For example,
two diagrams D1 and D2 in Figure 5.7 are not permitted to be unified into
one diagram, since the location of the point c is not determined: it may be
inside A or outside A. Similarly, two diagrams D3 and D4 in Figure 5.7 are
not permitted to be unified into one diagram, since the semantic relationship
between the points c and d is not determined: c may or may not be equal
to d in a unified diagram. Since there is no syntactical devices in EUL to
express this kind of indeterminacy, we prohibit the unification of these two
diagrams.8

7For a more discussion on the operational interpretation of unification rules, see Section

3.2 of Mineshima, Okada and Takemura (2012a).
8With regard to this respect, our formulation of the constraint for determinacy differs

from the one given in Mineshima, Okada and Takemura (2009, 2012a), where D3 and D4

in Figure 5.7 is permitted to be unified and it is stipulated that in the unified diagram

D3 + D4 we always have c à d. Correspondingly, in the semantics it is stipulated that
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A
B

A < B

D1

B

•c

c < B

D2

B

•c

c < B

D3

B

•d

d < B

D4

Fig. 5.7 Diagrams that cannot be unified due to the constraint for indeter-
minacy.

The other is the constraint for consistency, which is imposed to avoid
representing inconsistent graphical information in a single diagram. For
example, two diagrams D3 and D4 (resp. D5 and D6) in Figure 5.8 below
are not permitted to be unified, because they semantically contradict each
other. Note that in our semantics each contour is interpreted as denoting
a non-empty set; thus the pair of D5 and D6 is semantically inconsistent as
well as the pair of D3 and D4.

B
•a
C

a < B, a < C

D3

B C

B à C
D4

A
B

A < B

D5

A B

A à B
D6

Fig. 5.8 Diagrams that cannot be unified due to the constraint for inconsis-
tency.

Now we introduce unification rules of GDS. For each rule, we specify the
following four components: (i) Premise, (ii) Precondition, (iii) Operation, and
(iv) Conclusion.

(i) Each unification rule has two premises: a diagram D and a minimal
diagram α. Premise describes the configurations of objects in these
two diagrams.

I(a) 6= I(b) holds for all points a and b, and in the proof system we have an axiom of

the form a à b. Given the syntax of EUL it is less stipulative to impose a restriction on

unification rules. So we prefer the current approach.



102 5. GS and an inference system for Euler diagrams

(ii) Precondition specifies the constraints for determinacy and consistency
imposed on each rule. Each rule is applicable only when the premise
diagram D satisfies this condition.

(iii) In Operation, we describe a diagrammatic operation that allows us
to introduce a new object into the premise D or to rearrange the
configuration of objects in D.

(iv) In Conclusion, we describe the configuration of the unified diagram
D + α that is obtained by the operation in (iii). The description is
given in terms of the set of relations holding on D+α, i.e., rel(D + α).
As before, for simplicity we omit a reflexive relation of the form s < s

in the description of Conclusion.

Thus the definition of each unification rule can be read as follows:

Given a diagram D and a minimal diagram α with such and such
configurations of objects (Premise), which satisfy such and such
conditions (Precondition), one may modify the diagram D in such
and such a way (Operation), so that the resulting diagram D+α

has such and such relations (Conclusion).

The unification rules of GDS are subdivided into ten rules (U1–U10 rules),
depending on the number and type of objects shared by a diagram D and
a minimal diagram α. We also have what we call point insertion rule,
which allows us to combine two diagrams with the same configurations of
contours. Here, instead of providing a complete description of unification
rules, we give some illustrative examples. The full listing of inference rules
in GDS is found in Section 5.4. See also Mineshima, Okada and Takemura
(2012a) for a slightly different presentation of unification rules in GDS.

We start with a description of the U1 rule, which allows us to unify any
diagram D containing a point b with any minimal diagram α in which A < B

obtains. In the following descriptions, we sometimes denote a diagram D
containing an object s by D(s), and a diagram D in which the relation s2 t

holds by D(s2 t), where 2 ∈ {<, à, ./}.
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U1

Premise: D(b) and α : {b < A}
Precondition: In D(b), there is no point other than b, i.e., pt(D) = {b}.
Operation on D(b): Let A be such that b < A and A ./ X for all
X ∈ cr(D).
Conclusion: rel(D) ∪ rel(α) ∪ {A ./ X | X ∈ cr(D)}

Schematically, U1 is applied as follows.

b

D(b) R

A
b

α
	U1

A
b

D(b) + α

Note that when D(b) contains a contour, say B, the semantic relationship
between B and A is underdetermined by the premies D(b) and α, hence we
get A ./ B in the unified diagram D(b) + α. The following is an example of
an application of U1.

C B

b

E

D1 R

A

b

α1	U1

C

b

B

A

E

D1 + α1

Here, following the Operation given in U1, we introduce the contour A into
D1 so that b < A, A ./ B A ./ C, and A ./ E obtain in D1 + α1. For the
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full understanding of the rule, let us provide the abstract description of this
example, although it is somewhat complicated.

D1 : {b < C, b à E, b à B, C ./ E, C à B, E ./ B} α1 : {b < A}
D1 + α1 : {b < A, b < C, b à E, b à B, A ./ C, A ./ E, A ./ B, C ./ E, C à B, E ./ B} U1

Here the premises and the conclusion are described in terms of the set of
relations holding on them.

The U1 rule is a relatively trivial rule in that no new relations other
than ./-relations are introduced in the conclusion. The following is a more
interesting example of unification rules:

U3

Premise: D(A) and α : {b < A}
Precondition: In D(A), for all contour X, either A < X or A à X,
and for all point x, x à A.
Operation on D(A): Let b be such that b < A.
Conclusion:

rel(D) ∪ rel(α) ∪ {b < X | A < X in D} ∪ {b à s | A à s in D}

In this rule, the minimal diagram α, where b < A obtains, provides an
instruction to introduce a point b in D(A). The schematic representation of
this rule is shown on the left below, and a concrete example of its application
on the right.

A

D(A)R

A
b

α	U3

A
b

D(A) + α

A

B
C

D1 R

A
b

	U3 α1

A
b

B
C

D1 + α1

This example is abstractly represented as follows:

D1 : {A < B,A à C,B ./ C} α1 : {b < A}
D1 + α1 : {b < A, b < B, b à C,A < B,A à C,B ./ C} U3
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It should be remarked here that by the application of U3, the point b is
introduced and thereby new relations b < B and b à C are automatically
inferred in the conclusion.9

Next, the following is a definition of the U5 rule, where any diagram
D(B) and any minimal diagram α with the relation A < B are unified.

U5

Premise: D(B) and α : {A < B}
Precondition: In D(B), for all point x, x à B.
Operation on D(B): Let A be such that A < B and A ./ X for all X
with X < B or B ./ X.
Conclusion:

rel(D) ∪ rel(α) ∪ {A < X | B < X in D} ∪ {A à s | B à s in D}
∪{A ./ X | X < B or B ./ X in D}

The schematic illustration of the U5 rule and a concrete example of its
application are as follows:

B

D R

A
B

α
	U5

A
B

D + α

C

B

E
F

D1 R

A
B

	U5 α1

A C

B

E
F

D1 + α1

The example on the right is abstractly represented in the following way:
9As is well known, such information that can be automatically read off from the con-

clusion of a diagrammatic operation is called free ride in Shimojima (1996), and given

a detailed analysis from both logical and cognitive viewpoints there. See also Sato, Mi-

neshima and Takemura (2010a, 2010b) for some discussion on a cognitive aspect of the

free ride property of inferences with Euler and Venn diagrams.
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D1 : {C < B, B < E, B à F, C < E, C à F, E ./ F} α1 : {A < B}
D1 + α1 : {A < B, A ./ C, A < E, A à F, C < B, B < E, B à F, C < E, C à F, E ./ F} U5

Finally, let us provide a case in which premise diagrams share two ob-
jects. The following is a definition of the U10 rule, where a diagram on which
A ./ B holds and a minimal diagram on which A à B holds are unified.

U10

Premise: D(A ./ B) and α : {A à B}
Precondition: In D(A ./ B), there is no object s such that s < A and
s < B.
Operation on D(A ./ B): Move A and B so that A à B.
Conclusion:

“

rel(D) \ {X ./ Y | X < A and Y < B in D}
”

∪{X à Y | X < A and Y < B in D}

Recall that A ./ B is a semantically vacuous relation according to the se-
mantics of EUL. In such a case, one must keep the stronger relation A à B
in the conclusion; hence the minimal diagram here can be regarded as an
instruction to separate the contours A and B in D. Note that by this sepa-
ration, some objects lying in A and B are separated as well. The following
are the the schematic representation of the rule and a concrete example of
its application.

A B

RD

A B

	U10 α

A B

D + α

A B

C F
E

U10D1 R

A B

	 α1

A
C

E
B
F

D1 + α1

The abstract description of the example on the right is:

D1 : {A ./ B, C < A, A ./ E,A ./ F,B ./ C, B à E, F < B, C à E,C ./ F, E à F} α1 : {A à B}
D1 + α1 : {A à B, C < A, A ./ E,A à F,B à C, B à E, F < B, C à E,C à F, E à F} U10
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Here, for the easiness of understanding, the relations that change from ./

to à by this inference are marked in boldface type. The other relations are
unchanged. Note that not only the relation A ./ B but also all the other
crossing relations holding inside the intersection of A and B are set apart
by this application of the U10 rule.

We also have a deletion rule, which allows us to remove an object from
a given diagram. The precondition of an application of the deletion rule is
that the resulting diagram contains at least two objects, thus it satisfies the
well-formedness condition of EUL-diagrams. Following the pattern of the
definition of unification rules, we provide the definition of the deletion rule
in the following way.

Deletion

Premise: D(s)
Precondition: D(s) has at least three objects.
Operation: Delete s from D(s).
Conclusion: rel(D) \ {ϕ ∈ rel(D) | s occurs in ϕ}

There is an alternative way of formulating diagrammatic inferences rules:
Following Avigad, Dean and Mumma (2009), which aims to provide a faith-
ful formalization of geometric proofs in Euclid’s Elements, we could distin-
guish two kinds of inference rules with diagrammatic objects, namely, what
they call construction rule and deduction rule. The former allows us to in-
troduce a new object into a given diagram, whereas the latter allows us to
infer the facts about objects that have already been introduced. From our
viewpoint, these two kinds of rules correspond to what we specify for each
rule in Operation and Conclusion, respectively. Such a separation is attrac-
tive because with two kinds of rule, the operational and declarative aspects
of diagrammatic proofs could be distinguished and analyzed explicitly. One
consequence of this approach is that an application of a rule does not nec-
essarily correspond to a rewriting step of given diagrams as is assumed in
our current framework. For this reason, we stick to the current approach in
this thesis.
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Now it is easily verified that for each rule, the set rel(D+α) in Conclusion

satisfies the properties of Lemma 5.5, i.e., the well-formed condition of EUL-
diagrams. This shows that each rule preserves the well-formedness condition
of EUL-diagrams.10

The notion of diagrammatic proof (d-proof, for short) in GDS is induc-
tively defined as follows.

Definition 5.12 (Diagrammatic proofs in GDS) A diagrammatic proof
(or d-proof, for short) of an EUL-diagram D from a set of EUL-diagrams
D1, . . . ,Dn is defined inductively as follows:

1. A diagram D is a d-proof of D from D.

2. A minimal diagram in which A ./ B holds is an axiom, and hence it
is a d-proof of itself from the empty set.

3. Let π1 be a d-proof of F from D1, . . . ,Dn and π2 be a d-proof of E
from E1, . . . , Em, respectively. If D is obtained by an application of
unification to F and E , then the following figure is a d-proof of D from
D1, . . . ,Dn, E1, . . . , Em.

π1

F
R

π2

E
	

D

4. Let π1 be a d-proof of E from D1, . . . ,Dn. If D is obtained by an
application of deletion to E , then the following figure is a d-proof of D
from D1, . . . ,Dn.

π1

E
?
D

Here π
D means a d-proof π whose conclusion is D. The length of a

d-proof is defined as the number of applications of inference rules.
10There remains the question of how to find a concrete diagram satisfying a given ab-

stract description. Such an algorithm to generate (draw) a diagram from an abstract

description is widely discussed in the literature; see, e.g., Flower and Howse (2002), Sta-

pleton, Howse, Rodgers and Zhang (2008), and references therein. See also Mineshima,

Okada and Takemura (2012a) for some discussion on a possible implementation of a gen-

eration algorithm in the framework of GDS.
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Definition 5.13 (Provability) Let
−→D be a set of EUL-diagrams. An EUL-

diagram E is provable from
−→D , written as

−→D ` E , if there is a d-proof of E
in GDS from a sequence D1, . . . ,Dm such that Di ∈

−→D . We call
−→D (resp. E)

premise (resp. conclusion) diagrams.

The diagrammatic inference system GDS is proved to be sound and com-
plete with respect to the set-theoretical semantics in Section 5.2. For the
completeness, we impose the model existence condition in the same way as
GS. The proof is presented in Mineshima, Okada and Takemura (2012a).

Theorem 5.14 (Soundness of GDS) Let
−→D be a set of EUL-diagrams,

and let E be an EUL-diagram. If
−→D ` E in GDS, then

−→D |= E.

Theorem 5.15 (Completeness of GDS) Let
−→D be a semantically consis-

tent set of EUL-diagrams, and let E be an EUL-diagram. If
−→D |= E, then

−→D ` E in GDS.

5.4 Full list of inference rules of GDS

In this section, we present the full list of an axiom and inference rules in
GDS. There are two types of rule, unification and deletion. The unification
rules are divided into three groups, Group (I), (II), and (III). The rules in
Group (I) and (II) are classified according to the number and type of objects
shared by a diagram D and a minimal diagram α.

• In Group (I), D and α share one object. The rules in this group are
further divided into two types: those in which one point is shared (U1-

U2 rules) and those in which one contour is shared (U3-U8 rules). Each
rule is specified by the relation holding on α, and has a constraint for
determinacy.

• In Group (II), D and α share two contours (hence α consists of two
contours). We distinguish two rules in this group (U9 and U10 rules),
depending on whether A < B or A à B holds on α. Both rules have
a constraint for consistency.
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• The rule in Group (III) is Point Insertion, where neither of two premise
diagrams is restricted to be minimal.

As noted in Section 5.2, for each unification rule, we specify the following
four components: (i) Premise, (ii) Precondition, (iii) Operation, and (iv) Con-

clusion. In particular, the definition of unification rules in Group (I) and
(II) can be read as follows:

Given a diagram D and a minimal diagram α with such and such
configurations of objects (Premise), which satisfy such and such
conditions (Precondition), one may modify the diagram D in such
and such a way (Operation), so that the resulting diagram D+α

has such and such relations (Conclusion).

For a better understanding of unification rule, we also give a schematic
diagrammatic representation and a concrete example of each rule. The
schematic representations of diagrams indicate the occurrence of objects
in a context on a diagram. We write the indicated objects explicitly and in-
dicate the context by “dots” as in the diagram shown to the right below. For
example, when we need to indicate only A and c on the left hand diagram,
we could write it as shown on the right.

B F

A

E
D

c

b

A
c

In the following descriptions, we denote a diagram D containing an object
s by D(s), and a diagram D in which s2 t obtains by D(s2 t), where 2 ∈
{<, à, ./}.

Definition (Inference rules of GDS) Axiom, unification, and deletion of
GDS are defined as follows.

Axiom:
A1: For any contours A and B, any minimal diagram where A ./ B holds is
an axiom.
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Unification: We denote by D + α the diagram obtained by unifying a
diagram D with a minimal diagram α. D+α is defined when D and α share
one or two objects.

(I) When D and α share one object:

U1

Premise: D(b) and α : {b < A}
Precondition: In D(b), there is no point other than b, i.e., pt(D) = {b}.
Operation on D(b): Let A be such that b < A and A ./ X for all
X ∈ cr(D).
Conclusion: rel(D) ∪ rel(α) ∪ {A ./ X | X ∈ cr(D)}

Schema and Example (U1):

b

D R

A
b

α
	U1

A
b

D + α

C B

b

E

D R

A

b

α	U1

C

b

B

A

E

D + α

U2

Premise: D(b) and α : {b à A}
Precondition: In D(b), there is no point other than b, i.e., pt(D) = {b}.
Operation on D(b): Let A be such that b à A and A ./ X for all
X ∈ cr(D).
Conclusion: rel(D) ∪ rel(α) ∪ {A ./ X | X ∈ cr(D)}

Schema and Example (U2):

b

D R

Ab

α
	U2

A
b

D + α

B
b

C

D

B
b

C
A

D + α

Ab

R 	U2 α
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U3

Premise: D(A) and α : {b < A}
Precondition: In D(A), for all contours X, either A < X or A à X,
and for all point x, x à A.
Operation on D(A): Let b be such that b < A.
Conclusion:

rel(D) ∪ rel(α) ∪ {b < X | A < X in D} ∪ {b à s | A à s in D}

Schema and Example (U3):

A

D R

A

b

α	U3

A

b

D + α

A

B
C

D R

A

b

	U3 α

A

b

B
C

D + α

U4

Premise: D(A) and α : {b à A}
Precondition: In D(A), for all object s, s < A.
Operation on D(A): Let b be such that b à A.
Conclusion: rel(D) ∪ rel(α) ∪ {b à s | s < A in D}

Schema and Example (U4):

A

D R

A
b

α	U4

A
b

D + α

B

A

D R

A
b

α	U4

B

A
b

D + α
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U5

Premise: D(B) and α : {A < B}
Precondition: In D(B), for all point x, x à B.
Operation on D(B): Let A be such that A < B and A ./ X for all X
with X < B or B ./ X.
Conclusion: rel(D) ∪ rel(α) ∪ {A < X | B < X in D}

∪{A à s | B à s in D}∪{A ./ X | X < B or B ./ X in D}

Schema and Example (U5):

B

D R

A
B

α
	U5

A
B

D + α

C

B

E
F

D R

A
B

	U5 α

A C

B

E
F

D + α

U6

Premise: D(A) and α : {A < B}
Precondition: In D(A), for all point x, x < A.
Operation on D(A): Let B be such that A < B and B ./ X for all X
with A < X or A à X or A ./ X.
Conclusion: rel(D) ∪ rel(α) ∪ {s < B | s < A in D}

∪ {B ./ X | A < X or A à X or A ./ X in D}

Schema and Example (U6):

A

D R

A
B

α	U6

A
B

D + α

C
A

E

D R

A
B

	U6 α

E C
A

B

D + α
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U7

Premise: D(A) and α : {A à B}
Precondition: In D(A), for all point x, x < A.
Operation on D(A): Let B be such that A à B and B ./ X for all X
with A < X or A à X or A ./ X.
Conclusion: rel(D) ∪ rel(α) ∪ {B à s | s < A in D}

∪ {B ./ X | A < X or A à X or A ./ X in D}

Schema and Example (U7):

A

D R

A B

α	U7

A B

D + α

A
a

C
E

D

A B

R 	U7 α

A
a

C

E

B

D + α

U8

Premise: D(A) and α : {A ./ B}
Precondition: In D(A), there is no point, i.e., pt(D) = ∅.
Operation on D(A): Let B be such that A ./ B.
Conclusion: rel(D) ∪ rel(α) ∪ {B ./ X | X ∈ cr(D)}

Schema and Example (U8):

A

D R

A B

α	U8

A B

D + α

C

A
E

D
R

A B

	U8 α

C

A
E

B

D + α
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(II) When D and α share two contours:

U9

Premise: D(A ./ B) and α : {A < B}
Precondition: In D(A ./ B), there is no object s such that s < A and
s à B.
Operation on D(A ./ B): Move A and B so that A < B.
Conclusion:(

rel(D) \ {X ./ Y | X < A and (B < Y or B à Y ) in D}
)

∪{X < Y | X < A and B < Y in D}
∪{X à Y | X < A and B à Y in D}

Schema and Example (U9):

A B

RD

A
B

	U9 α

A
B

D + α

A B
CE

D R

A
B

	U9 α

A
B

C
E

D + α

U10

Premise: D(A ./ B) and α : {A à B}
Precondition: In D(A ./ B), there is no s such that s < A and s < B.
Operation on D(A ./ B): Move A and B so that A à B.
Conclusion:

“

rel(D) \ {X ./ Y | X < A and Y < B in D}
”

∪{X à Y | X < A and Y < B in D}

Schema and Example (U10):

A B

RD

A B

	U10 α

A B

D + α

A B

C F
E

U10D R

A B

	 α

A
C

E
B
F

D + α
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(III)

Point Insertion

Premise: D1 and D2(a)
Precondition: (i) For any contour A,B and for any 2 ∈ {<, à, ./},
A2B in D1 iff A2B in D2; (ii) pt(D2) = {a} and a 6∈ pt(D1); (iii)
there is no point b in D1 such that for any contour X, b < X in D1

iff a < X in D2.
Operation on D1: Let a be such that for all contour X, a < X in D1

iff a < X in D2.
Conclusion: rel(D1) ∪ rel(D2) ∪ {a à x | x ∈ pt(D1)}

Example (Point Insertion):

A
a

c

C
B

A b
C

B

D1 D2R 	

A
a

c b
C

B

D1 + D2

Deletion:

Deletion

Premise: D(s)
Precondition: D(s) has at least three objects.
Operation: Delete s from D(s).
Conclusion: rel(D) \ {ϕ | s occurs in ϕ}

5.5 The relation between GS and GDS

We are now in a position to investigate a relationship between GS and GDS.
We show that GDS can be faithfully embedded into GS by providing a proof-
transformation procedure. This means that we interpret the diagrammatic
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proofs in GDS in terms of the proofs in GS, and in this way we view the
symbolic and diagrammatic proofs from a unified perspective.

We start with providing a translation of EUL-diagrams into formulas in
GS. We denote the translation of a diagram D by D]. Throughout this
section, we adopt the following notational convention. If P and Q are sets
of atomic formulas in GS, we write

P,Q

to abbreviate P ∪Q. Recall that an atomic formula P and its singleton {P}
are syntactically identified in GS. Thus if P is a set of atomic formulas and
P,Q are atomic formula, we write

P, P

to mean P ∪ {P} and

P,Q

to mean {P,Q}.

The EUL-relation < and à are translated into the corresponding relation
symbols < and à in GS. The translation of an EUL-diagram into a GS-
formula simply consists of neglecting an EUL-relation of the form A ./ B.

Definition 5.16 (Translation of EUL-diagrams) Each named contourA
is translated into a corresponding general term A in GS, and each named
point a is translated into a corresponding singular term a in GS. Then each
EUL-relation ϕ is translated into a GS-formula ϕ] by:

(s < t)] := s < t

(s à t)] := s à t

(s ./ t)] := ∅

Let D be an EUL-diagram whose set of relation rel(D) is {ϕ1, . . . , ϕn}. Then
the diagram D is translated into a GS-formula D] by:

D] := ϕ]
1, . . . , ϕ

]
n.
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We next provide a translation of inference rules of GDS. An important
characteristic of a diagrammatic proof in GDS, as compared to a proof in
GS, is that all the information contained in premises is preserved in the
conclusion. To illustrate the point, let us compare a simple GS-proof on the
left below, which is an application of (<), and the abstract representation
of the corresponding one-step inference (an application of U5) in GDS with
the same premises, shown on the right.

A < B B < C
A < C

(<)
D1 : {A < B} D2 : {B < C}
D1 + D2 : {A < B,B < C,A < C} U6

In the case of the GS-proof, only the relation that is newly introduced by a
(<) inference, namely, A < C, appears in the conclusion. By contrast, in the
case of the GDS-proof, all the relations contained in the premises, namely,
A < B and B < C, reappear in the conclusion as well. As a result, in
order to simulate this single application of U5 within GS, we need successive
applications of the (+) rule in the following way:

A < B B < C
A < B,B < C

(+)
A < B B < C

A < C
(<)

A < B,B < C,A < C
(+)

Here each premise and conclusion of the diagrammatic proof is translated
into a GS-formulas of the same form as its EUL-relation, that is:

(D1)] = A < B;
(D2)] = B < C;
(D1 + D2)] = A < B,B < C,A < C.

As a more complex example, consider the following diagrammatic proof,
which we mention in Section 5.3 as an example of application of U3.

A

B
C

D1 R

A
b

	U3 α1

A
b

B
C

D1 + α1
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We repeat the abstract representation of this proof.

D1 : {A < B,A à C,B ./ C} α1 : {b < A}
D1 + α1 : {b < A, b < B, b à C,A < B,A à C,B ./ C} U3

The premises and the conclusion are translated as follows:

(D1)] = A < B,A à C
(α1)] = b < A

(D1 + α1)] = b < A, b < B, b à C,A < B,A à C

Following the same strategy as above, the proof is simulated in GS as follows.

(D1)] b < A

(D1)], b < A
(+) b < A

(D1)]

A < B
(−)

b < B
(<)

(D1)], b < A, b < B
(+) b < A

(D1)]

A à C (−)

b à C (à)

(D1)], b < A, b < B, b à C
(+)

An application of unification in GDS with premise diagrams D and α

gives rise to a diagram D + α whose set of relations is decomposed into the
relations already contained in the premises, i.e.,

rel(D) ∪ rel(α),

and the newly introduced ones,

{ϕ1, . . . , ϕn}.

Figure 5.9 shows the general translation schema of an application of unifica-
tion rule, whose premises are diagrams D and α and whose newly introduced
relations are ϕ1, . . . , ϕn. Here π consists of successive applications of (+),
and each of π1, . . . , πn consists of applications of (<) and ( à), following a
(possibly empty) application of (−) to D].

Using this general translation schema, we show the following:

Theorem 5.17 (Soundness) Let D1, . . . ,Dn, E be EUL-diagrams. Every
diagrammatic proof in GDS of E from D1, . . . ,Dn can be translated into a
proof in GS of E] from D]

1, . . . ,D
]
n.
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D] α]

D], α]
(+)

D] α]
.... π1

ϕ]
1

D], α], ϕ]
1

(+)

.....π

D], α], ϕ]
1, . . . , ϕ

]
n−1

D] α]
.... πn

ϕ]
n

D], α], ϕ]
1, . . . , ϕ

]
n

(+)

Fig. 5.9 The general translation schema of unification rule.

Proof. By induction on the length of proofs in GDS. We only show two
interesting cases: U5 and U10. It is straightforward to see that the other
cases are treated in a similar way. A full list of inference rules in GDS can
be found in the next section.

1. The Premise and Conclusion of U5 are:

Premise: D(B) and α : {A < B}
Conclusion: rel(D) ∪ rel(α) ∪ {A < X | B < X in D}

∪{A à s | B à s in D}∪{A ./ X | X < B or B ./ X in D}.

Here the “newly introduced” relations are ones of the forms A < X, A à s,
and A ./ X. The last one is simply neglected in the translation. So it
suffices to show how to derive A < X and A à s from the translations of
the premises, i.e., D] and α] = A < B. They are derived as follows:

A < B
D]

B < X
(−)

A < X
(<)

A < B
D]

B à s (−)

A à s (à)

Then by combining the derived formulas along the general schema in Figure
5.9, we obtain the desired proof in GS.

2. The Premise and Conclusion of U10 are:

Premise: D(A ./ B) and α : {A à B}
Conclusion:

(
rel(D) \ {X ./ Y | X < A and Y < B in D}

)
∪{X à Y | X < A and Y < B in D}
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Again, it suffices to show how to derive a newly introduced relation of the
form X à Y from given premises D] and α] = A à B. The following proof
in GS yields the desired result.

A à B
D]

X < A
(−)

X à B (à)
D]

Y < B
(−)

X à Y (à)

The converse of Theorem 5.17 is proved using the normalization theorem
of GS. Recall that a normal proof in GS can be divided into three parts, the
deletion part, the transitive part, and the addition part (Corollary 2.10).
While it is immediate to translate the deletion parts and the transitive parts
into diagrammatic proofs, it is not a trivial task to translate the addition
parts, because (i) there are constraints imposed on unification that forbid
combining certain forms of diagrams, and (ii) by an application of the (+)
rule, there may arise, in the middle of a proof, a formula that does not
correspond to any GDS-diagram.

Example 5.18 Consider three diagrams:

D1 : {A < B,A à C,B ./ C},

D2 : {d à C, d < C,B à C},

E : {d à A, d à B, d < C,A < B,A à C,B à C}.

A

B C

D1

B C

d

D2

A
B

C

d

E

Fig. 5.10 Premise diagrams D1 and D2 and conclusion diagram E .



122 5. GS and an inference system for Euler diagrams

One way to prove E] from D]
1 and D]

2 in GS is as follows:

D]
2

D]
1

D]
1

A < B
(−)

D]
2

B à d (−)

A à d (à)

D]
1, A à d

(+)♣

E]
(+)

Here, omitting a formula of the form s < s, we have:

D]
1 = A < B,A à C;

D]
2 = d à B, d < C,B à C;

E] = d à A, d à B, d < C,A < B,A à C,B à C.

The subproof from D]
1 and D]

2 to A à d can be translated into a diagram-
matic proof in GDS as follows.

D1

{A < B} deletion
D2

{d à B} deletion

{A < B, d à A, d à B} unification (U4)

{d à A} deletion

Here the first two applications of (−) in the GS-proof are translated as
applications of deletion in GDS, and the application of ( à) is translated
as an application of unification (U4) followed by an application of deletion.
Now the problem is how to translate the application of (+) marked by ♣.
Although the GS-formula A à d directly corresponds to a minimal diagram,
say α, of the form {A à d}, and hence it may be a premise of unification, we
cannot unify the diagrams D and α due to the constraint for determinacy:
the location of the point d is indeterminate in a unified diagram. (Since D
and α share the contour A, the type of rule that could be applied here is U4.
For the precise description of the precondition of an application of U4, see
Section 5.4.) Furthermore, even if such an application of (+) observes the
constraint, the resulting formula might not correspond to any EUL-diagram,
as is the formula D]

1, A à d in our example.

To solve this problem, we essentially use a proof-construction of GDS

given in Mineshima, Okada and Takemura (2012a), called a canonical dia-
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grammatic proof. In the following proof, we will outline this construction;
for more details, see the proof of Theorem 3.14 of that paper. See also
Example 5.20 below.

Theorem 5.19 (Faithfulness) Let
−→
D be a set of EUL-diagrams, and let

E be an EUL-diagram. Every proof in GS of E] from
−→
D ] can be translated

into a diagrammatic proof in GDS of E from
−→
D or a subset of

−→
D , where

−→
D ] := {D] | D ∈

−→
D}.

Proof. By Theorem 2.8, any proof π in GS of E] from
−→D ] can be transformed

into a normal proof π′ of E] from
−→D ] or a subset of

−→D ]. By Corollary 2.10,
π′ can be divided into three parts, of which (i) the deletion part is translated
as applications of deletion in GDS, and (ii) the transitive part, consisting of
(<) and ( à), is translated as a combination of unification (more specifically,
U3–U7) and deletion in the following way:

s < u u < t
s < t

(<) ;

{s < u} {u < t}
{s < u, u < t, s < t} unification

{s < t} deletion

s < u u à t
s à t (à) ;

{s < u} {u à t}
{s < u, u < t, s à t} unification

{s à t} deletion

Then by using these translations as well as applying deletion to the premise
diagrams

−→D if necessary, we can construct proofs in GDS of all the minimal
diagrams that correspond to the atomic formulas in GS derivable from

−→D ].
Let α1, . . . , αn be such minimal diagrams. For the translation of the addition
part, the following proof-construction yields the desired proof in GDS.

1. Among the minimal diagrams α1, . . . , αn, we pick up the ones contain-
ing a point corresponding to a singular term appearing in E]. From
them, we construct EUL-diagrams D′

1, . . . ,D′
k such that each of them

contains exactly one point as well as all contours that correspond to
the general terms occurring in E], and in each of them A ./ B holds
for any pair of contours A and B. U1 and U2 rules are used for this
proof-construction.
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2. Then, by unifying D1, . . . ,Dk with the Point Insertion rule, we can
construct a diagram E ′ consisting of all the points and contours which
correspond to the terms occurring in E].

3. Finally, among α1, . . . , αn, we pick up all the point-free minimal dia-
grams in each of which we have a relation of the form A < B or A à B
that corresponds to each atomic formula in E]. We then construct a
diagram F , by unifying the diagram E ′ with the point-free minimal
diagrams one by one (using U9 and U10 rules). It is shown that the
diagram F is equal to E .

A detailed formalization of each step and the verification of the fact that
the constructed diagram F coincides with the conclusion E are found in
Mineshima, Okada and Takemura (2012a). (The proof essentially uses the
completeness of GDS with respect to minimal diagrams.)

Example 5.20 Let us go back to the example in 5.18. In order to obtain
a diagrammatic proof of E from D1 and D2, we first construct diagrammatic
proofs of minimal diagrams:

α1 : {d à A} , α2 : {d à B} , α3 : {d < C} ,
α4 : {A < B} , α5 : {A à C} , α6 : {B à C}.

α1 is derived as shown in Example 5.18; α2, α3, α6 are derived by applying
deletion to D2; α4, α5 are derived by applying deletion to D1. Now we con-
struct a proof of E from α1, . . . , α6, following the three steps indicated in
the proof of Theorem 5.19.

1. First, we combine all the minimal diagrams containing the point d, i.e.,
α1, α2, and α3 by using U1 and U2. Let D′ be the resulting diagrams.
The proof is as follows:

α1 : {d à A} α2 : {b à B}
{d à A, d à B,A ./ B} U2

α3 : {d < C}
D′ : {d à A, d à B, d < C,A ./ B,B ./ C,A ./ C} U1

The diagram D′ looks like:
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A B

C
•d

D′

In Mineshima, Okada and Takemura (2012a), the diagrams of such a
form are called Venn-like diagrams for the obvious reason.

2. Since d is the only point to be considered, we do not have to apply the
Point Insertion rule in this example.

3. Then we unify D′ with the point-free minimal diagrams α4, α5, α6 using
U9 and U10 as follows.

D′ : {d à A, d à B, d < C, A ./ B, B ./ C, A ./ C} α4 : {A < B}
{d à A, d à B, d < C, A < B, B ./ C, A ./ C} U9

α6 : {B à C}
{d à A, d à B, d < C, A < B, B à C, A ./ C} U10

α5 : {A à C}
E : {d à A, d à B, d < C, A < B, B à C, A à C} U10

Here the applications of U9 and U10 change the ./ relations in D′ into
< or à relations, and yields the required diagrammatic proof of E . See
again the diagram E in Figure 5.10.

To sum up, we have provided a sound and faithful translation of GDS

into GS. Now together with the fact that we have a sound and faithful trans-
lation from CS (CS+) into GS, and one from GS into ML, we can establish
translations between CS (CS+) and GDS, and between ML and GDS. The
relationships between the inference systems we are concerned with so far are
summarized in Figure 5.11 (cf. Figure 1.3 in Section 1).

In order to give translations between CS (CS+), GDS, and ML, we first
need to introduce a few notions. A categorical sentence can be translated
into an EUL-diagram via its translation to GS-formulas. A problem here is
that for each categorical sentence S, its translation S◦ (or S•) in GS is not
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CS

q

(·)◦

CS+

1

(·)•
GS �

(·)]

GDS

?

(·)+

ML

Fig. 5.11 The relationships between the inference systems.

in the image of the translation (·)] from GDS into GS. To avoid this problem,
we define the closure Pcl of a GS-formula P to be the smallest set such that
for all terms s, t, u,

1. if s appears in P, then s < s is in Pcl;
2. if s < t and t < u are in Pcl, then s < u is in Pcl;
3. if s < t and t à u are in Pcl, then s à u is in Pcl.

As an example, consider the case of a categorical sentence No A are B. We
have:

((No A are B)◦)cl = {A à B}cl = {A à B,A < A,B < B};

and

((No A are B)•)cl

= {a < A, b < B,A à B}cl

= {a < A, b < B,A à B, a à B, b à A, a à b, a < a, b < b, A < A,B < B} .

It is easily shown that in GS, every proof of P from P1, . . . ,Pn can be
converted to a proof of Pcl from (P1)cl, . . . , (Pn)cl, and vice versa. It is
also easily checked that for each categorical sentence S, (S◦)cl and (S•)cl

are in the image of (·)]. Now let (·)\ be the inverse translation of (·)] such
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that P\ = P ∪ {s ./ t | s < t 6∈ P and t < s 6∈ P and s à t 6∈ P}. Clearly,
(·)] and (·)\ are mutually inverse. We define the translation (·)� from a
categorical sentence in CS into an EUL-diagram by S� := ((S◦)cl)\, and the
mapping (·)I from a categorical sentence in CS+ into an EUL-diagram by
SI := ((S•)cl)\.

We also need the notion of cyclicity in GDS, which is defined as follows.
Let D1, . . . ,Dn, E are EUL-diagrams. We say that a sequence D1, . . . ,Dn, E is
a cycle if cr(D1) = {A1, A2} , . . . , cr(Dn) = {An, An+1} , cr(E) = {An+1, A1}
for some contours A1, . . . , An such that Ai 6≡ Aj for all i, j (1 ≤ i, j ≤ n+1).

Now we have:

Theorem 5.21 (Translation of CS and CS+ into GDS) Let S, S1, . . . , Sn

be categorical sentences in CS (resp. CS+).
(1) Soundness. Every proof in CS (resp. CS+) of S from S1, . . . , Sn can
be translated into a diagrammatic proof in GDS of S� (resp. SI) from
S�

1 , . . . , S
�
n (resp. SI

1 , . . . , S
I
n ), where (i) any named point appearing in S�

i

(1 ≤ i ≤ n) is different from each other and (ii) any named point appearing
in S� also appears in some of the premises S�

1 , . . . , S
�
n .

(2) Faithfulness. Let π be a diagrammatic proof in GDS of S� (resp. SI)
from S�

1 , . . . , S
�
n (resp. SI

1 , . . . , S
I
n ) such that (i) the sequence S�

1 , . . . , S
�
n , S

�

(resp. SI
1 , . . . , S

I
n , S

I) is a cycle and (ii) any named point appearing in S�
i

(resp. SI
i ) for 1 ≤ i ≤ n is different from each other. Then π can be

translated into a proof in CS (resp. CS+) of S from S1, . . . , Sn.

Proof. We only show the faithfulness. The soundness is shown in a similar
way using Theorem 3.6 and Theorem 5.19. Let π be a diagrammatic proof
as described in (2). By Theorem 5.17, π can be translated into a proof in GS

of (S◦)cl [resp. (S•)cl] from (S◦
1)cl, . . . , (S◦

n)cl [resp. (S•
1)cl, . . . , (S•

n)cl], which
in turn is converted to a proof π′ in GS of S◦ (resp. S•) from S◦

1 , . . . , S
◦
n

(resp. S•
1 , . . . , S

•
n) by simply neglecting some parts of it. By Theorem 2.8 π

can be converted into a normal proof π′′ in GS, and by Lemma 3.11 [resp.
Lemma 3.20] π′′ has the same assumptions as π′, thus its assumptions and
conclusion form a cycle. Hence by Theorem 3.15, π′′ can be translated into
a proof in CS [resp. CS+] of S from S1, . . . , Sn.
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Finally, we have the following results.

Theorem 5.22 (Translation of GDS into ML) Let
−→
D be a set of EUL-

diagrams and E be an EUL-diagram. Let (
−→
D ])+ := {(D])+ | D ∈

−→
D}.

(1) Soundness. Every proof in GDS of E from
−→
D can be translated into a

proof in ML of (E])+ from (
−→
D ])+ or a subset of (

−→
D ])+.

(2) Faithfulness. Every proof in ML of (E])+ from (
−→D ])+ can be translated

into a proof in GDS of E from (
−→D ])+ or a subset of (

−→D ])+.

Proof. The soundness follows from Theorem 3.6 and Theorem 5.19, using
the normalization theorem of GS (Theorem 2.8). The faithfulness follows
from by Theorem 3.15 and Theorem 5.17, using the normalization theorem
of ML (Theorem 4.4).



6. An extended system with conjunctive terms

The syntax of GS is quite simple but it can be naturally extended in var-
ious ways. In this section, as a first step, we consider an extension of GS

with intersection, where a complex term of the form A u B is introduced.
We call the extended system “Generalized Syllogistic inference system with
intersection”, termed as GSu. The main result of this section is a proof of a
completeness theorem of GSu.

6.1 An extended inference system GSu

In GSu, we can form a complex term of the form A uB, which denotes the
intersection of the sets denoted by A and B. This extension enables us to
deal with inferences involving categorical sentences with modifying phrases,
such as intersective adjectives and relative clauses.

As an illustration, consider a monotonicity inference of the following
form (see, e.g., Sánchez Valencia 1991 for a discussion on monotonicity in-
ferences).

(1) All A are C
All A who are B are C

(2) No A are C
No A who are B are C

Here the conclusions are sentences with a relative clause. We regard A who

are B as a complex term, and represent it as A u B. Then (1) and (2) are
formalized in GSu as (1′) and (2′), respectively.

(1′) A < C
A uB < C

129
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(2′) A à C
A uB à C

For simplicity, we assume that the terms of the language of GSu consist
only of general terms, and set aside the treatment of singular terms. This
restriction is only for expository convenience.

Definition 6.1 (Symbol) The language of GSu consists of the following
symbols.

1. General terms: A1, A2, A3, . . .

2. Relation symbols: < (inclusion), à (exclusion)

3. Term-forming operator: u (intersection)

4. Auxiliary symbols: , (comma), { } (braces), and ( ) (brackets).

Definition 6.2 (Terms and formulas) The terms of GSu are inductively
defined as follows.

(i) Every general term is a term.

(ii) If s and t are terms, then (s u t) is a term.

The formulas of GSu are defined as follows.

(iii) If s and t are terms, then s < t and s à t are formulas. The formulas
of this form are called atomic formulas.

(iv) If P1, . . . , Pn are atomic formulas (n ≥ 1), then {P1, . . . , Pn} is a for-
mula. A singleton {P} is identified with P .

Notation. As in GS, we use syntactic variables A,B,C, . . . to denote gen-
eral terms, s, t, u, . . . to denote terms, P,Q, . . . to denote atomic formulas,
P,Q, . . . to denote formulas, and Γ,∆ to denote a set of formulas.

We assume the following syntactic identification:

1. à is symmetric, i.e., for all s, t, s à t ≡ t à s;
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2. u is idempotent, symmetric, and associative, i.e., for all s, t, u, su s ≡
s, s u t ≡ t u s, and s u (t u u) ≡ (s u t) u u.

Given that associativity holds for u, we henceforth omit the brackets of
complex terms. Accordingly, a term of GSu is to be considered to have the
form A1 u · · · u An (n ≥ 1), which is abbreviated as u ~An (when n = 1,
uA1 ≡ A1).

The semantics of GS is naturally extended for that of GSu.

Definition 6.3 A model M for the language of GSu is a pair (U, I), where
U is a non-empty set (the domain of M), and I is an interpretation function
such that

1. I(A) is a non-empty subset of U for all general term A, and

2. I(s u t) = I(s) ∩ I(t) for all terms s and t.

Remark. In this definition, I(A) must be non-empty for any general term
A, but I(s)u I(t) may be empty if there is no intersection between I(s) and
I(t).

The other semantic notions, i.e., the satisfaction relation |=, the semantic
consequence relation, and the semantic consistency, are defined in the same
say as those of GS. See Definition 2.13 of Section 2.

Now we present the proof theory of GSu, which is an extension of the
axiom and inference rules of GS. As in GS, we omit the braces { and } of
formulas when they appear in a proof.

Definition 6.4 (Axiom and inference rules of GSu)

Axiom (ax) : s < s

Inference rules:

s < t t < u
s < u

(<)
s < t t à u

s à u (à)

s < u
s u t < u

(uL)
s < t s < u
s < t u u (uR)

s u u à t
s à t u u (uà) s à t

s u t < u
(àE)
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P Q
P ∪Q (+)

P
Q (−)

where in (+), P 6= Q, and in (−), Q ⊂ P.

Remark. Instead of ( àE), we could introduce ⊥ as a primitive term denoting
the empty set, and adopt the axiom ⊥ < s and the inference rule:

s à t
s u t < ⊥

( àE) is plainly a derived rule of this modified system.

The notions of proofs and the provability relation are define in the same way
as GS (cf. Definition 2.4 and 2.5).

Lemma 6.5 The following are provable in GSu.

1. s < t ` s u u < t u u

s < s
ax

s u u < s
(uL)

s < t
s u u < t

(<) u < u
ax

s u u < u
(uL)

s u u < t u u (uR)

2. s à t ` s u u à t u u

t < t
ax

t u u < t
(uL)

s < s
s u u < s

(uL)
s à t

s u u à t (à)

s u u à t u u (à)

3. s u t à s u t ` s à t

s u t à s u t
s u t à t (uà)

s à t (uà)

4. s à t ` s u t à u

s à t
t < t

ax

t u u < t
(uL)

s à t u u (à)

s u t à u (uà)
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The soundness theorem is proved by straightforward induction on the
length of a proof in GSu.

Theorem 6.6 (Soundness of GSu) Let P1, . . . ,Pn,Q be formulas in GSu.
If P1, . . . ,Pn ` Q in GSu, then P1, . . . ,Pn |= Q.

6.2 Completeness of GSu

In our formulation of a completeness theorem of GSu, we require the set of
assumptions to be semantically consistent in the same way as in GS. The
following is proved in a similar way as the proof of Lemma 2.16.

Lemma 6.7 Let Γ be a semantically consistent set of formulas. Then none
of the following holds in GSu for any general term A and B:

1. Γ ` A à A.
2. Γ ` A < B and Γ ` A à B.
3. There is a general term C such that Γ ` A à B, Γ ` C < A and

Γ ` C < B.

Remark. Lemma 6.7 cannot be generalized to arbitrary complex terms. For
example, consider Γ = {A à B}. It is clear that Γ is semantically consistent,
but we have Γ ` A uB à A uB by Lemma 6.5 (4).

To show the completeness of GSu, we start with defining a canonical
model, whose domain consists of the terms of GSu.

Definition 6.8 (Canonical model of GSu) Let Γ be a semantically con-
sistent set of of formulas in GSu. A canonical model MΓ = (UΓ, IΓ) for Γ is
defined as follows:

1. The domain UΓ = {s | s is a term of GSu}

2. IΓ is an interpretation function such that

• IΓ(A) =
{
s | Γ ` s < A in GSu}

\
{
s u t | Γ ` s à t in GSu}

for all general term A, and
• IΓ(s u t) = IΓ(s) ∩ IΓ(t) for all term s, t.
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Note that since we have Γ ` A < A by Axiom (ax), IΓ(A) is not empty for
any general term A.

Example 6.9 Consider

Γ = {A à D,B < A,C < A,C à D,B à D} .

We have:

IΓ(A) = {A,B,C,A uB,A u C,B u C,A uB u C} ,

IΓ(B) = {B,A uB,B u C,A uB u C} ,

IΓ(C) = {C,A u C,B u C,A uB u C} ,

IΓ(D) = {D} .

Lemma 6.10 If Γ is a semantically consistent set of atomic formulas of
GSu, then MΓ is a model of Γ.

Proof. Let Γ be a semantically consistent set of atomic formulas of GSu,
and suppose that P ∈ Γ (where we may assume that P has the form
{P1, . . . , Pn}). We claim that MΓ |= P. As in the case of GS (cf. the
proof of Lemma 2.21), in order to show this claim, it suffices to show that
MΓ |= Pi for each Pi (1 ≤ i ≤ n). Note that given P ∈ Γ, we may as-
sume Γ ` Pi. We have two cases, depending on whether Pi is of the form
u ~Ak < u ~Bm or u ~Ak à u ~Bm.

(Case 1) When Pi is of the form u ~Ak < u ~Bm, We show that MΓ |= u ~Ak <

u ~Bm, i.e., IΓ(u ~Ak) ⊆ IΓ(u ~Bm). Let u ∈ IΓ(u ~Ak), where we have for any
u1, u2, if u = u1 u u2 then Γ 6` u1 à u2. By definition, u ∈ IΓ(A1) ∩ · · · ∩
IΓ(Ak), so u ∈ IΓ(Aj) for all j (1 ≤ j ≤ k). Hence Γ ` u < Aj . Then,
by repeated applications of the (uR) rule, we have Γ ` u < u ~Ak. By the
assumption that Γ ` u ~Ak < u ~Bm, we obtain Γ ` u < u ~Bm using the (<)
rule. Since we have, by the (uL) rule, Γ ` u ~Bm < Bj for all j (1 ≤ j ≤ m),
it follows that Γ ` u < Bj by the (<) rule. Thus we have u ∈ IΓ(Bj) for
all j (1 ≤ j ≤ m), i.e., u ∈ IΓ(B1) ∩ · · · ∩ IΓ(Bm). Hence u ∈ IΓ(u ~Bm), as
required.
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(Case 2) Pi is of the form u ~Ak à u ~Bm. We show IΓ(u ~Ak)∩ IΓ(u ~Bm) = ∅.
Assume to the contrary that there is a term u such that u ∈ IΓ(u ~Ak) and
u ∈ IΓ(u ~Bm). Then we have (i) Γ ` u < u ~Ak, (ii) Γ ` u < u ~Bm, and
(iii) there is no u1, u2 such that u = u1 u u2 and Γ ` u1 à u2. Since
Γ ` u ~Ak à u ~Bm by our assumption, we have Γ ` u à u using the ( à)
rule with (i) and (ii). When u is a general term, this is a straightforward
contradiction by Lemma 6.7(1). Otherwise, we would have u = u1 u u2 for
some u1, u2, i.e., Γ ` u1 u u2 à u1 u u2. Then by Lemma 6.5(3), we have
Γ ` u1 à u2, which is a contradiction to (iii), as required.

We proceed to prove a completeness theorem of GSu.

Theorem 6.11 (Completeness of GSu) Let Γ be a semantically consis-
tent set of formulas, and let P be a formula in GSu. If Γ |= P, then Γ ` P
in GSu.

Proof. Suppose Γ |= P. Then by Lemma 6.10 we have MΓ |= Γ, hence MΓ |=
P. We may assume that P has the form {P1, . . . , Pn}, where P1, . . . , Pn are
atomic formulas. So we have MΓ |= Pi for each Pi (1 ≤ i ≤ n). Now we
show that Γ ` Pi in GSu. It then follows that Γ ` {P1, . . . , Pn} by repeated
applications of the (+) rule, which completes the proof. We have two cases
according to the form of Pi.

(Case 1) When Pi is of the form u ~Ak < u ~Bm, we have IΓ(u ~Ak) ⊆ IΓ(u ~Bm).
We claim that Γ ` u ~Ak < u ~Bm. The argument splits into two cases,
depending on whether Γ ` Aj à Al for some j, l (1 ≤ j, l ≤ k) or not.

1. When Γ ` Aj à Al for some j, l (1 ≤ j, l ≤ k), the following derivation
yields the desired result.

Aj à Al

Aj uAl < u ~Bm

(àE)

u ~Ak < u ~Bm

(uL)

2. When Γ 6` Aj à Al for any j, l (1 ≤ j, l ≤ k), we have u ~Ak ∈ IΓ(Ai)
for each i (1 ≤ i ≤ k), since Γ ` Ai < Ai by (ax) and Γ ` u ~Ak < Ai
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by the (uL) rule. Thus u ~Ak ∈ IΓ(u ~Ak). Since IΓ(u ~Ak) ⊆ IΓ(u ~Bm),
we have u ~Ak ∈ IΓ(u ~Bm), hence Γ ` u ~Ak < u ~Bm.

(Case 2) When Pi is of the form u ~Ak à u ~Bm, we have IΓ(u ~Ak)∩IΓ(u ~Bm) =
∅. We claim that Γ ` u ~Ak à u ~Bm. The argument splits into the following
cases:

1. When Γ ` Aj à Al for some j, l (1 ≤ j, l ≤ k), the following derivation
gives the desired result:

Aj à Al

Aj uAl à u ~Bm

By Lemma 6.5(4)

u ~Ak à u ~Bm

(uL)

Similarly for the case where Γ ` Bj à Bl for some j, l (1 ≤ j, l ≤ m).

2. When Γ 6` Aj à Al for any j, l (1 ≤ j, l ≤ k) and Γ 6` Bj′ à Bl′ for any
j′, l′ (1 ≤ j′, l′ ≤ m), suppose for contradiction that Γ 6` u~st à u ~Bm.
By (ax) we have Γ ` Ai < Ai for all i (1 ≤ i ≤ k). Using the
(uL) rule, then, we have Γ ` (u ~Ak) u (u ~Bm) < Ai. Thus, given
our assumption, we have (u ~Ak) u (u ~Bm) ∈ IΓ(Ai) for all 1 ≤ i ≤ k,
hence (u ~Ak) u (u ~Bm) ∈ IΓ(u ~Ak). By the same reasoning, we have
(u ~Ak)u (u ~Bm) ∈ IΓ(u ~Bm). Hence IΓ(u ~Ak)∩ IΓ(u ~Bm) 6= ∅. This is
a contradiction, as required.

Concluding Remarks

As for the diagrammatic representation systems corresponding to ex-
tended syllogistic logics, Mineshima, Okada and Takemura (2009) discuss
various extensions of EUL representation system and GDS inference sys-
tem, including extensions with intersection, union, and complement. See
also Nishihara and Morita (1988) and Nishihara, Morita, and Iwata (1990)
for syllogisms with conjunctive and disjunctive terms and Moss (2010c) for
syllogisms with complements. There are various others ways of extending
the basic fragment of categorical syllogisms; relational syllogisms (i.e., syl-
logisms that involve relations and hence allow a limited sort of multiple
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quantification; see Pratt-Hartmann and Moss 2009); syllogisms involving
proportional quantifiers like most (Moss 2008), and numerical syllogisms
(Pratt-Hartmann 2009). A comparison between inferences with various
forms of sentences and diagrams would contribute to making progress in
understanding the nature of both linguistic and diagrammatic inferential
processes in human reasoning. It is left for future work to explore the re-
lationship between extended diagrammatic systems and the corresponding
linguistic systems including GSu.
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1. Introduction to Chapter 2

The aim of this chapter is to present a proof-theoretic analysis of presup-
positions in natural language, focusing on the interpretation of definite de-
scriptions. We introduce a natural deduction framework to deal with pre-
suppositional phenomena: this new framework has mechanisms on a par
with those of recent dynamic frameworks, such as dynamic semantics and
discourse representation theory, but it avoids problems inherent to these
standard approaches.

As is well known, the notion of presupposition as currently studied in phi-
losophy, linguistics, and logic can be traced back to some of Frege’s writings
on the foundation of mathematics and logical analysis of a language (see,
in particular, Frege 1892). It has received special attention since Straw-
son’s (1950) seminal objection to Russell’s treatment of definite description.
However, it was relatively recently that systematic theories of presupposi-
tions with wide empirical coverage were developed and studied in connection
with the tradition of formal semantics of natural language, beginning with
Montague (1973). Notably, a new formal approach to the problems of pre-
supposition was launched in the 1980s by emphasizing that presuppositional
phenomena in natural language motivate the so-called dynamic conception
of meaning, whose central idea is to regard meanings as context change po-
tentials or context update conditions, rather than truth-conditions.

There are two influential theories of presuppositions in this tradition:
dynamic semantics and discourse representation theory. The former, some-
times called the satisfaction theory of presuppositions, was initiated by the
seminal work of Heim (1983). The latter was originally developed by Kamp
(1981) and augmented with a module to handle presupposition by the in-
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fluential work of van der Sandt (1992). Both approaches make substantial
revisions to the standard logical framework in the tradition of Frege and
Montague, claiming that standard logical systems are insufficient to treat
presuppositional phenomena. One central issue here is how to formalize the
notion of contexts that interact with asserted contents in certain complex
ways. In particular, there is the problem of how to handle local contexts,
i.e., contexts that are updated in the middle of a sentence.

With this problem, we attempt to pursue an option to preserve standard
logical systems. A guiding idea is that presuppositional elements require
reasoning about contexts that are structured in a certain way. In our view,
presuppositions are best understood in terms of a deductive perspective,
in which reasoning about contents and contexts plays a central role. For
this purpose, we use natural deduction systems developed in the tradition
of Gentzen’s proof theory and apply them to analyses of presuppositional
phenomena in natural language. One main goal of this chapter is to show
that such a logical framework augmented with proof theory (natural deduc-
tion system) can handle well-known data that have been used to argue for
dynamic theories of presupposition. Our proposal is based on the natural
deduction system of ε-calculus (Stenlund 1973, 1975; Carlström 2005) and
on constructive type theory (Martin-Löf 1984; Nordström, Petersson, and
Smith 1990).

Our study is also intended as an attempt to show that proof-theoretic
methods can be applied to the domain of natural language semantics. As
noted above, we will argue that proof-theoretic methods are particularly
useful in analyzing presuppositions in natural language. We will show that
our proof-theoretic framework opens up the possibility of providing a novel
semantic analysis on natural language inferences, which are neglected in the
model-theoretic tradition.

Among various expressions that generate presuppositions (i.e., what are
called presupposition triggers), we will concentrate on the treatment of exis-
tential presuppositions of definite descriptions. One reason is that there are
well-studied proof systems in mathematical logic, such as ε-calculus, that
are suitable for our purpose. Although existing proof systems are concerned
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with descriptions in mathematical discourse, we show that they can also be
fruitfully applied to descriptions in natural languages.

The structure of Chapter 2

The structure of this chapter is as follows. In Section 2, we first review two
major theories of definite descriptions, namely, Russell’s quantificational
theory and Strawson’s referential theory (Section 2.2). We then introduce
the problem of presupposition projection and argue that if Strawson’s theory
can be incorporated into a formal theory of presupposition projection, then
it has descriptive and explanatory advantages over Russell’s theory (Section
2.3).

In Section 3, we first outline the basic conception of meaning shared by
two major theories of presupposition projection, namely, dynamic seman-
tics and discourse representation theory (Section 3.1). We then critically
examine these two theories in Sections 3.2 and 3.3. We argue that there
are empirical and conceptual problems with these two accounts of presup-
position and that these problems call for an alternative approach, in which
reasoning about presuppositions plays a central role in accounting for their
projection behavior (Section 3.4).

In Section 4, we present a proof-theoretic framework for handling exis-
tential presuppositions associated with definite descriptions. We outline the
basic idea behind the proof-theoretic analysis of descriptions (Section 4.1)
and then introduce a natural deduction system with ε-operators, called ILε

(Section 4.2) — a proof system that will be used throughout the subsequent
sections. We also describe a relation between ILε and Constructive Type
Theory of Martin-Löf, which has been recently developed as an alternative
to dynamic theories such as discourse representation theory.

In Section 5, we apply the proof-theoretic framework introduced in Sec-
tion 4 to the problems of presuppositions discussed in the earlier sections,
restricting our attention to existential presuppositions triggered by definite
descriptions. We show how reasoning about presuppositions can be formal-
ized as processes of constructing and transforming formal derivations in the
proof system and argue that the problems confronting dynamic semantics
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and discourse representation theory can be avoided within this framework.



2. Background on definite descriptions

2.1 Two approaches to the semantics of descriptions

We start with reviewing two major views on the interpretation of definite
descriptions, namely, Russell’s and Strawson’s analyses.1 Russell’s analysis
consists of the following ideas (Russell 1905; Neale 1990):

(R1) A definite description “the F” is a quantificational expression;

(R2) A sentence of the form “The F is G” entails that there is exactly one
thing that is an F.

A syntactic observation motivating Russell’s analysis, which is particularly
emphasized by Neale (1990), is that a definite description is parallel in form
to other quantificational expressions (what Russell calls “denoting phrases”),
i.e., those expressions consisting of a determiner followed by a noun phrase,
such as every F, some F, no F, and so on. It is then claimed that such ex-
pressions should be subject to parallel semantic treatment and thus analyzed
uniformly as quantificational devices.

As stressed by Neale (1990), among others, Russell’s analysis is consis-
tent with the theory of generalized quantifiers (Barwise and Cooper 1981),
whose central idea is that a determiner such as all, some, and no is best
analyzed as a binary quantifier denoting a relation between sets. For ex-
ample, a sentence of the form Every F is G can be analyzed as having the

1Throughout this section, we focus on definite descriptions, setting aside issues con-

cerned with indefinite descriptions. A modern Russellian treatment of indefinite descrip-

tions can be found in Ludlow and Neale (1991). An alternative analysis in which indefinite

descriptions are treated as a certain kind of referring expression has been explored within

dynamic frameworks, such as Kamp (1981) and Heim (1982).
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logical form [every x :Fx] Gx, where [every x : Fx] is a restricted quantifier
whose scope is the predicate Gx, rather than as having the first-order rep-
resentation ∀x(Ax → Bx) with the unary universal quantifier.2 Then, the
truth condition of such quantificational structures can be specified along the
following lines.3

(1) [every x :Fx]Gx is true if and only if F ⊆ G

(2) [nox :Fx]Gx is true if and only if F ∩ G = ∅.

(3) [somex :Fx]Gx is true if and only if F ∩ G 6= ∅.

(4) [mostx :Fx]Gx is true if and only if |F ∩ G| ≥ |F \ G|.

Here, a bold F refers to the set denoted by a predicate F and |F| denotes
the cardinality of the set F. The truth condition for a sentence containing
definite description can be given in a parallel way:

(5) [thex :Fx]Gx is true if and only if F ∩ G 6= ∅ and |F| = 1.

This means that according to Russellian analysis, a sentence of the form
“The F is G” is analyzed as making an existential statement, “There is
exactly one F and it is G.” Given this truth-condition, Russell’s analysis is
committed to the claim that a sentence containing an empty description is
plainly false.

It is now well known that Strawson opposed Russell’s analysis, insisting
that if nothing satisfies the description, then the question of whether the
sentence containing it is true or false does not arise.4 In such a case, the
speaker would fail to say anything true or false. The Strawsonian analysis
then claims the following:

2An alternative is a relational representation such as All(A, B), which highlights the

relational structure of a quantified sentence. In Chapter 1, we used a variant of such

a relational representation of universal quantified sentences. The restricted quantifier

notation has been widely adopted in the literature since it mirrors the surface structure

of natural language.
3Special attention has been paid to a proportional quantifier such as most, which is a

cornerstone of the generalized quantifier theory because it is not definable in first-order

logic; see Barwise and Cooper (1981).
4See Strawson (1950, 1952). As noted in the Introduction, the presuppositional analysis

of definite descriptions can also be found in Frege (1892).
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(S1) A definite description “the F” is a referring expression;
(S2) A sentence containing “the F” presupposes that there exists one thing

that is an F. 5

As a syntactic motivation for the claim in (S1), it might be pointed out that
definite descriptions are parallel in form not only to quantificational phrases,
but also to complex demonstratives, such as this table and that man, which
apparently act as referring expressions.6 As for the claim in (S2), compare
the following:

(6) a. The F is G.

b. There is exactly one F and it is G.

According to the the Russellian analysis, there is no difference in semantic
content between (6a) and (6b); both assert that there is exactly one F and
that it is G. By contrast, the Strawsonian analysis holds that (6a) presup-
poses the existence of a unique individual satisfying F and asserts that it is
G. Strong evidence for the Strawsonian analysis comes from constructions
in which a definite description is embedded under an attitude verb, as in
(7a), or in the antecedent of a conditional, as in (7b).7

(7) a. I wonder whether the ghost in my attic will be quiet tonight.

b. If the ghost in my attic is quiet tonight, I will hold a party.

5Strawson (1950) distinguishes between a sentence (a sentence type) and the statement

made by uttering a sentence. The former is the bearer of linguistic meaning, and the latter

the bearer of truth-value. For Strawson, presupposition is a relation between statements,

not between sentences; a statement P is said to presuppose a statement Q if the truth

of P is a necessary condition of Q’s having a truth value. In the main text, here and

henceforth, we avoid complications caused by the issue of the kind of items between which

the relation of presupposition obtains; following a standard practice, we will talk as if

presuppositions hold between a sentence and a proposition.
6Note, however, that the semantic status of complex demonstratives is controver-

sial, since some authors—most notably King (2001)—claim that complex demonstratives

should be analyzed not as referring expressions as standardly assumed since Kaplan (1989),

but as quantificational expressions.
7These examples are originally from Heim (1991) and examined in detail in Elbourne

(2005: 109–112) and Elbourne (2010).
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Under the Russellian analysis, “the ghost in my attic will be quiet tonight”
is equivalent to “there is exactly one ghost in my attic and it will be quiet
tonight.” Hence the Russellian analysis seems to predict that (7a) and (7b),
when uttered in appropriate contexts, would have the readings in (8a) and
(8b), respectively.

(8) a. I wonder whether there is exactly one ghost in my attic and it
will be quiet tonight.

b. If there is exactly one ghost in my attic and it is quiet tonight,
I will hold a party.

However, neither of (7a) and (7b) has such readings. Intuitively, in uttering
(7a), the speaker is assuming that there is exactly one ghost in her attic and
wondering whether it will be quiet tonight. Similarly, in saying (7b), the
speaker seems to be presupposing the (unique) existence of such a ghost,
and asserting that if it is quiet, she will hold a party. As we will see below,
such readings are correctly predictable from the Strawsonian claim in (S2)
augmented with suitable assumptions on the behavior of descriptions em-
bedded in complex constructions. Thus, it seems to be fair to say that the
contrast between (7) and (8) constitutes a problem for Russellian analysis
and provides initial support for the Strawsonian view that uniqueness and
existence conditions are not entailments but presuppositions.8

8In defense of Russellian analysis, it might be argued that the correct reading of a

complex sentence in which a definite description appears in an embedded environment can

be accounted for as a scopal interaction between definite descriptions and other operators.

Specifically, it might be argued that the definite description in question would take wide

scope over the attitude verb in (7a) and over the conditional in (7b). However, it is still

not clear how to account for the intuition that in these examples, uniqueness and existence

conditions are not asserted but assumed or taken for granted by the speaker. Another

problem with this proposal is that in the case of (7a), the wide scope interpretation forces

a de re reading for the definite description the ghost. Accordingly, a de dicto reading,

under which the speaker does not believe that there is any ghost in my attic, is ruled

out, contrary to our intuition that it is the preferred reading of (7a). A more detailed

argument against the Russellian response appealing to a scope distinction can be found

in Elbourne (2005, 2010).
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The classical Strawsonian analysis also, however, faces some difficulty
in accounting for the behavior of definite descriptions appearing in certain
complex sentences. We address two issues that have been discussed by both
philosophers and linguists. These problems will be relevant to our later
discussion on analyses of presuppositional phenomena in general.

The problem of “filtration”

Consider the following examples:

(9) John’s children are wise.

(10) a. John has children and his children are wise.

b. If John has children, his children are wise.

c. Either John does not have any children or his children are wise.

The Strawsonian analysis in (S2) predicts that a sentence containing the
definite description John’s children presupposes that John has children. So if
John has no children, it would be misleading to use such a sentence: it would
not express any proposition and the question of whether it is true or false
would not arise. Now this account seems to correctly predict the behavior of
the simple sentence in (9). However, it fails to capture the correct readings
of the examples in (10). For example, we have a strong intuition that if John
has no children, (10a) should be judged false, since the first conjunct is false.
In the case of (10b), it is clear that it can be used to express a proposition
even if John has no children. The same remark can be made about (10c).
Thus, we observe that these three constructions do not presuppose that
John has children; using the terminology in the presupposition literature,
the existence presuppositions are filtered out in these environments. Indeed,
the same kind of examples were already observed by Russell himself:

(11) If France were a monarchy, the King of France would be of the House
of Orleans. (Russell and Whitehead 1910: 69)

Obviously, this sentence might be held to be true even though the king of
France does not exist. The classical Strawsonian view does not account for
this phenomenon.
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The problem of open descriptions

Another objection to Strawson’s theory is based on the constructions in
which descriptions contain variables that are bound by quantifiers. Consider
the following examples, taken from Mates (1973): 9

(12) a. Every boy kissed the girl who loved him.

b. Every positive integer is the positive square root of some positive
integer.

In (12a), the description the girl who loved him contains the pronoun that is
bound by the outside quantifier. In (12c), the description contains a quantifi-
cational expression some positive integer. Consequently, in both examples,
there are no unique objects associated with the descriptions in question,
and thus there seems to be no way to analyze these descriptions as referring
expressions in Strawson’s sense.

By contrast, Russell’s theory has no problems with these examples and
can systematically provide interpretations. Using the restricted quantifier
notation, (12a) and (12b) can be analyzed as (13a) and (13b), respectively:

(13) a. [every x : boy x] [the y : girl y & y loved x] x kissed y

b. [every x : positive integer x] [some y : positive integer y]
[the z : z is positive square root of y] x is z

The problem with Strawson’s original account is that it confines its attention
to simple constructions in which descriptions do not interact with binding
operators such as quantifiers. All of this suggests that Strawson’s analysis
is not yet a systematic theory that can be regarded as a serious rival to
Russell’s theory of descriptions.

2.2 Presupposition projection

Let us go back to the examples in (10), which pose a difficulty to Straw-
sonian analysis. In the literature of semantics and pragmatics of natural

9See also van der Sandt (1992) and Kripke (2005) for a similar argument.
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languages, these phenomena have been treated as instances of the “projec-
tion problem” of presuppositions. This is the problem of predicting the
presupposition of complex sentences in a compositional fashion from the en-
tailment and presupposition of their parts.10 The notion of presuppositions
has played a central role in the recent development of formal semantic and
pragmatics, and several well-developed theories of the projection problem for
presuppositions have mechanisms that deal with the presuppositional effect
of definite descriptions. We will review two influential approaches below.
Before moving on, we will review some of the relevant data and attempt
to understand the behavior of the definite descriptions we saw above in a
broader perspective.

Traditionally, philosophers have tended to confine themselves to a limited
range of expressions that are considered to give rise to presuppositions, such
as definite descriptions, universal quantifiers, and proper names. In the
1970s, linguists discovered that a great variety of expressions or syntactic
constructions give rise to inferences that show a different behavior from
ordinary entailments and thus should be accounted for by presupposition
theory. Such expressions or constructions that give rise to presuppositions
are standardly called presupposition triggers. In addition to those discussed
by Frege and Strawson, the standard examples that have been widely agreed
to be presupposition triggers include the following: 11

10The problem was first posed by Langendoen and Savin (1971).
11For a more comprehensive list with references to relevant literature on each presuppo-

sition trigger, see Nishiyama (1983), Levinson (1983), Soames (1989), Geurts (1999), and

Beaver (2001). It should be noted that although the list indicated here is fairly standard

in the literature on presuppositions, whether it accords with our intuitions is controver-

sial. Thus, Kripke (2009: 370) says, “[such a list] doesn’t get our intuitions about the

relevant presuppositions as we would naturally think of them, and is even highly coun-

terintuitive in many cases.” Specifically, concerning the additive particle too and cleft

constructions, Kripke (2009) convincingly argues that the standard descriptions of their

presuppositional content, as shown in (18b) and (20b), are wrong and provides alternative

descriptions. For the presupposition of too, see also Soames (1989: 613–4, fn. 54) and

Heim (1992). Moreover, it might be too simplistic to assume that there is no essential

difference in the projection behavior between the various kinds of triggers (cf. Charlow

2009). For the current purposes, however, we are making the simplifying assumption that
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(14) a. Bill regrets that he lied to Mary. Factive verb

b. Bill lied to May.

(15) a. John has stopped beating his wife. Aspectual verb

b. John has beaten his wife.

(16) a. Harry managed to find the book. Implicative verb

b. Finding the book required some effort.

(17) a. Sam broke the window again today. Iterative

b. Sam broke the window before.

(18) a. It was Sam who broke the window. Cleft

b. Someone broke the window.

(19) a. What John broke was his typewriter. Pseudo-cleft

b. John broke something.

(20) a. [Pat]F is leaving, too. (Focus on Pat) Additive

b. Someone other than Pat is leaving.

A characteristic property of presupposition is that when a speaker utters
any of the (a) sentences, she can normally be assumed to take the truth
of the corresponding (b) sentence for granted; intuitively, the presupposed
information is conveyed not as something worthy of discussion but rather as
something that is already agreed upon by the participants in the conversa-
tion.

Another characteristic property is that presuppositions differ from en-
tailments in how they are inherited by complex sentences. Specifically, a
sentence S is said to presuppose p when p is normally implied not only by
S but also by the family of sentences in which S is embedded, i.e., those

the standard descriptions are correct and that there is no relevant difference between the

various triggers.
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constructions that are dubbed “hole” according to Karttunen’s (1974) clas-
sification of presupposition triggers.12

(21) Generalization 1. The following constructions inherit the presup-
positions of S:

a. It is not the case that S. negation

b. Maybe it is the case that S. epistemic modal

c. If it is the case that S, then S′.
the antecedent of a conditional

d. Is it the case that S? question

e. Suppose that it is the case that S.
hypothetical assumption

The basic observation here is that the presuppositions of sentence S normally
project out of negations, epistemic modals, the antecedents of conditionals,
questions, and hypothetical assumptions. This observation serves as an
empirical test to identity presuppositional information.13

To see how the test works, consider the following example:

(22) It was Sam who broke the window.

(23) Someone broke the window.

(24) a. It wasn’t Sam who broke the window. negation

b. Maybe it was Sam who broke the window. epistemic modal

12Throughout this chapter, following the standard terminology, “imply” and “implica-

tion” are used as cover terms standing for inference relations in general, including entail-

ment and presupposition.
13A more detailed procedure to test whether given information is a presupposition or

not can be found in Geurts (1999). It may be worthwhile to point out that such a test,

called the “families of sentences” test by Chierchia and McConnell-Ginet (2000), has some

limitations: it cannot be applied to the types of sentences that are unable to appear in

the environments indicated in (21). Thus, interrogative sentences cannot be embedded in

any of the environments in (21); hence the “families of sentences” test says nothing about

whether it has any presuppositions. For some discussion on this point, see Beaver (2001:

18–20).
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c. If it was Sam who broke the window, then he will have to fix it.
the antecedent of a conditional

d. Was it Sam who broke the window? question

e. Suppose that it was Sam who broke the window.
hypothetical assumption

(22) is embedded in various environments in (24). What is remarkable is that
in a normal conversational situation, (23) is implied not only by (22) but
also by each embedding construction in (24). In other words, the proposition
in (23) is projected out of these environments. Based on this observation,
we can conclude that (23) is a presupposition of (22).

To confirm that presuppositions differ from entailments in their inference
pattern, let us look at a typical case of entailment:

(25) Sam broke the window.

(26) Sam broke something.

(27) a. Sam didn’t break the window.

b. Maybe Sam broke the window.

c. If Sam broke the window, the glass fell down.

d. Did Sam break the window?

e. Suppose that Sam broke the window.

(25) is embedded in various environments in (27). But in this case, whereas
(25) implies (26), all of the embedding constructions in (27) do not. Thus,
the test confirms the standard assumption that the relation holding between
(25) and (26) is not a presupposition but an entailment. We can see that
entailments and presuppositions are systematically distinguished in terms
of their projection behavior in embedded contexts.

A naive hypothesis about the projection problem is what is called the cu-
mulative hypothesis, originally discussed by Morgan (1969) and Langendoen
and Savin (1971):
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The cumulative hypothesis If an elementary clause S has a pre-
supposition p, then p is also a presupposition of the whole complex
sentence containing S.

As already observed by Morgan (1969), there are clear counter-examples to
this hypothesis.14 Consider the following examples:

(28) a. If the window was broken, then it was Sam who broke it.

b. Either the window wasn’t broken, or it was Sam who broke it.

As we saw above, the sentence It was Sam who broke it triggers the presup-
position in (23) when uttered in isolation.

(23) Someone broke the window.

The cumulative hypothesis predicts that this presupposition is inherited
in complex constructions such as (28a) and (28b). However, it is obvious
that neither implies (23). This point is further confirmed by the following
example:

(29) The window was broken and it was Sam who broke it.

Obviously, (23) is not a presupposition but an entailment of (29). Such ex-
amples illustrate yet another important property of presuppositions; namely,
the presuppositions associated with elementary clauses disappear in certain
environments.

(30) Generalization 2. Let S and S′ be sentences such that S implies
the presuppositions of S′. Then, the following constructions do not
inherit the presuppositions of S′:

a. S and S′ conjunction

b. If S then S′ conditional

c. Either it is not the case that S or S′. disjunction

14Langendoen and Savin (1971) also discussed conditional sentences like (28a).
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With this background on presuppositions in mind, let us go back to the
Strawsonian analysis of descriptions. Now, it is easy to see that the behavior
of definite descriptions in (10), repeated below, which is problematic for
Strawson, is subject to the same patterns in (30). That is, (10a), (10b), and
(10c) are instances of the three patterns in (30), respectively:

(10) a. John has children and his children are wise.

b. If John has children, his children are wise.

c. Either John does not have any children or his children are wise.

The examples in (7a) and (7b), repeated below, which provide initial moti-
vation for the Strawsonian analysis, are also consistent with the projection
behavior standardly assumed in the literature on presupposition.

(7) a. I wonder whether the ghost in my attic will be quiet tonight.

b. If the ghost in my attic is quiet tonight, I will hold a party.

The conditional sentence (7b) is an instance of the schema given in (21c).
In (7a), the description the ghost in my attic, which acts as a presupposition
trigger, appears in the complement of the propositional attitude construc-
tion. This example conforms to the standard account of the interaction
between propositional attitude verbs and presuppositions, first proposed by
Karttunen (1974) and further developed by Heim (1992).15 Let S be an ele-
mentary sentence that triggers the presupposition that P . Then, according
to Karttunen (1974), a sentence of the form (31a) gives rise to an inference
shown in (31b).

(31) a. A wonders whether S

b. A believes that P .

More generally, according to the Karttunen-Heim view, attitude verbs such
as doubt, hope, and want, i.e., those that are called filters in Karttunen
(1974), give rise to the same pattern of presuppositions as in (31). Thus we
would normally infer from the utterance of (32a) that (32b) is true.

15For the presuppositions of attitude verbs, see also Geurts (1996).
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(32) a. Patrick wants to sell his cello. (Heim 1992)

b. Patrick believes that he owns a cello.

All the evidence suggests is that the problem of “filtration” as posed for
the Strawsonian analysis of definite descriptions is not special but common
to various presupposition triggers; it is an instance of the general problem
of presupposition projection. This view suggests the possibility of applying
to descriptions whatever theories we already have for other presupposition
triggers. Thus, we can say that if the Strawsonian analysis of definite de-
scriptions was combined with some suitable theory of presupposition pro-
jection, it would have an explanatory advantage: such an analysis would
enable us to avoid the problem of filtration and, furthermore, to understand
the behavior of descriptions in a much broader perspective — in a parallel
manner to the other presupposition triggers. This is why in recent work on
descriptions, including Heim and Krartzer (1998), von Fintel (2004), Szabó
(2005), Elbourne (2005), Glanzberg (2007), and Rothschild (2007), among
others, Strawsonian analysis was widely preferred to Russellian analysis with
respect to the presupposition data seen in this section. Furthermore, as we
saw before, the problem of open descriptions shows that Strawsonian anal-
ysis needs to be enriched with some suitable account of the interaction of
presupposition and quantification. Since the seminal work of Heim (1983),
such an account of “presuppositions below clauses” has been elaborated in
the tradition of dynamic semantics. In the next sections, we review two
influential approaches to presupposition projection in a dynamic setting.





3. Two theories of presupposition projection

The two most influential theories of the projection problem are Heim’s (1983)
dynamic semantics and van der Sandt’s (1992) discourse representation the-
ory. Both theories can be subsumed under the “dynamic” account of mean-
ing, which departs from the traditional truth-conditional conception in a
crucial way. The basic idea behind this dynamic approach—which was most
notably proposed by Stalnaker (1978)—is that the utterance of a sentence
changes, in a certain way, the context in which it was made; when the sen-
tence uttered has a complex structure the process by which the utterance
changes the context is composed of several intermediate steps, and this pro-
cess of context change plays a crucial role in accounting for the projection
behavior of presuppositions. Heim’s dynamic semantics and van der Sandt’s
discourse representation theory implement Stalnaker’s original idea in differ-
ent ways, making different predictions of presupposition projection patterns
for some cases. In the following sections, we review the two theories and
identify some problems that confront them.1

3.1 Basic assumptions of dynamic approach

A theory of presupposition based on the dynamic approach was initially pro-
posed by Stalnaker (1973, 1974). As mentioned above, the key observation
is that utterances are made in a context and that they bring about some
change in the context. If we confine our attention to the type of conversation

1See Okada and Mineshima (2009) for a brief survey of dynamic semantics and other

logical systems handling dynamic state transition that are currently studied in logic, lin-

guistics, and computer science.
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that aims to exchange information, the effect of an utterance is normally to
add some information to the context shared by the participants in the con-
versation. More specifically, Stalnaker’s proposal is based on the following
assumptions:

(D1) A context is identified with a common ground—the body of infor-
mation that is presumed to be common to the participants in the
conversation.

(D2) An utterance is intended to affect the context: if the utterance of a
declarative sentence is successful, then the (assertive) content of the
utterance is added to the common ground, which provides the context
for the subsequent discourse.

(D3) The presuppositions associated with a sentence are conditions it im-
poses on the context in which it is uttered—conditions that must be
satisfied if the utterance is to affect the context in a successful way.

The crucial assumption that is used to account for the presupposition pro-
jection is (D2): as a conversation proceeds, the context does not remain
fixed but is dynamically incremented according to what was asserted in the
previous discourse. As we will see below, such a change is brought about
not only by a whole sentence but also by subsentential components. To be
more explicit, consider the case of the conjunctive sentence of the form “A
and B”. Following Karttunen (1974) and Schlenker (2009), among others,
let us call the context in which the utterance of an expression E is evaluated
the local context for E. The local context for “A and B” is calculated as
follows:

(33) If “A and B” is uttered in an initial context σ, the local context for
A is σ and the local context for B is σ + A, i.e., the context that is
obtained by updating σ with the assertive content of A.

Stalnaker claims that the determination of a local context as in (33) derives
from a general pragmatic consideration about a rational process of infor-
mation exchange and, specifically, that the order in which the expressions
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are uttered plays a crucial role. Roughly speaking, the local context of a
sentence S incorporates information delivered by a sentence that appears
before S but is not normally affected by sentences that come after S. As
emphasized by Schlenker (2008, 2009), however, a problem for Stalnaker’s
pragmatic approach is that it is not clear how to extend it to other connec-
tives (e.g., disjunction) and quantifiers. Subsequent authors have instead
developed semantic accounts that deal with a wide range of constructions,
based on the basic assumptions in (D1), (D2), and (D3).

3.2 Dynamic semantics

Heim (1983) developed the dynamic approach to presuppositions by as-
suming that a sentence semantically encodes the information about how to
change contexts, i.e., what she calls the context change potential. In Heim’s
theory, context change potentials are assigned to sentences, including quan-
tified ones, in a compositional way. That is, given the syntactic structure of
the sentence, the context change potential of a complex sentence is defined
in terms of the context change potentials of its parts.

More specifically, Heim (1983) implements the basic assumptions in (D1),
(D2), and (D3) along the following line.

(H1) The notion of a context is identified with a set of possible worlds (i.e.,
what Stalnaker (1974) called a context set).

(H2) The meaning of the (assertoric) utterance of a sentence S, i.e., the
context change potential of S, is identified with a function that takes
an input context and returns an updated context; typically, the ef-
fect of updating a context σ with a simple sentence S is to take the
intersection of σ with the set of possible worlds in which S is true.

(H3) The notion of presuppositions is captured by taking a context change
potential to be a partial function: presupposition failure occurs when
an input context is not in the domain of the function in question.

The goal of this subsection is to see how this dynamic semantics works
and what predictions it provides for the projection problem of presupposi-
tion. Indeed, Heim (1983) only sketched a formalization of her theory; sub-
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sequent authors implemented or reconstructed Heim’s idea in various formal
theories, including update semantics (Dekker 1992; Beaver 1992, 1994; van
Eijck 1994; Veltman 1996), three-valued semantics (Krahmer 1998; Beaver
and Karhmer 2001), and dynamic epistemic logic (van Eijck 2010). Here,
we adopt the framework of Veltman-style update semantics (Veltman 1996)
augmented with a binary operator to handle presuppositions, which we de-
note by ). This framework is closer to Heim’s original proposal and neatly
illustrates a general idea behind her theory. Throughout the following sub-
sections, we refer to this framework simply as dynamic semantics.

We first look at the propositional fragment in Section 3.2.1 and ad-
dress an inherent problem in the treatment of conjunction and conditional
in Section 3.2.2. Then in Section 3.2.3, we introduce the mechanism of
accommodation, which will be referred to throughout subsequent sections.
Finally, in Section 3.2.4, we introduce the quantificational fragment of dy-
namics semantics and examine what predictions it makes for presuppositions
of quantified sentences.

3.2.1 The propositional fragment

In the following, the propositional fragment of dynamic semantics is ab-
breviated as DS. The language of DS is a language of propositional logic
augmented with a binary operator ), which is used to represent presuppo-
sitions. Intuitively, in a formula of the form A)B, A represents what is
presupposed and B what is asserted.2 For instance,

(34) Bill regrets that he lied to Mary. [=(14) in Section 2.2]

2Such a binary presupposition operator has not been unexplored in the logic and lin-

guistics literature. Krahmer (1998) discusses it in the framework of three-valued semantics

(see also Beaver and Krahmer 2001). Blamey (1986/2002) introduced a similar connec-

tive, transplication, denoted as A/B, in partial logic. It is also related to the operator

for conditional assertion introduced in Belanp (1970), which is represented as A/B. An

alternative to the binary presupposition operator is Beaver’s unary presupposition opera-

tor, denoted by ∂A, which is formalized within dynamic semantics in a manner similar to

that adopted in this section (cf. Beaver 1992, 1994, 2001).
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is schematically represented as p)q, where p represents the proposition that
Bill lied to Mary and q the proposition that Bill regrets this. The first goal
here is to provide the definition of context change potentials for formulas of
this language.

Definition 3.1 (Language) We have a fixed set of propositional variables
Φ whose elements are typically denoted by p, q, r (possibly with subscripts),
and logical symbols ¬,∧,). The set of formulas, denoted by LDS, is defined
by the rule

A ::= p | ¬A | A ∧B | A )B

where p ranges over elements of Φ. We use A,B,C (possibly with subscripts)
as meta-variables for formulas of this language.

In addition to the presupposition operator ), we take negation and conjunc-
tion to be primitive logical operators. Conditional A → B is defined to be
¬(A ∧ ¬B).

Notation. We save on parentheses by assuming that ¬ binds more strongly
than ∧,∨, or ), and that ∧,∨, and ) bind more strongly than →. Thus,
¬A )B is to be read as (¬A) )B and A→B ) C as A→(B ) C).

Definition 3.2 (Model) A model of LDS is a pair M = 〈W, (·)∗M〉, where
W is a non-empty set, whose elements are called worlds and denoted by
w1, w2, . . ., and (·)∗M is an interpretation function that assigns a non-empty
subset p∗M of W to each atomic formula p. A subset of W is called an
information state and is typically denoted by σ, σ′, and so on.

The notion of context as stated in (H1) is identified with this notion of an
information state. As stated in (H2), the meaning of a formula is identified
not with a truth-condition but with a context change potential or what is
called an update condition (cf. Veltman 1996). The context change poten-
tial of a formula is defined as a partial function from information states to
information states. We write the context change potential of a formula A

as [A]. Following Veltman’s (1996) postfix notation for update function, the
result of applying [A] to an information state σ (i.e. the result of updating
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σ with [A]) is written as σ[A], rather than [A](σ). More generally, the result
of updating σ with [A1], . . . , [An] is written as σ[A1], . . . , [An], rather than
[An](. . . [A1](σ) . . .). When σ[A] exists, we say that [A] is defined for σ or,
more simply, σ[A] is defined.

Definition 3.3 (Context change potentials) Let A ∈ LDS. The con-
text change potential of A with respect to a DS-model M = (W, (·)∗M) is
denoted by [A]M and inductively defined as follows. To simplify the no-
tation, we will omit reference to M and write p∗ instead of p∗M, and [A]
instead of [A]M.

1. σ[p] is always defined and σ[p] = σ ∩ p∗ if p is atomic.
2. σ[¬A] is defined if σ[A] is defined;

if defined, σ[¬A] = σ \ σ[A].
3. σ[A ∧B] is defined if both σ[A] and σ[A][B] are defined;

if defined, σ[A ∧B] = σ[A][B].
4. σ[A )B] is defined if σ[A] and σ[B] are defined and σ ⊆ σ[A];

if defined, σ[A )B] = σ[B].

A few comments are in order with respect to this definition. The context
change potential of an atomic formula p is a function mapping an information
state σ to σ ∩ p∗. This amounts to excluding from the initial context σ all
the worlds that are incompatible with p. For simplicity, we assume that
atomic formulas do not introduce presuppositions by themselves.

In computing negation σ[¬A], σ is hypothetically updated with A, and
then the result is subtracted from the original context σ.

The context change potential of A∧B is a function that updates an initial
context σ with A and successively with B. The point is that the second
conjunct B is evaluated with respect to σ[A], i.e., the context obtained by
updating the initial context σ with A. It is evident that the specification of
a local context for conjunction in (33) follows from this definition.

A)B is associated with a partial function; hence, it is a possible source
of presupposition failure. The function [A)B] applied to an initial context
σ can be regarded as a test to check whether or not σ already contains the
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information delivered by A. If σ ⊆ σ[A] holds, that is, updating σ with A

does not add any new information to σ, then we have the effect of updating
σ with B; otherwise the function is undefined, resulting in a presupposition
failure.

Given that A→ B is defined as ¬(A∧¬B), one can specify the context
change potential for implication as follows.

Fact 3.4 σ[A → B] is defined if both σ[A] and σ[A][B] are defined; if it is
defined, σ[A→ B] = σ \ (σ[A] \ σ[A][B]).

The definedness condition of implication is the same as that of conjunction.
Note that the definedness conditions of negation, conjunction, and implica-
tion are stated for explicitness. They can be read off from the respective
main clauses, under the convention that if an argument of a function is
undefined, then so is the value of that function.3

The crucial notions in DS, acceptance and presupposition, are defined as
follows.

Definition 3.5 (Acceptance and presupposition) Let A,B ∈ LDS.

1. An information state σ accepts A if σ[A] is defined and σ ⊆ σ[A].
2. A presupposes B if every information state σ for which [A] is defined

accepts B.

As is clear from Definition 3.3, applying the context change potential of a
formula to an information state always yields a subset of that state; using

3The point that the definedness conditions of context change potentials can be read

off from the definitions of the main effects is particularly emphasized in Heim (1983). In

fact, Heim (1983) makes a stronger claim that the definedness condition (i.e., the so-called

inheritance condition) of a sentence need not be specified separately from its main effects;

rather, it logically follows from the specification of the main effects. However, given the

objection that it is technically possible to define different context change potentials with

the same main effects (cf. Soames 1989), Heim (1992) withdrawn this claim. Recently,

Schlenker (2008, 2009) argued that Heim’s original project is still tenable and showed that

in a non-dynamic framework, the inheritance conditions of connectives can be derived

from truth-conditions with the help of certain general pragmatic principles. Since this

development is orthogonal to our interest, we do not discuss it any further in this thesis.
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the terminology of e.g., Veltman (1996), the updates in DS are eliminative
in the following sense.

Fact 3.6 For all information states σ and formulas A in LDS, if σ[A] is
defined, then σ[A] ⊆ σ.

Consequently, when an information state σ accepts a formula A, we have
σ = σ[A]; that is, σ is a fixed point of the function [A].

An immediate consequence of Definition 3.3 is that it makes conjunction
non-commutative. For instance, p ∧ (p ) q) and (p ) q) ∧ p denote different
functions: if an initial context σ does not accept p, then σ[(p ) q) ∧ p]
is undefined, while σ[p ∧ (p ) q)] is defined and computes to σ[p][q]. More
generally, it is seen that (p)q)∧p presupposes p, while p∧(p)q) presupposes
nothing; that is, σ[p ∧ (p ) q)] is defined for any information state σ.

As a concrete example, consider a model in which W = {w1, w2, w3},
p∗ = {w1, w2}, and q∗ = {w1}. The following illustrates that the difference
in information updates between W [p ∧ (p) q)] and W [(p) q) ∧ p] is caused
by the presence of the presupposition operator:

{w1, w2, w3}
p−→ {w1, w2}

p)q−−→ {w1}

{w1, w2, w3}
p)q−−→ presupposition failure

Here, for the purpose of exposition, we write σ A−−→ σ′ if σ[A] is defined and
computes to σ′, and σ

A−−→ presupposition failure if σ[A] is undefined.
Arguably, this contrast is exemplified by the following pair of sentences:

(35) a. Someone solved the problem and it is John who solved it.
p ∧ (p ) q)

b. # It is John who solved the problem and someone solved it.
(p ) q) ∧ p

Here, p represents the proposition that someone solved the problem and q the
proposition that John solved the problem. As noted before, Stalnaker (1974)
attempted to explain such a contrast by appealing to general pragmatic
considerations, specifically, Gricean maxim of manner. In Heim’s dynamic
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semantics, by contrast, the oddity of (35b), which is marked by #, is directly
accounted for in terms of the semantics of conjunction.

Although Heim (1983) does not provide a definition of validity in her
dynamic semantics, one standard definition is as follows.4

Definition 3.7 (Validity) Let A1, . . . , An, B ∈ LDS. B is a valid conse-
quence of A1, . . . , An, written as A1, . . . , An |= B, if for any DS-model M
and any information state σ based on M such that σ[A1], σ[A1][A2], . . . and
σ[A1] . . . [An] are all defined, σ[A1], . . . , [An] accepts B.

According to this definition, a formula B is a valid consequence of a sequence
of formulas A1, . . . , An if whenever an information state is sequentially up-
dated with A1, . . . , An, the resulting state accepts B unless presupposition
failure occurs along the way.

Fact 3.8 Let A1, . . . , An, B ∈ LDS,

1. For all information states σ, σ[A1] . . . [An] accepts B if and only if σ
accepts A1 ∧ · · · ∧An→B.

2. A1, . . . , An |= B if and only if |= A1 ∧ · · · ∧An → B.

With these definitions, it is easy to verify the following facts about the
presupposition projection in DS.

Fact 3.9 Let p, q, r be atomic formulas. Then, p ) q, ¬(p ) q) (p ) q) ∧ r,
and (p ) q) → r all presuppose p.

These predictions agree with Generalization 1 given in (21) in Section 2.2.

Fact 3.10 Let p′ be an atomic formula such that p′ |= p. Then, we have:
p ∧ (p ) q) and p → (p ) q) presuppose nothing; that is, for all information
states σ, σ[p ∧ (p ) q)], and σ[p→ (p ) q)] are defined.

These predictions are clearly consistent with Generalization 2 provided in
(30) in Section 2.2.5

4There are several variations of definitions of validity in dynamic semantics. See Velt-

man (1996).
5 It is not difficult to add disjunction and modal operators to Heim’s framework. First,

define A ∨ B as ¬(¬A ∧ ¬B) and add a unary operator 3 to the language. The following
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3.2.2 The proviso problem

Although Heim’s dynamic semantics provide correct predictions for a wide
range of constructions, it is known that there is a serious problem with the
definition of the context change potentials for conjunction and implication—
a problem called the “proviso problem” after Geurts (1999). Consider first
the following pair of sentences:

(36) a. If someone solved the problem, it is John who solved it.
p→ (p ) q)

b. If the problem was difficult, it is John who solved it.
r → (p ) q)

Abstracting away from the subsentential components, p represents “Someone
solved the problem,” q “John solved the problem,” and r “The problem was
difficult.” The cleft sentence “It is John who solved the problem” is then
represented as p) q, and (36a) and (36b) are translated as indicated above.
While Heim’s dynamic semantics correctly predicts that (36a) presupposes
nothing, it provides a wrong prediction for (36b). To see this point, observe
first that the following holds in DS.

Fact 3.11 r → (p ) q) presupposes r → q.

This can be proved as follows: for any information state σ,

definitions of context change potentials are due to Beaver (2001):

1. σ[A ∨ B] is defined if both σ[A] and σ[¬A][B] are defined;

if defined, σ[A ∨ B] = σ \ ((σ \ σ[A]) \ (σ \ σ[A][B])

2. σ[3A] is defined if σ[A] is defined;

if defined, σ[3A] = σ when σ ⊆ σ[A]; otherwise σ[3A] = ∅.

The unary operator 3 is meant to represent epistemic possibility operators like might.

The above definitions ensure that for atomic formulas p, q, r, (i) (p ) q) ∨ r presupposes

p; (ii) p ∨ (p ) r) presupposes nothing; (iii) 3p presupposes p. (ii) corresponds to the

scheme in (30c) mentioned in Section 2.2, (iii) means that epistemic modal might is a hole

in Karttunen’s sense (see (21b) in Section 2.2).
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σ[r → (p ) q)] is defined iff σ[r][p ) q] is defined (by Fact 3.4)
iff σ[r] ⊆ σ[r][p] (by Definition 3.3.3)
iff σ[r] accepts p (by Definition 3.5)
iff σ accepts r → p (by Fact 3.8.1)

Hence, by definition, r → (p ) q) presupposes r → p. Accordingly, it is
predicted that (36b) presupposes that if the problem was difficult, someone
solved it. Intuitively, however, this prediction is too weak: it is natural to
interpret (36b) as presupposing that someone solved the problem, schemati-
cally represented as p. This intuition has been agreed on by various authors
(e.g., Karttunen and Peters 1979; Soames 1989; Geurts 1999, among others).

The same point applies to Heim’s definition of the context change poten-
tial of conjunction since, as shown in Fact 3.4, conjunction and implication
are assigned the same definedness condition.

Fact 3.12 r ∧ (p ) q) presupposes r → q.

Thus, (37) is predicted to presuppose that if the problem was difficult, some-
one solved it, schematically represented as r→p, rather than that someone
solved the problem, schematically represented as p.

(37) The problem was difficult and it is John who solved it.
r ∧ (p ) q)

It might be argued that some additional pragmatic inferences could de-
rive the desired presupposition p from r → p.6 That is, (36b) has basically
the conditional presupposition r → p, but some kind of pragmatic inferences
strengthen r → p to p. However, as pointed out by Geurts (1996, 1999),
pragmatic considerations alone are not enough to salvage Heim’s definition
of context change potentials of conjunction and implication. Consider the
following pair of sentences:

(38) a. Peter knows that if the problem was difficult, someone solved it.
(r → p) ) s

6See Karttunen and Peters (1979) for an earlier proposal. See also van Rooij (2007)

for a recent defense of strengthening inferences.
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b. If the problem was difficult, then it isn’t John who solved it.
r → ¬(p ) q)

Here p, q, r represent the same propositions as before, and s represents “Peter
believes that if the problem was difficult.” To simplify the matter concerning
the semantics of know, we represent “x knows that A” as “A)(x believes that
A)”. Intuitively, (38a) has a conditional presupposition, “If the problem was
difficult, someone solved it”, namely, r→p, whereas (38b) has an uncondi-
tional presupposition, “Someone solved the problem”, namely, p. However,
Heim’s theory predicts that both have the conditional presupposition r→p.
Now, if some pragmatic inference is to derive p from r→ p and the deriva-
tion solely depends on what proposition is literally presupposed—but not on
how it is so presupposed—then it wrongly predicts that not only (38b) but
also (38a) could have the unconditional presupposition p. Although various
approaches to this problem have been proposed, it seems fair to say that
there is no definitive solution in the literature.7

It should be noted here that as Geurts (1999) and Beaver (2001) point
out, genuinely conditional presuppositions do arise in certain cases. Thus,
in a normal context, (39a) has a conditional presupposition, as shown in
(39b), rather than an unconditional presupposition “John has a wetsuit.”

(39) a. If John is a diver, he’ll bring his wetsuit on vacation.

b. If John is a diver, he has a wetsuit.

Dynamic semantics is good at handling such cases. The problem is, then, to
explain why some sentences have a conditional presupposition, while others
have an unconditional one. We will return to this issue in Section 3.4.

7See Karttunen and Peters (1979) for an earlier proposal based on pragmatic deriva-

tions. For arguments against Karttunen and Peters (1979), see Geurts (1999). Recently,

Singh (2007) and Schlenker (2011b) proposed a new version of pragmatic derivations,

which crucially depend on the syntactic structure of the sentences in question. We leave

discussion of these new approaches for future occasion.
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3.2.3 Accommodation and informative presuppositions

According to the dynamic view presented so far, a sentence S uttered in a
conversation is intended to update the common ground σ of the conversation
and the presuppositions associated with S are requirements placed on σ in
order for the utterance of S to successfully update σ; if the common ground
σ does not satisfy the presuppositions, then the update simply fails. As
widely acknowledged, however, there seem to be clear counter-examples to
this view. Consider:

(40) I am sorry I am late. My bike has a flat.

The utterance of the second sentence presupposes that the speaker has a
bike. However, given the fact that the presupposed information is fairly
uncontroversial, it appears that this sentence could successfully be uttered
in a context where it is not already part of the common ground that the
speaker has a bike. In this case, it would be quite unrealistic to suppose that
the intended context update simply fails and communication breaks down at
this point. Rather, such an example suggests that the presuppositions of an
utterance are not always taken for granted but are sometimes informative
to the participants in a conversation.

To account for this fact, it is standardly assumed by the proponents of
the dynamic view of presuppositions that in such a case, the participants
in the conversation quickly adjust the common ground so as to satisfy the
presupposition in question. This process of adjustment has been called “ac-
commodation” since the seminal work of Lewis (1979). A similar idea was
earlier suggested by Karttunen (1974) and Stalnaker (1973). Thus, Kart-
tunen (1974: 191) says:

[O]rdinary conversation does not always proceed in the ideal or-
derly fashion described earlier. People do make leaps and short-
cuts by using sentences whose presuppositions are not satisfied
in the conversational context [. . .]. I think we can maintain that
a sentence is always taken to be an increment to a context that
satisfies its presuppositions. If the current conversational context
does not suffice, the listener is entitled and expected to extend
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it as required. He must determine for himself what context he
is supposed to be in on the basis of what was said and, if he is
willing to go along with it, make the same tacit extension that
his interlocutor appears to have made. This is one way in which
we communicate indirectly, convey matters without discussing
them.

Although there is a controversy about the existence and status of accommo-
dation,8 it is widely acknowledged among the proponents of dynamic seman-
tics that it plays a crucial role in accounting for the flexible and context-
dependent behavior of presupposition projection. In particular, with the
help of the notion of local contexts, the mechanism of accommodation can
be used to account for a certain sort of ambiguity that could be produced
by a complex sentence with an embedded presupposition trigger.

As an illustration, consider the case of negation, discussed by Heim
(1983). As stated above, ¬(p ) q) presupposes p. Now suppose that the
common ground σ does not satisfy p. There are two ways in which ac-
commodation could take place, which we call “global accommodation” and
“local accommodation,” respectively, following the standard terminology.

1. Global accommodation. The initial context σ is adjusted to the con-
text that satisfies p, i.e., σ∩p∗. Then, by definition, the context change
potential for ¬(p ) q) with respect to the amended context σ ∩ p∗ is
defined; the following equation shows that it has the same effect as
updating σ with p ∧ ¬q:

(σ ∩ p∗)[¬(p ) q)] = (σ ∩ p∗) \ (σ ∩ p∗)[p ) q]

= (σ ∩ p∗) \ (σ ∩ p∗)[q]

= σ[p] \ σ[p][q]

= σ[p][¬q]

= σ[p ∧ ¬q]

8For recent useful overviews, see Beaver and Zeevat (2007) and von Fintel (2008).
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2. Local accommodation. With the initial context σ, the context change
potential for ¬(p ) q) is calculated as follows:

σ[¬(p ) q)] = σ \ σ[p ) q].

For the presupposition p to be satisfied, it is conceivable to replace
the second occurrence of σ, i.e., the input context for the embedded
construction p ) q, by σ ∩ p∗. Then, we obtain:

σ \ (σ ∩ p∗)[p ) q] = σ \ (σ ∩ p∗)[q]

= σ \ σ[p][q]

= σ \ σ[p ∧ q]

= σ[¬(p ∧ q)]

Hence the local accommodation ends up with the same result as up-
dating σ with ¬(p ∧ q).

As a concrete example, consider the following:

(41) John didn’t stop smoking. ¬(p ) q)

Here p = “John used to smoke” and q = “John stopped smoking.” Now,
suppose (41) is uttered in a context that does not entail the proposition that
John used to smoke.9 Then, the hearer could adjust the context either by
global accommodation or local accommodation. In the former case, we end
up with the reading in (42a). In the latter case, we obtain the reading in
(42b).

(42) a. John used to smoke and he stopped smoking. p ∧ ¬q

b. It is not the case that John used to smoke and he stopped smok-
ing. ¬(p ∧ q)

Potentially, both readings would be available, but the preferred reading
would be the first one. Heim (1983) and many subsequent authors suggested
that global accommodation is generally preferred to local accommodation.

9This sentence may have other presuppositions such as that concerning the existence

of the entity denoted by John. But this can be ignored for the current purpose.
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In fact, in the case of (41), local accommodation seems to be a highly
marked option in that it only arises if the hearer has special reason to aban-
don the global accommodation reading. As Kadmon (2001: 172) points
out, however, in examples such as (43) the local accommodation reading,
as shown in (44b), is quite natural, although the global accommodation
reading, as shown in (44a), is also certainly possible.

(43) If Sue stopped smoking yesterday, she will get a prize from the health
bureau. (p ) q) → r

(44) a. Sue used to smoke, and if she stopped smoking yesterday, she
will get a prize from the health bureau. p ∧ (q → r)

b. If John used to smoke and stopped smoking yesterday, she will
get a prize from the health bureau. p ∧ q → r

As we will see later, for certain cases, there can be more than one way of
performing local accommodation. Proponents of discourse representation
theory (e.g., van der Sandt 1992; Geurts 1999) emphasize this fact and,
accordingly, the notion of accommodation plays a more prominent role in
their theory (see Section 3.3.2 below).

3.2.4 The quantificational fragment

Most of the discussion on the presupposition projection in the literature be-
fore Heim (1983) centered around the question of how the presuppositions
of a simple sentence (i.e., an elementary clause) are inherited to a complex
sentence containing it. Heim (1983) emphasizes that her dynamic approach
provides a way to handle presuppositions below the level of simple sentences.
We have already seen some typical examples that need to be accounted for
by such an extended theory, namely, Mates’ examples of open sentences
containing a variable bound by an outside quantifier; see examples (12a)
and (12b) on page 150. Heim (1983) provides only a sketch of the exten-
sion of her dynamic framework to a quantificational language. Subsequent
authors, including Dekker (1992, 1996), Beaver (1992, 1994, 2001), and Gro-
nendijk, Stokhof and Veltman (1996), formally developed Heim’s idea within
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the framework of dynamic (update) semantics. Building on these studies,
we will reconstruct Heim’s proposal and present a dynamic semantics that
deals with the presuppositions of quantified sentences. We refer to this
system by DSq. The predictions made by this system with respect to the
projection behavior of quantified sentences will be a basis for our subsequent
discussions.

The language of DSq, which we denote by LDSq, is obtained by adding
a binary presupposition operator ) to the language of standard predicate
logic. More specifically, the vocabularies of LDSq consist of a set of individual
variables, typically denoted by x1, x2, . . ., a set of n-place relation symbols,
typically denoted by F,G, . . . (possibly with numerical subscripts), and log-
ical operators ¬,∧,),∃. The formulas (denoted by A,B,C) are defined by
the following rule:

A ::= F (x1, . . . , xn) | ¬A | A ∧B | A )B | ∃xA

To simplify the exposition, we do not consider individual constants and
equality.10 Disjunction ∨, implication →, and universal quantification ∀ are
introduced as defined symbols: A ∨ B is an abbreviation for ¬(¬A ∧ ¬B),
A→B for ¬(A∧¬B), and ∀xA for ¬∃x¬A. We omit parentheses by assum-
ing that ∀,∃,¬ bind more strongly than ∧,∨,), and that ∧,∨,) bind more
strongly than → (cf. the convention in DS introduced on page 163). Some-
times, we also omit parentheses by writing, e.g., Fx1x2 instead of F (x1, x2).

If we take into account the contributions made by quantifiers and vari-
ables to the conversational contexts, it is crucial to distinguish two kinds of
information, which we call discourse information and information about the
world, following Groenendijk, Stokhof and Veltman (1996). The former kind
of information is concerned mainly with what individuals are introduced in
a given context, and the latter is concerned with what properties are held to
be true of the individuals thus introduced. Correspondingly, there are two

10Also, modal operators are not considered here. Indeed, it is not a trivial matter to

add modal operators such as epistemic might to the quantificational fragment of dynamic

semantics with individual constants and equality; it causes additional complications in a

dynamic setting. See Groenendijk, Stokhof, and Veltman (1996) for discussion.
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ways in which a context is updated: one way is by introducing new individ-
uals into discourse, and the other way is by picking out individuals that are
already introduced and eliminating a possibility that is incompatible with
the information delivered by a sentence used. Typically, existential quan-
tifiers are responsible for the former way of updating a context, and open
sentences (formulas involving free variables) for the latter. In DSq, these
two ways of information update are semantically explicated in terms of the
notion of partial assignment functions or, equivalently, a finite sequence of
individuals. An information state in DSq is identified with a set of partial
assignment functions.11 Roughly, to update discourse information is to add
a new assignment in the current state, and to update information about the
world is to eliminate possible assignments in the current state.

The notions of model and information state in DSq are defined as follows.

Definition 3.13 (Model) A model of LDSq is a pair M = 〈D, (·)∗M〉, where
D is a non-empty set, called a domain of individuals, and (·)∗M is an inter-
pretation function mapping relational symbol F with arity n to F ∗

M ⊆ Dn.

Definition 3.14 (Information state) Let M = 〈D, (·)∗M〉 be a DSq-model.
11The idea of using partial assignment function in dynamics semantics goes back at

least to Heim (1983). In Heim (1983), information states are identified with a set of pairs

〈w, g〉 of worlds w and (partial) assignment functions g, for the purpose of treating the

interaction between quantifiers and modal and intensional expressions in context change

potential models (such a treatment is given in Heim 1992; see Groenendijk, Stokhof, and

Veltman 1996 for formal development of a similar idea). Since our focus is on the pre-

supposition projection of quantified sentences in extensional contexts, we do not consider

world variables here. This will simplify the formulation of DSq. A similar approach is

taken in EDPL of Dekker (1992, 1996), where a Veltman-style update semantics for Dy-

namic Predicate Logic (DPL) of Groenendijk and Stokhof (1991) is provided. But the

main concern of DPL and EDPL is the interpretation of anaphoric pronouns (formalized

as free variables) and their interaction with quantifiers; accordingly, presupposition op-

erators, which concern us in this section, are not considered there. Beaver (1992, 1994)

develops Heim’s idea of information states as world-sequence pairs, proposing a dynamic

semantics for a (modal) predicate logic with a unary presupposition operator (termed as

∂), but the definedness condition of the presupposition operator given by Beaver (1992,

1994) is essentially different from the treatment in Heim (1983). See also the discussion

at the end of this subsection.
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By an information state σ, we mean a set of partial assignment functions
whose domain is a finite set of variables, {x1, x2, . . . , xn} and whose range is
D, satisfying the condition that each assignment function in σ has the same
domain, i.e., if s and s′ are in σ then dom(s) = dom(s′).

We denote information states by σ, σ′, . . ., and assignment functions by s, s′,
and so on. We will adopt the following notation:

• By dom(s) we denote the domain of an assignment function s.
• By s[x/d] we denote the assignment function s′ such that x 6∈ dom(s),

dom(s′) = dom(s) ∪ {x}, and s′(x) = d. That is, s[x/d] is the assign-
ment function that differs from s in that its domain contains a new
variable x to which an individual d is assigned.

• By σ[x/d] we denote the information state σ′ = {s[x/d] | s ∈ σ}.
• Given a fixed set of variables, {xi | i ≤ n}, we often identify an assign-

ment function {(x1, a1), (x2, a2), . . . , (xn, an)} with a finite sequence of
individuals a1a2 . . . an.

We mentioned the two ways in which information states are updated: (i)
discourse information is extended by introducing new individuals; and (ii)
information about the worlds is extended by eliminating possibilities. This
distinction is captured by the following definition, which is due to Groe-
nendijk, Stokhof and Veltman (1996).

Definition 3.15 Let s, s′ be assignment functions, and σ, σ′ information
states.

1. s′ is an extension of s, written as s ≤ s′, if dom(s) ⊆ dom(s′) and for
all x ∈ dom(s), s(x) = s′(x).

2. σ′ is an update of σ, written as σ 4 σ′, if for all s′ ∈ σ′ there exists
s ∈ σ such that s ≤ s′.

A state σ′ is an update of a state σ if every assignment function in σ′ is an
extension of some assignment function in σ. Note that the definition allows
some of the assignments in σ to be eliminated in σ′. Typically, when σ ≤ σ′,
some of the assignments in σ are eliminated in σ′, and the remaining ones
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are extended with a new variable. It is easily seen that ≤ and 4 are partial
orders. The minimal element with respect to ≤ is ∅, which we call the empty
assignment (or the empty sequence) and denote by ε. The maximal element
with respect to 4, i.e., the maximal information state, is also ∅, which we
call the absurd state and denote by ⊥.

It will be useful to introduce a notion of non-eliminative updates, namely,
updates that may introduce new variables but do not eliminate any assign-
ments.

Definition 3.16 Let σ and σ′ be information states such that σ 4 σ′, i.e.,
σ′ is an update of σ. Then, σ′ is a non-eliminative update of σ, written as
σ v σ′, if for all s ∈ σ there exists s′ ∈ σ′ such that s ≤ s′; otherwise, σ′ is
an eliminative update of σ.

If σ′ is a non-eliminative update of σ (i.e., σ v σ′), then σ′ is an update of σ
(i.e., σ ≤ σ′) and, furthermore, no possibilities (i.e., assignment functions)
in σ are eliminated in σ′; only new variables to which some individuals are
assigned can be introduced in σ′. The notion of non-eliminative update here
is essentially the same as the notion of subsistence in Groenendijk, Stokhof,
and Veltman (1996).

As an illustration, let a and b be individuals, and consider informa-
tion states σ0 = {ε} , σ1 = {a, b} , σ2 = {ac, ad} , and σ3 = {ac, ad, bc, bd}.

ac ad bc bd

a b

ε
σ0

σ1

σ2 σ3

The figure on the right illustrates the relation-
ship between these states. Note that for all as-
signment functions s, ε ≤ s; hence, for all in-
formation states σ, {ε} 4 σ and {ε} v σ. The
state {ε} can be regarded as an initial state in
which no discourse information has yet been
established. Regarding the other states, we
have: σ1 4 σ2, σ1 4 σ3, σ1 6v σ2, and σ1 v σ3.
Here, we see that σ2 is an eliminative update of σ1, and that σ3 is a non-
eliminative update of σ1.

Now, the context change potentials in DSq are defined as follows.
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Definition 3.17 (Context change potentials) Let A in LDSq, and let
M = 〈D, (·)∗M〉 be a DSq-model. The context change potential [A]M of A is
inductively defined as follows. Henceforth, we omit reference to M in (·)∗M
and [·]M.

1. σ[F (x1, . . . , xn)] is defined if {x1, . . . , xn} ⊆ dom(σ);
if defined, σ[F (x1, . . . , xn)] = {s ∈ σ | 〈s(x1), . . . , s(xn)〉 ∈ F ∗}.

2. σ[¬A] is defined if σ[A] is defined;
if defined, σ[¬A] = {s ∈ σ | there exists no s′ ∈ σ[A] such that s ≤ s′}.

3. σ[A ∧B] is defined if σ[A] and σ[A][B] are defined;
if defined, σ[A ∧B] = σ[A][B].

4. σ[A )B] is defined if σ[A] and σ[B] are defined and σ v σ[A];
if defined, σ[A )B] = σ[A][B].

5. σ[∃xA] is defined if x 6∈ dom(σ) and σ[x/d][A] is defined for all d ∈ D;
if defined, σ[∃xA] = (

∪
d∈D σ[x/d])[A].

The context change potential of an atomic formula F (x1, . . . , xn) is a
partial function: if any one of the arguments x1, . . . , xn is not present in
the input state σ, then the function is undefined and presupposition failure
occurs.

In computing σ[¬A], σ is hypothetically updated with A; if σ[A] is de-
fined, then those possibilities that have an extension in σ[A] are eliminated
from σ. This definition of [¬A] differs from the one in DS because in DSq,
the formula A may introduce new variables in the course of the hypothetical
update. (A typical example is a formula of the form ¬∃xFx; see the example
below.)

The context change potential of A ) B is also a partial function; if in
updating σ with A, any possibility in the initial context σ is eliminated (in
other words, any information about the world is lost), then the function is
undefined, and we end up with presupposition failure. Here, we see some
differences from the definition of [A)B] in DS (cf. Definition 3.3.4). First,
since A may introduce new variables, the definedness condition requires
that σ[A] be a non-eliminative extension of σ (i.e., σ v σ[A]), rather than
σ ⊆ σ[A]. Second, when the definedness condition is satisfied, the initial
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state σ is not directly updated with the assertive component B, because
the presuppositional component A may introduce new variables. Rather,
σ is first updated with component A, and then the resulting state σ[A] is
updated with B. Put differently, for the initial state σ to be successfully
updated with A ) B, σ must contain all the information about the world
encoded by A, but σ may be extended with some new discourse information
contained in A.

Finally, in updating a context σ with ∃xA, σ is extended with a new
variable x; when the variable x is already present in σ, the updating process
comes to a halt. Thus a repetition of an existential quantifier with the same
variable, say, ∃xFx ∧ ∃xGx, always results in presupposition failure.12 It
should be noted that as seen from the definition, ∃x can be regarded as a
separate unit; ∃xA can be decomposed as ∃x ∧ A. The context change po-
tential of ∃x is then defined as follows: σ[∃x] =

∪
d∈D σ[x/d] if x 6∈ dom(σ);

otherwise it is undefined. Although the syntax becomes less familiar, this
separation makes it explicit that the role of an existential quantifier ∃x in
DSq is to add new discourse information upon which the subsequent part of
the formula makes a comment.

To sum up, there are three sources of undefinedness (i.e., presupposition
failure) in DSq: (i) atomic formulas, (ii) existential quantifiers, and (iii) pre-
supposition operators. (i) and (ii) are concerned with discourse information:
in the case of (i) the relevant variables must already be present in the initial
context; in the case of (ii), they must not. (iii) is concerned with informa-
tion about the world: the initial context must already contain the world
information specified in the antecedent of the presupposition operator.

It is observed from Definition 3.17 that interpretations always give rise
to an information state that is an update of the input state.

Fact 3.18 For all formulasA ∈ LDSq and all information states σ, σ ≤ σ[A].

12Gronendijk, Stokhof, and Veltman (1996) do not adopt this view; using the notion

of pegs they allow an existential quantifier to be repeatedly used with the same variable.

Our treatment of existential quantifiers is similar to that in Dekker (1992, 1996) and also

close to the original proposal (with respect to indefinites) in Heim (1982, 1983).
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Now, we recall that A→B is defined as ¬(A∧¬B) and ∀xA as ¬∃x¬A.
The context change potentials of implication and universal quantification
are then derived as follows.

Fact 3.19 (Implication and universal quantifier)

1. σ[A→B] is defined if both σ[A] and σ[A][B] are defined;
if defined, σ[A→B] = {s ∈ σ | for all s′, if s ≤ s′ and s′ ∈ σ[A], then

there is s′′ such that s′ ≤ s′′ and s′′ ∈ σ[A][B]}
2. σ[∀xA] is defined if σ[x/d][A] is defined for all d ∈ D;

if defined, σ[∀xA] = {s ∈ σ | for all d ∈ D, there is s′ such that
s ≤ s′ and s′ ∈ σ[x/d][A]}

The definedness condition of implication [A→B] is the same as that of
conjunction [A ∧ B]. After updating a state σ with A→B, a possibility s

in σ will remain if every extension of s in σ[A] has an extension in σ[A][B].
If no s ∈ σ has an extension in σ[A], then σ[A→ B] = σ.

The definedness condition of universal quantification [∀xA] is the same
as that of existential quantification [∃xA]. In updating σ with ∀xA, a pos-
sibility s in σ will remain if s has an extension in σ[x/d][A] for any d ∈ D.

Let us prove Fact 3.19.2 and see how the context change potential of
∀xA is derived.

Proof. By definition, we have:

s ∈ σ[∀xA] ⇐⇒ s ∈ σ[¬∃x¬A]

⇐⇒ (i) s ∈ σ and (ii) s has no extension in σ[∃x¬A].

(ii) means that s has no extension in σ[x/d][¬A] for any d ∈ D, i.e.,

there is no s′ such that s ≤ s′, s′ ∈ σ[x/d], and s′ has no extension
in σ[x/d][A] for any d ∈ D.

This is equivalent to the following:

(iii) For all d ∈ D and all s′, if s ≤ s′ and s′ ∈ σ[x/d], s′ has an extension
in σ[x/d][A].
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It is clear, then, that [∀xA] has the same definedness condition as [∃xA].
Now we claim that when s ∈ σ, (iii) is reduced to the following:

(iv) For all d ∈ D, s has an extension in σ[x/d][A].

So let s ∈ σ and d ∈ D.
(iii) =⇒ (iv): We have s ≤ s[x/d]. Since s ∈ σ, we also have s[x/d] ∈ σ[x/d].
Then, from (iii), it follows that s[x/d] has an extension in σ[x/d][A]. Since
≤ is transitive, this implies that s has an extension in σ[x/d][A].
(iv) =⇒ (iii): Suppose that s ≤ s′ and s′ ∈ σ[x/d]. Certainly, s′ = s[x/d].
By (iv), there is some s′′ such that s ≤ s′′ and s′′ ∈ σ[x/d][A]. Since
σ ≤ σ[x/d] ≤ σ[x/d][A], we have: for some t ∈ σ and some t′ ∈ σ[x/d],
t ≤ t′ ≤ s′′. But then, given t ≤ s′′, s ≤ s′′ and s, t ∈ σ, it clearly follows
that s = t. So, s ≤ t′. Since t′ ∈ σ[x/d], we have t′ = s[x/d]. Hence,
s[x/d] ≤ s′′ ∈ σ[x/d][A], i.e., s[x/d] has an extension in σ[x/d][A].

Some simple examples may help understand how context change poten-
tials work. Consider:

(45) a. A man walks. He whistles.

b. ∃x1(man(x1) ∧ walk(x1)) ∧ whistle(x1)

Let us assume that (45a) is translated as (45b) in DSq. Here, the occurrence
of the variable x1 in whistle(x1) remains free; but it is, in a sense, allowed to
be bounded by the initial quantifier ∃x1. To see it, consider a model M =
〈D, (·)∗〉 where D = {a, b, c}, man∗ = {a, b, c}, walk∗ = {a, b}, and whistle∗ =
{a}. Note that {a, b, c} is an abbreviation for {(x1, a), (x1, b), (x1, c)}, and so
on. Suppose that the initial context σ0 is {ε}, where no discourse information
is introduced. Then, we have:

σ0[∃x1(manx1 ∧ walk x1) ∧ whistlex1]
= σ0[∃x1(manx1 ∧ walk x1)][whistlex1]
= (

∪
d∈D σ0[x/d])[manx1 ∧ walk x1][whistlex1]

= (
∪

d∈D σ0[x/d])[manx1][walk x1][whistlex1]
= {a, b, c} [manx1][walk x1][whistlex1]
= {a, b, c} [walk x1][whistlex1]
= {a, b} [whistlex1]
= {a}
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Note that the context change potential of (45b) is defined for the input
σ0, since x1 6∈ dom(σ0), and for every intermediate context σ, since x1 ∈
dom(σ0). If we regard ∃1x as a separate unit, the overall update process can
be depicted in the following way:

{ε} ∃x1−−−→ {a, b, c} man x1−−−−−→ {a, b, c} walk x1−−−−−→ {a, b} whistle x1−−−−−−→ {a} .

Next, consider the case in which an existential quantifier appears within the
scope of negation:

(46) a. No man walks.

b. ¬∃x1(manx1 ∧ walkx1)

It can be easily verified that if a model is such that man∗ ∩ walk∗ = ∅, then
for any state σ, σ[(46b)] = ⊥; otherwise σ[(46b)] = σ. Either way, no new
variable is introduced by (46b); hence, continuing (46b) with a formula like
whistlex1 results in undefinedness. In general, existential quantifiers inside
the scope of negation cannot bind free variables in subsequent formulas. This
accounts for the fact that noun phrases such as every N and no N cannot
usually serve as an antecedent for pronouns that appear in the subsequent
discourse.

(47) a. Every man walks in the park. *He whistles.

b. No man walks in the park. *He whistles.

Using the terminology of Groenendijk and Stokhof (1991), we can say that
negation, implication, and universal quantifier are externally static in that
they do not pass discourse information to the subsequent discourse. By
contrast, conjunction and existential quantification are externally dynamic
in that discourse information is carried over to the subsequent discourse.

We introduce a notion of equivalence between DSq-formulas as follows.

Definition 3.20 Let A,B ∈ LDSq. We say that A and B are equivalent,
written as A ≡ B if for all models M and all information states σ based on
M, the following conditions are satisfied:

1. σ[A] is defined if and only if σ[B] is defined.
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2. If σ[A] or σ[B] is defined, then σ[A] = σ[B].

Two formulas are equivalent when their context change potentials have the
same definedness condition and are extensionally equivalent for all input
states for which they are defined.

Fact 3.21 Let A,B ∈ LDSq.

1. ∃xA ∧B ≡ ∃x(A ∧B)
2. ∃xA→ B ≡ ∀x(A→ B)
3. ∃xA )B ≡ ∃x(A )B)

Note that unlike the case in standard first-order logic, these equivalences
hold even when B contains free variable x. Thus, in DSq, ∃xFx ∧ Gx ≡
∃x(Fx ∧ Gx) and ∃xFx → Gx ≡ ∀x(Fx → Gx). It is characteristic of
dynamic semantics that existential quantifiers are externally dynamic in that
they can bind variables outside their scope.13 Such equivalences are used to
account for cross-sentential anaphora, as in (45), and donkey anaphora, as
typically shown in the equivalence between (48a) and (48b).14

(48) a. If a farmer owns a donkey, he beats it.
∃x1∃x2(farmer x1 ∧ ownx1x2 ∧ donkey x2) → beatx1x2

b. Every farmer who owns a donkey beats it.
∀x1∀x2(farmer x1 ∧ ownx1x2 ∧ donkey x2 → beatx1x2)

13That these equivalences hold in DSq is related to the fact that for all DSq-formulas

A, [A] is distributive in the sense that for all states σ, if σ[A] is defined, then σ[A] =
S

s∈σ {i} [A]. A typical example of a non-distributive operator is the epistemic might

operator, symbolized as 3A. Its context change potential is usually defined as follows (cf.

Footnote 5 on page 167):

σ[3A] = {s ∈ σ | σ[A] 6= ∅} if σ[A] is defined; otherwise, it is undefined.

It can be easily verified that 3A is not distributive. If we extend DSq with 3A, Fact

3.21 no longer holds in this general form. For extensive discussion on this point, see

Groenendijk, Stokhof, and Veltman (1996).
14For an analysis of donkey-anaphora in dynamic semantics, see, in particular, Groe-

nendijk and Stokhof (1991).
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In Fact 3.21.3, we see that binary presupposition operator ) acts like con-
junction in that any discourse referent introduced in the presupposed part
A carries over to the assertive part B. This property is important when one
tries to represent the existential presupposition associated with a definite de-
scription with the help of the ) operator. Thus, focusing on the existential
presupposition, a sentence of the form “the F is G” is translated into a DSq-
formula ∃xFx)Gx, which is guaranteed to be equivalent to ∃x(Fx)Gx) by
Fact 3.21.3. In such a case, a binding relation holds between the existential
quantifier occurring in a presupposed part and the variable occurring in the
assertive part.

The notions of acceptance and presupposition in DSq are defined as fol-
lows.

Definition 3.22 Let A,B ∈ LDSq.

1. An information state σ accepts A if σ[A] is defined and σ v σ[A].
2. A presupposes B if every information state σ for which [A] is defined

accepts B.

This definition differs from the one in DS (cf. Definition 3.5) in that ac-
ceptance and presupposition in DSq are defined in terms of v, i.e., non-
eliminative updates, rather than ⊆. The notion of validity is defined in the
same manner as DS (cf. Definition 3.7). The following facts also hold in
DSq.

Fact 3.23 Let A1, . . . , An, B ∈ LDS,

1. For all information states σ, σ[A1] . . . [An] accepts B if and only if σ
accepts A1 ∧ · · · ∧An→B.

2. A1, . . . , An |= B if and only if |= A1 ∧ · · · ∧An → B.

It can now be easily seen that all the facts about the projection properties
of connectives ∧,→ and ¬ in DS also hold in DSq. This means that the
proviso problem, which we discussed in Section 3.2.2, also arises in DSq.

We are now in a position to state the presuppositions of quantified for-
mulas in DSq. We will work through several important examples, which
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were taken up in Heim (1983) and discussd in the subsequent literature
(e.g., Beaver 2001; Kadmon 2001). We will see that for each case, we obtain
Heim’s (1983) predictions in DSq.

Example 3.24 ∀x(Fx→ Gx )Hx) presupposes ∀x(Fx→ Gx).

This is proved in the following way. To focus on the projection behavior of), let us assume that x is a new variable in input state σ, i.e., x 6∈ dom(σ).
Then we have:

σ[∀x(Fx→ Gx )Hx)] is defined
⇐⇒ σ[x/d][Fx→ Gx )Hx] is defined for all d ∈ D (by Fact 3.19.2)
⇐⇒ σ[x/d][Fx][Gx )Hx] is defined for all d ∈ D (by Fact 3.19.1)
⇐⇒ σ[x/d][Fx] accepts Gx for all d ∈ D (by Def. 3.17.4)
⇐⇒ σ[x/d] accepts Fx→ Gx for all d ∈ D (by Fact 3.23.1)
⇐⇒ σ accepts ∀x(Fx→ Gx)

Hence, by Definition 3.22, it follows that ∀x(Fx → Gx )Hx) presupposes
∀x(Fx→ Gx).

As a concrete example, consider the following example, where the pre-
supposition trigger stop appears in the nuclear scope of quantifier every.15

(49) a. Every student stopped smoking.
∀x(Fx→ Gx )Hx)

b. Every student used to smoke.
∀x(Fx→ Gx)

Here, Fx = “x is a student,” Gx = “x used to smoke,” and Hx = “x stopped
smoking.” It is then predicted that (49a) presupposes (49b). Some support
for the claim that in an intuitive sense, (49b) is a presupposition of (49a)
comes from the fact that (49b) usually survives in the following contexts:

(50) a. If every student stopped smoking, I will be pleased.

b. It is not the case that every student stopped smoking.
15In sentences of the form “Q A is B,” where Q is a determiner such as every, no, and

some, A is called the restrictor of Q and B the nuclear scope of Q.
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c. It might be the case that every student stopped smoking.

d. Did every student stop smoking?

e. Suppose that every student stopped smoking.

Further support comes from the fact that exchanges like the following sound
odd (cf. Kadmon 2001, 193):

(51) a. A: Not every student used to smoke.

b. B: # But every student stopped smoking.

Indeed, since Karttunen and Peters (1979) and Heim (1983), it seems to have
been widely agreed in the literature that sentences like (49a) have universal
presuppositions as in (49b).

As a case in which a description appears in the nuclear scope of a quan-
tifier, consider (52a), which is discussed in Heim (1983).

(52) a. Every nation cherishes its king.

b. ∀x1(nationx1 → ∃x2 king x2x1 ) cherishx1x2)

In DSq, (52a) can be represented as (52b), where king x2x1 is to be read as
“x2 is a king of x1.” Here, we regard the definite description its king as
triggering the existential presupposition that there is a king, which corre-
sponds to the subformula ∃x2 king x2 x1 in (52b).16 It then follows that (52b)
presupposes (53b) in DSq.

(53) a. Every nation has a king.

b. ∀x1(nationx1 → ∃x2 king x2x1)

Hence, the prediction is that (52a) presupposes (53a), which coincides with
the prediction in Heim (1983).

Next, consider cases in which presupposition triggers appear in the nu-
clear scope of a quantifier no. Notice that the following obtains in DSq.

Example 3.25 ¬∃x(Fx ∧ (Gx )Hx)) presupposes ∀x(Fx→Gx).
16Note that in (52b), the existential quantifier ∃x2 can bind the variable occurrence x2

in cherish x1 x2 by Fact 3.21.3.
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This is proved in a similar way as Fact 3.24, because ∀xA has the same
definedness condition as ∃xA, which in turn has the same definedness con-
dition as ¬∃xA. As a result, it is predicted that a sentence like (54a) triggers
a universal presupposition as shown in (54b):

(54) a. No student stopped smoking.
¬∃x(Fx ∧ (Gx )Hx))

b. Every student used to smoke.
∀x(Fx→ Gx)

Let us also mention Heim’s (1983) example, together with its representation
in DSq:

(55) a. No nation cherishes its king.
¬∃x1(nationx1 ∧ (∃x2 king x2 x1 ) cherishx1 x2))

b. Every nation has a king.
∀x1(nationx1 → ∃x2 king x2 x1)

Heim (1983) claims that sentence (55a) presupposes (55b), which coincides
with the prediction of DSq. Although there has been controversy about
what sentences like (54a) and (55a) presuppose (see Kadmon 2001 and ref-
erences therein), a recent experimental study of Chemla (2009) suggests that
universal presuppositions are actually robust in such cases.

Now, it is easily observed that the following fact obtains in DSq, since a
formula A and its negation ¬A presuppose the same thing.

Example 3.26 ∃x(Fx ∧ (Gx )Hx)) presupposes ∀x(Fx→Gx).

This predicts that sentences like (56a) also have a universal presupposition.

(56) a. Some student stopped smoking.
∃x(Fx ∧ (Gx )Hx))

b. Every student used to smoke.
∀x(Fx→ Gx)

Heim’s (1983) famous example is the following:
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(57) a. A fat man was pushing his bicycle.
∃x1(fat manx1 ∧ (∃x2(bycyclex2 ∧ ownx1 x2) ) pushx1x2))

b. Every fat man had a bicycle.
∀x1(fat manx1 → ∃x2(bycyclex2 ∧ ownx1 x2))

Again, both Heim’s theory and DSq predict that (57a) presupposes (57b). At
first sight, this prediction might be counter-intuitive; however, it is inevitable
since ¬∃xA and ∃xA have the same presupposition. See Kadmon (2001) for
an extensive defense of this prediction.

There are at least two (independently motivated) methods with which
one can supplement the predictions of dynamic semantics. One is to invoke
local accommodation, which we introduced in Section 3.2.3. Heim (1983)
suggests that if one performs local accommodation after processing the in-
definite a man in (57a), one can resolve presupposition within the scope of
the existential quantifier and obtain a reading like “There is a fat man who
owns a bike and was pushing it.” In terms of DSq, this option amounts to
saying that sentence (57a) ends up having the following interpretation:

(58) ∃x1(fat manx1 ∧ ∃x2(bycyclex2 ∧ ownx1 x2 ∧ pushx1x2))

Another method is to invoke domain restriction. It is well known that the
domain of a quantifier in natural language is often narrowed down in con-
text. It is at least conceivable that the presuppositions of a given sentence
serve as a clue to fix some intended domain of the quantifier in question.
For example, in the case of sentence (56a), the universal presupposition that
every student used to smoke could help the hearer identify an intended con-
text, namely, a context in which this presupposition obtains. This option
should amount to interpreting (56a) as meaning “among the students who
used to smoke, there is a student who stopped smoking.” Arguably, the
resulting interpretation is (truth-conditionally) equivalent to the one pre-
dicted by the option of local accommodation. Either way, we can obtain
the desired result. Although we do not go into discussing how to formalize
these two options, they at least suggest that the universal presuppositions
predicted for existential expressions like some are tenable ones.17

17For an attempt to formalize the process of accommodation within Heim’s dynamic



190 3. Two theories of presupposition projection

Finally, consider cases in which presupposition triggers appear in the re-
strictor of universal quantifiers like every. We first observe that the following
holds in DSq.

Example 3.27 ∀x(Fx ∧ (Gx )Hx) → Kx) presupposes ∀x(Fx→ Gx).

Hence, again, it is predicted that sentences like (59a) have a universal pre-
supposition as shown in (59b).

(59) a. Every student who stopped smoking will be rewarded.
∀x(Fx ∧ (Gx )Hx) → Kx)

b. Every student used to smoke.
∀x(Fx→ Gx)

This agrees with Heim’s (1983) prediction. The following is her example,
associated with representations in DSq.

(60) a. Every man who serves his king will be rewarded.
∀x1(manx1 ∧ (∃x2 king x2 x1 ) servedx1 x2) → rewardedx1)

b. Every man has a king.
∀x1(manx1 → ∃x2 king x2 x1)

It might be argued that universal presuppositions like (59b) and (60b) are
too strong.18 However, it would be reasonable to suppose that these uni-
versal presuppositions act as a clue to specify the contexts in which each
utterance is evaluated, in a similar way to the cases of (56) and (57). Such
interpretations could be guaranteed either by local accommodation (every
student who used to smoke but has stopped doing it will be rewarded) or by
domain restriction (among those students who used to smoke, every student
who stopped smoking will be rewarded). Although the presuppositions of
quantified sentences are still open to empirical debate, we will henceforth
assume that those predictions that we have seen so far are basically correct
and we will explore how they can be accounted for by other theories, such
as discourse representation theory and our proof-theoretic approach.
framework, see Zeevat (1992). For discussions on domain restriction, see Chapter 3 of this

thesis.
18See, e.g., Beaver (1994).
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3.3 Discourse representation theory

As we mentioned in Section 2.1, Discourse Representation Theory (DRT)
shares with dynamic semantics the dynamic conception of meaning, accord-
ing to which the meaning of an expression is explicated in terms of its poten-
tial to change the context. Specifically, both theories build on the following
observation: an utterance of a sentence changes the context in which it is
used and creates an updated context against which subsequent utterances
are evaluated, and, in particular, different subparts of a complex expression
may be evaluated in different contexts. In dynamic semantics, the notions
of content and context are explicated in terms of propositions that are iden-
tified denotationally with a set of possible worlds. By contrast, what plays
the central role in DRT is the notion of discourse representation structure
(DRS). Thus, the basic assumptions of dynamic approach to meaning, as
summarized in (D1), (D2), and (D3) on page 160, are captured in DRT as
follows:

(K1) The notion of context is explicated in terms of DRS, which is a kind
of structured entity.

(K2) The meaning of the assertoric utterance of a sentence S is also iden-
tified with the DRS that can be compositionally derived from S; up-
dating a DRS given as a context with the DRS encoded by an uttered
sentence consists of merging the two DRSs and creating a new one.

(K3) The notion of presupposition is captured by introducing the notion of
preliminary DRS, which is a DRS with some preconditions that need
to be satisfied for its effective use.

We will first outline the basic framework of discourse representation theory
(Section 3.3.1) and then proceed to see how the notion of presuppositions is
handled within this framework (Section 3.3.2). Finally, we will discuss some
problems in the treatment of presuppositions in discourse representation
theory (Section 3.3.3).



192 3. Two theories of presupposition projection

3.3.1 Basic account of DRT

We start with introducing the language of DRT. It contains a set of dis-
course referents, typically denoted by x1, . . . , xn, a set of predicate symbols,
the equality symbol =, and logical symbols ¬ and ⇒. A DRS K is a pair
〈U,Con〉 consisting of a finite and possibly empty set U of discourse refer-
ents, often called the universe of the DRS, and a set Con of conditions. The
conditions γ are defined by the rule

γ ::= Pn(x1, . . . , xn) | x1 = x2 | ¬K | K1 ⇒ K2

where Pn is a predicate symbol with arity n and K,K1,K2 are meta-
variables for DRSs.

Like the information states in DSq, DRSs deliver two kinds of information—
namely, what entities are introduced in a discourse and what conditions hold
of them, respectively. We illustrate how DRSs work by some examples. Con-
sider sentence (61a). This sentence corresponds to the DRS in (61b).

(61) a. A woman catches a cat.

b. 〈{x1, x2} , {woman(x1), cat(x2), catch(x1, x2)}〉

Such a DRS can also be pictorially represented in box notation:

(62)

x1 x2

woman(x1)
cat(x2)
catch(x1, x2)

Roughly, this DRS models a situation that involves (at least) two individuals
satisfying the three conditions indicated in the box. Such DRSs are built
from the structure of sentences with the help of a construction algorithm.
Several different versions of construction algorithms have been proposed
in the literature, building on various syntactic frameworks (see Kamp and
Reyle 1993). For our purpose, it suffices to assume that some construction
algorithm is given; we will not discuss the choice of a particular algorithm.

Now, suppose that sentence (61) is followed by sentence (63a), whose
DRS is shown in (63b).



3.3 Discourse representation theory 193

(63) a. She smiles.

b.
x3

smile(x3)

The DRS in (62) is used as a context in which (63a) is interpreted. Specifi-
cally, the discourse referents in (62) serve as an antecedent for the anaphoric
NP she in (63a). We represent the process of extending the DRS in (62)
with (63b) in the following way:

(64)

x1 x2

woman(x1)
cat(x2)
catch(x1, x2)

⊕
x3

smile(x3)
=

x1 x2 x3

woman(x1)
cat(x2)
catch(x1, x2)
smile(x3)

Here the operation of combining two DRSs is represented by the merge
operation ⊕. This operation combines two DRSs by taking the union of the
two universes and the two sets of conditions, i.e., 〈U1, Con1〉⊕ 〈U2, Con2〉 =
〈U1 ∪ U2, Con1 ∪ Con2〉.

Now, suppose that the anaphoric pronoun she in (63a) is anaphorically
linked to a woman in (61a). We can express this anaphoric relationship
by means of an equational condition, i.e., x1 = x3. Adding this equational
condition to the final representation in (64) leads to the DRS in (65b), which
is equivalent to the one in (65c).

(65) a. A woman catches a cat. She smiles.

b.

x1 x2 x3

woman(x1)
cat(x2)
catch(x1, x2)
smile(x3)
x1 = x3

c.

x1 x2

woman(x1)
cat(x2)
catch(x1, x2)
smile(x1)

The resulting DRS models a situation in which there are at least two indi-
viduals, say, a and b, such that a is a woman, b is a cat, a catches b, and a

smiles.
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A universal sentence like (66a) is represented as shown in (66b).

(66) a. Every woman catches a cat.

b. x1

woman(x1)
⇒

x2

cat(x2)
catch(x1, x2)

As we saw before, it is usually not possible to use the anaphoric pronoun
she as in (63) to refer back to every woman in (66). Such a constraint
on anaphora resolution can be captured by the following constraint on the
availability of the addition of equality conditions:

(67) The accessibility constraint Let x1 be a discourse referent in a
DRS K1 and x2 a discourse referent in a DRS K2. Then, the equality
condition x1 = x2 can be added to K1 if K1 is accessible from K2.
When K1 is accessible from K2, we also say that x1 is accessible from
x2.

We define the accessibility relation in the following way. First, we say that
DRS K1 subordinates K2, written as K2 < K1, if (i) K1 contains a condition
of the form ¬K2; or (ii)K1 contains a condition of the formK2 ⇒ K for some
DRS K; or (iii) K1 ⇒ K2 is a condition in some DRS K. The accessibility
relation is defined as the reflexive transitive closure of <. That is, K1 is
accessible from K2 if (i) K1 = K2; or (ii) K2 < K1; or (iii) there is some
DRS K such that K1 is accessible from K and K is accessible from K2.

The accessibility constraint in (67) correctly predicts that an anaphoric
link between a woman and she is permitted in the case of (65): since x1

and x3 are in the same universe, clearly x1 is accessible to x3; hence, we can
add the equational condition x1 = x3. By contrast, in the case of (68), the
NP a woman cannot be anaphorically linked to the pronoun it, since the
discourse referent x1, which is associated with a woman, is not accessible
from the discourse referent x3, which is associated with she. Thus, the DRS
in (68b) violates the accessibility constraint.

(68) a. Every woman catches a cat. # She smiles.
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b.

x3

x1

woman(x1)
⇒

x2

cat(x2)
catch(x1, x2)

smile (x3)
x1 = x3

We can see that the notion of the accessibility relation plays the same role
as the notion of local context in dynamic semantics. We will see later that
the accessibility relation also plays an important role in the interpretations
of presuppositions.

To provide a precise interpretation for DRSs, we define a translation
(·)• from the language of DRT into the language of first-order logic with
equality.19 The translation is shown in Figure 3.1.

〈{x1, . . . , xn} , {γ1, . . . , γn}〉• = ∃x1 . . .∃xn(γ•1 ∧ · · · ∧ γ•n)

(P (x1, . . . , xn))• = P (x1, . . . , xn)

(x1 = x2)• = x1 = x2

(¬K)• = ¬K•

(K1 ⇒ K2)• = ∀x1 . . .∀xn(γ•1 ∧ · · · ∧ γ•n → K•
2 )

where K1 = 〈{x1, . . . , xn} , {γ1, . . . , γn}〉

Fig. 3.1 A translation from DRT to first-order logic

For example, the DRSs in (65c) and (66b) are translated as (69a) and (69a),
respectively.

(69) a. ∃x1∃x2(woman(x1) ∧ cat(x2) ∧ catch(x1, x2) ∧ smile(x1))

b. ∀x1(woman(x1) → ∃x2(cat(x2) ∧ catch(x1, x2)))

19It is also straightforward to give a model theoretic semantics for DRSs. See Kamp

and Reyle (1993) for a textbook treatment.
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3.3.2 Presuppositions in DRT

The systematic treatment of presupposition within the framework of DRT

was put forward by van der Sandt (1992), and it was further developed by
Geurts (1999), and Kamp, van Genabith, and Reyle (2011). The basic obser-
vation motivating their approach is that there are striking parallels between
anaphoric expressions and presupposition triggers.20 Recall the paradigm
examples of presupposition projection in (10) on page 149, repeated here:

(10) a. John has children and his children are wise.

b. If John has children, his children are wise.

c. Either John does not have any children or his children are wise.

The problem posed by these examples was to account for the fact that
while a simple sentence John’s children are wise presupposes that John has
children, none of (10a–c) inherits this presupposition. Now, compare these
examples with the paradigm examples of anaphora resolution, which moti-
vated dynamic semantics and discourse representation theory:

(70) a. John owns a donkey and he beats it.

b. If John owns a donkey, he beats it.

c. Either John does not own a donkey or he beats it.

The problem posed by these sentences was to explain how a pronoun it can
be anaphorically linked to a quantificational expression a donkey, despite
the fact that syntactically the pronoun it is out of the scope of a donkey.
Traditionally, these two problems, i.e., the problems of presupposition pro-
jection and anaphora resolution, were formulated in different terms and were
considered to be accounted for by different theories.

According to van der Sandt (1992), however, the parallels between (10)
and (70) suggests that a similar mechanism underlies both anaphora res-
olution and presupposition projection. Indeed, he claims that presupposi-
tion triggers are simply anaphoric expressions that search for suitable an-

20The observation that there is a close connection between anaphora and presupposition

was also found in Kripke (2009), which was originally delivered as a lecture in 1990. See

also Soames (1989: 614) for a report on Kripke’s observation.
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tecedents. This means that the two principal motivations for the dynamic
conception of meaning, namely, donkey anaphora and presupposition pro-
jection, are two sides of the same coin: both phenomena are explained by
a unified account of how discourse representation structures evolve as the
hearer processes a sequence of sentences in an incremental way. In van der
Sandt’s account, there are two ways in which presuppositional elements are
interpreted in a given discourse representation structure:

1. Binding When a presuppositional element β finds an antecedent then
β will be bound to it; the descriptive content associated with β will
then be transferred to the site where β is bound.

2. Accommodation When a presuppositional element cannot be bound,
it will be accommodated at the highest possible level of discourse rep-
resentation structure.

According to van der Sandt (1992) and Geurts (1999), the only difference
between standard presupposition triggers, such as definite descriptions and
factive verbs, and pronominal expressions, such as she and it, is that the
former has a richer descriptive content than the latter; as a result, presup-
positional anaphors are normally easier to accommodate. In other words,
presuppositional anaphors have sufficient descriptive content to establish a
discourse referent when the context does not provide one.

Let us see how this accounts works with some typical examples. First, we
need to extend the language of DRSs to handle those sentences that contain
presupposition triggers. In the extended version of DRT, a DRS K is defined
as a triple 〈U,Con,A〉 where U and Con are a set of discourse referents and
a set of conditions as before, and A is a finite and possibly empty set of
DRSs. The members of A of a DRS K indicate all the anaphoric elements
of K. In box notation, each member K of A is indicated by ∂K and called
∂-structure. For example, consider the sentence in (71a). The DRS for this
sentence is shown in (71b), and it can be pictorially represented as in (71c).

(71) a. The cat collapses.

b. 〈∅, {collapese(x1)} , {〈{x1} , {cat(x1)} , ∅〉}〉
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c.
collapse(x1)

∂
x1

cat(x1)

This DRS is like an ordinary DRS except that it is marked as being un-
resolved with respect to the presupposition indicated by the ∂-structure.
Following Kamp, van Genabith, and Reyle (2011), we call such a DRS
a preliminary DRS. Intuitively, by ∂K we indicate that a DRS K is an
anaphor that needs to be bound or accommodated for the entire DRS to
be properly evaluated. Note that one sentence may contain more than one
anaphoric element, in which case the corresponding DRS will contain more
than one ∂-structure in A. Note also that an anaphoric expression may em-
bed other anaphoric expressions so that one ∂-structure may contain other
∂-structures. For example, the NP the cat’s tail will trigger the following
∂-structure:

(72) ∂

x1

tail(x1, x2)

∂
x2

cat(x2)

Now, suppose that sentence (71) is uttered in the context shown in (73a).
Merging the DRS in (71b) with the DRS established by the first sentence
leads to a new DRS as shown in (73b).

(73) a. A woman catches a cat. The cat collapses.

b.

x2 x3

woman(x2)
cat(x3)
catch(x2, x3)

⊕
collapse(x1)

∂
x1

cat(x1)

=

x2 x3

woman(x2)
cat(x3)
catch(x2, x3)
collapse(x1)

∂
x1

cat(x1)
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Note that the merge operation ⊕ is extended for preliminary DRSs in the
following way:

(74) 〈U1, Con1,A1〉⊕〈U2, Con2,A2〉 = 〈U1 ∪ U2, Con1 ∪ Con2,A1 ∪ A2〉 .

To resolve the presupposition indicated by a ∂-structure, we first try to
find its antecedent. More specifically, we try to match the condition in the
∂-structure with the conditions contained in its superordinated DRSs. In
the case of (73b), the condition cat(x1) in the ∂-structure is matched with
cat(x3) in the main DRS, so that we move the discourse referent x1 to the
universe of the main DRS and add the equational condition x1 = x3. In
such a case, we say that x3 is bound to x1. Then, we obtain the DRS in
(75), which is equivalent to the one in (76). This result is intuitively correct
as an interpretation of the discourse in (73).

(75)

x1 x2 x3

woman(x2)
cat(x3)
catch(x2, x3)
collapse(x1)
x1 =x3

(76)

x1 x2

woman(x2)
cat(x1)
catch(x2, x1)
collapse(x1)

Next, suppose that sentence (71a) is uttered in a context in which one
cannot find any suitable antecedent for the presuppositional element. In
such a case, the DRS in (71b) is accommodated so that the discourse referent
x1 and its associated condition cat(x1) in the ∂-structure are moved to the
main DRS. This yields the following result.

(77)

x1

cat(x1)
collapse(x1)

In general, there can be various “landing sites” of ∂-structures; as a re-
sult, there can be various ways of performing accommodation. In Section
3.2.3, we saw that Heim’s dynamic semantics distinguishes between global
and local accommodation. It is clear that the examples discussed in that
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section can also be handled by the mechanism of accommodation within
DRT. Interestingly, for some cases, DRT predicts more readings than dy-
namic semantics does.21 As an illustration, consider the following example:

(78) Every woman loves her husband.

The initial DRS looks as follows:

(79) x1

woman(x1)
⇒

love(x1, x2)

∂

x2

husband(x2, x3)

∂
x3

We start with processing the most deeply embedded ∂-structure, namely,
the one having the discourse reference x3, which corresponds to the pro-
noun her. We then check whether a suitable antecedent can be found in its
superordinate DRSs. In this case, we assume that x3 is bound to x1. The
resulting DRS is equivalent to the following:

(80) x1

woman(x1)
⇒

love(x1, x2)

∂
x2

husband(x2, x1)

Since there is no candidate DRS for matching the remaining ∂-structure, we
make use of accommodation. Here, we have three possible landing sites of

21Some readings are ruled out by constraints on adequate interpretation, for example,

by the constraints requiring that the resulting DRSs must be consistent and informative.

See Geurts (1999) and Beaver and Zeevat (2007) for a detailed discussion on various

constraints.
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the ∂-structure, which lead to three possible ways of accommodation: (a)
global, (b) intermediate, and (c) local accommodation.

(81) a. Global:

x2

husband(x2, x1)

x1

woman(x1)
⇒

love(x1, x2)

b. Intermediate:
x1 x2

woman(x1)
husband(x2, x1)

⇒
love(x1, x2)

c. Local: x1

woman(x1)
⇒

x2

love(x1, x2)
husband(x2, x1)

The DRS obtained by global accommodation shown in (81a) is ruled out,
since the occurrence of variable x1 in husband(x2, x1) of the main DRS re-
mains free; hence, the whole DRS is not interpretable. (This is what Beaver
and Zeevat (2007) called the trapping constraint for accommodation.) The
other two options lead to proper DRSs, namely, DRSs that contain neither
free variables nor ∂-structures; hence, these are interpretable. The following
translation makes clear the final interpretations: (81b) is translated into
(82a) and (81c) into (82b).

(82) a. ∀x1∀x2(woman(x1) ∧ husband(x2, x1) → love(x1, x2))

b. ∀x1(woman(x1) → ∃x2 (love(x1, x2) ∧ husband(x2, x1)))

Arguably, both interpretations are possible. One natural generalization
posited by the proponents of DRT is that presuppositions tend to be pro-
jected (i.e., bound or accommodated) to the highest possible DRS (cf. Geurts
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1999). It can then be predicted that the intermediate reading in (81b) is
preferable to the local reading in (81c). Note that the local reading in (81c)
entails that every woman has a husband. In this respect, this reading is
similar to that predicted by dynamic semantics for the example in (49). On
the other hand, the intermediate reading is not directly accounted for by
Heim’s dynamic semantics. However, a suitable mechanism of accommoda-
tion or domain restriction, as discussed in Section 3.2.4, would also make it
possible to generate readings like (82b) within DRT.

In Section 3.2.2, we saw that dynamic semantics suffers from the proviso
problem: roughly speaking, when a presupposition triggers appears in the
consequent of a conditional or the second conjunct of a conjunctive sentence,
dynamic semantics always generates conditional presuppositions; however,
in some cases, it is intuitively clear that these constructions have uncondi-
tional presuppositions. For example, dynamic semantics predicts that the
sentence in (83a) is associated with the conditional presupposition in (83b).

(83) a. If John works hard, his wife is happy.

b. If John works hard, he has a wife.

Now, it is easy to see how DRT avoids the proviso problem. In the case of
(83a), when the previous discourse contains the information that John has a
wife, the presupposition triggered by his wife is simply bound to it, and this
gives rise to an intuitively correct interpretation. If the previous discourse
does not contain this information, the hearer needs to perform accommo-
dation. In this case, there are three possible ways of accommodation with
respect to the presupposition associated with his wife:

(84) a. Global. John has a wife, and if he works hard, his wife is happy.

b. Intermediate. If John has a wife and he works hard, his wife
is happy.

c. Local. If John works hard, he has a wife and his wife is happy.

As before, it is predicted that the most preferable option is global accom-
modation. This yields the reading in (84a), which is an intuitively correct
interpretation of (83a).
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3.3.3 Problems for DRT

There are at least two advantages of DRT over dynamic semantics. One is
that it offers a unified account of presupposition projection and anaphora
resolution, and the other is that it provides a natural solution to the pro-
viso problem. However, it is known that DRT’s account of presupposition
projection faces some empirical problems, which threaten the advantages of
DRT over dynamic semantics.

Problem 1: Quantified sentences

In Section 3.2.4, we observed that sentences containing the determiner no
such as (54a) have the universal presupposition as shown in (54b).

(54) a. No student stopped smoking.

b. Every student used to smoke.

However, DRT fails to generate the universal presupposition in this case. To
observe this, let us assume that (54a) has the initial representation in (85a).
Then, the only interpretation available is that due to local accommodation,
as shown in (85b).22

(85) a.
¬

x1

student(x1)
stopped smoking (x1)

∂ used to smoke (x1)

b.
¬

x1

student(x1)
stopped smoking (x1)
used to smoke (x1)

This interpretation amounts to saying that there is no student who used
to smoke but stopped doing so. Clearly, this is weaker than the desired
reading, namely, the reading that every student used to smoke but none of
them stopped.23 Note that the option of global accommodation — that is, of

22It is now standard within DRT to analyze the determiner no as a binary quantifier (cf.

Kamp and Reyle 1993). Such an analysis allows the option of intermediate accommoda-

tion, which copies the conditions in ∂-structures into the restrictor of no. But, obviously,

the problem cannot be solved by such a move.
23See Chemla (2009) for discussions on the presupposition of no.
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moving the condition in the ∂-structure to the main DRS — is not available
in this case, since in the resulting DRS, the occurrence of variable x1 in the
condition used to smoke(x1) becomes free.

Furthermore, Schlenker (2011a) points out that DRT fails to predict
universal presupposition even for universal sentences when they appear in
non-assertive positions. For instance, sentence (86a) and (86b) intuitively
presuppose the proposition that every student used to smoke, as is the case
with the simple sentence Every student stopped smoking.

(86) a. If every student stopped smoking, I will be surprised.

b. Did every student stop smoking?

However, this is not predicted by any strategy of accommodation in DRT:
global accommodation leads to an uninterpretable DRS and local accommo-
dation yields an undesired reading.

Problem 2: Conditional presuppositions

As we saw in the last section, DRT avoids the proviso problem by generating
unconditional presuppositions for those conditional sentences that contain
a presupposition trigger in their consequent. Indeed, the standard frame-
work of DRT simply cannot generate conditional presuppositions for such
constructions. However, it has been argued that genuine conditional presup-
positions do arise in certain cases.24 The following example is taken from
Schlenker (2011a):

(87) a. If this applicant is 64 years old, he knows that we cannot hire
him.

b. If this applicant is 64 years old, does he know that we cannot
hire him?

c. Conditional presupposition: If this applicant is 64 years old,
we cannot hire him.

24It should be added that the existence of conditional presuppositions is still open to

empirical debate. For proponents of conditional presuppositions, see Beaver (2001) and

Schlenker (2011a, 2011b).
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From the utterance of (87a), one can naturally infer the conditional propo-
sition in (87c). This inference cannot be an entailment, since it survives in
a question like (87b). Schlenker (2011a) also points out that example (88a)
has the conditional presupposition in (88b).

(88) a. If this applicant is 64 years old and realizes that we cannot hire
him, he won’t be disappointed by a rejection letter.

b. Conditional presupposition: If this applicant is 64 years old,
we cannot hire him.

Again, the fact that an inference like (88b) survives in the antecedent of a
conditional suggests that it is not a mere entailment but a presupposition.25

Schlenker (2011b) also emphasizes the relevance of examples involving
presupposition triggers such as too.

(89) a. If John calls you a Republican, his wife too will insult you.

b. Unconditional: Someone other than his wife (namely, John)
will insult you.

c. Conditional: If John calls you a Republican, someone other
than his wife (namely, John) will insult you.

Schlenker argues that intuitively (89a) gives rise to the conditional inference
in (89c), rather than the unconditional one in (89b). Given the fact that
anaphoric triggers like too generally resist local accommodation (cf., e.g.,
Beaver and Zeevat 2007), it seems difficult to handle such conditional in-
ferences within the framework of DRT. Another example due to Schlenker
(2011b) is the following:

(90) a. If Ann decides to study abroad, her brother too will make a
stupid decision.

b. Unconditional: Ann will make a stupid decision.

c. Conditional: Studying abroad would be stupid of Ann.

25In DS, the sentence (88a) is schematically represented as p ∧ (q ) r) → s; hence, it is

correctly predicted that this presupposes that p → q.
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Again, (90a) intuitively presupposes the conditional proposition in (90c),
rather than the unconditional one in (90b).

Problem 3: Semi-conditional presuppositions

Geurts (1999) points out that examples such as (91a) give rise to the “semi-
conditional” presupposition as in (91b), rather than the “fully conditional”
presuppositions as in (91c).

(91) a. If John is a scuba diver and he wants to impress his girlfriend,
he’ll bring his wetsuit.

b. If John is a scuba diver, he has a wetsuit.

c. If John is a scuba diver and he wants to impress his girlfriend,
he has a wetsuit.

In the framework of DRT, however, it is not clear how to account for this
kind of example. Note that when the presupposed information is copied in
the consequent of a conditional via local accommodation, we can obtain a
conditional inference — cf. the local accommodation reading in (81c) for the
sentence in (78). However, as argued in Schlenker (2011b), it is the fully
conditional inference, not the semi-conditional one we desired, since all the
antecedents stay in the same position after performing local accommodation.

Problem 4: Interaction with implicit assumptions

It is often the case that assumptions that are not explicitly mentioned in
a discourse play a role in presupposition projection. As a simple example,
consider the following example.

(92) If John is married, his wife is happy.

In this example, the definite description his wife does not have an an-
tecedent, but a suitable antecedent is easily inferred using the commonplace
assumption that if John is married, he has a wife. Such examples are not
exceptions at all; they are a central case to be accounted for by any the-
ory of presupposition projection. A serious problem with the framework of
DRT is that it does not handle such cases. Moreover, it is not clear how to
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extend the framework of DRT with components to handle inferences with
presupposed information and implicit assumptions.

There are two other important cases that involve the interaction of pre-
supposition projection and implicit assumptions. One is the so-called bridg-
ing inference (Clark 1975).

(93) Mary got some picnic supplies out of the car. The beer was warm.

The definite description the beer in the second sentence does not have an
overt antecedent, but the hearer can make connection between the two sen-
tences by inferring the existence of beer from the information conveyed by
the first sentence. Here again, inferences with world knowledge play a crucial
role in identifying the antecedent of a presupposition.

The other is the case of pronoun resolution. So far, pronouns have been
treated as expressions that introduce discourse referents but do not have
conditions by themselves. This is only for expository purposes, and it is
quite natural to assume that pronouns introduce conditions such as gender
information.26 Thus, the first example we considered in Section 3.3.1 can be
analyzed as follows:

(94) a. She smiles.

b.
smile(x1)

∂
x1

female(x1)

This analysis enables us to encode both pronominal and presuppositional
anaphora as ∂-structures and thus to simplify the whole architecture of
DRT.27 However, to combine the DRS like (94b) with the DRS of a prece-
dent discourse and identify the antecedent of she in a successful way, we need
to perform inferences, making use of relevant background assumptions. For

26The treatment of gender information of pronoun as presuppositions goes back at least

to Cooper (1983). See Heim and Kratzer (1998) for a textbook treatment.
27Such an analysis is developed in Kamp, van Genabith, and Reyle (2011).
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example, if (94a) follows the sentence Mary walks, then obviously the as-
sumption that Mary is female plays a role in identifying the antecedent of
she with Mary.

Presuppositions are resolved in various ways. In simple cases, the pre-
supposed information is merely identified with some element present in the
previous discourse or copied in a suitable place via accommodation. These
possibilities are correctly accounted for within the framework of DRT. How-
ever, the examples such as (92) and (93) suggest that in complex cases, the
antecedents of presuppositions need to be inferred using implicit assump-
tions, that is, assumptions that are not explicitly established in a previous
discourse. Moreover, such implicit assumptions play a role even when the
antecedent is explicitly given, as in (94a). Resolving presuppositions is not
simply a matter of matching or adding information as is standardly as-
sumed in the framework of DRT; rather, it crucially involves inferences with
assumptions that are not directly provided in a discourse. This is not a
surprising claim at all; indeed, it has been recognized among various au-
thors.28 However, it is fair to say that the question of how to incorporate
the interaction between presupposition projection and ordinary inferences
into the formal theory of presupposition has largely been unexplored.

3.4 Summary and discussion

Let us summarize what we have said so far. We started with the dynamic
conception of meaning; according to this, asserting a sentence leads to a
change of context and presuppositions are viewed as requirements imposed
on the context in which the sentence is used. We have seen that dynamic
semantics (reconstructed as DS and DSq in Section 3.2) and DRT implement
this conception in different ways.

In dynamic semantics, the notion of contexts is identified with a set of
worlds, i.e., what we call information states, and the content of an utterance

28Geurts (1999: 72–79) admits the importance of world knowledge and inferences with

them in resolving presuppositions, but provides no clues on how to incorporate additional

inferential architectures into the framework of DRT.
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is formalized as a partial function that takes an input context and returns
an updated context if the presupposition is satisfied: see (H1) (H2) (H3) on
page 161. Dynamic semantics provides correct predictions for the presup-
positions of quantified sentences, but it faces the proviso problem: it fails to
make correct predictions for a range of sentences involving conjunction and
conditionals.

In DRT, both the notion of contexts and the notion of contents of utter-
ances are formalized in terms of discourse representation structures (DRSs).
Presuppositions are encoded as ∂-structures in preliminary DRSs; such ∂-
structures must be resolved in a suitable way for the entire DRS to be
interpretable. DRT successfully avoids the proviso problem, but it fails to
provide correct readings for a certain class of quantified and conditional
sentences, for which dynamic semantics can make correct predictions.

Comparing the predictions made by the two systems, we can see that
the predictions made by dynamic semantics are often too weak; specifically,
regarding the constructions causing the proviso problem, dynamic semantics
makes the prediction that p → q, though the desired presupposition is q.
On the other hand, the predictions made by DRT are often too strong; in
particular, when the conditional presupposition, schematically represented
as p → q, is required, DRT makes the prediction that q. These facts sug-
gest that the information provided in the antecedent p may or may not be
relevant to resolving the presuppositions in the consequent q, depending
upon background assumptions held about p and q. It should be noticed
that the problem of semi-conditional presuppositions also suggests this kind
of flexibility of antecedently provided information. Dynamic semantics is
committed to the view that, at least semantically, the information provided
in previous contexts is always involved in the satisfaction of presuppositions
in subsequent contexts; accordingly, some pragmatic strengthening mecha-
nism needs to be supplied to make correct predictions. DRT, on the other
hand, takes another extreme position in that the antecedently given infor-
mation is relevant to resolving presuppositions only when it is identical to
the presupposed information. What is required is a flexible theory, in which
information previously given in context plays a role only when it is relevant
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to resolving the presuppositions in question.

We have also seen that DRT is unable to handle the interaction of presup-
position resolution and ordinary inferences with implicit assumptions held
by the participants in a conversation. Indeed, the same problem arises with
dynamic semantics. For example, to process the sentence in (92) within
DSq, we need to extend the assignment of the input information state with
a new individual satisfying the description John’s wife; otherwise, the pre-
supposition of the consequent would not be satisfied. Unfortunately, it is
unclear how to account for such a case in the framework of dynamic seman-
tics. Clearly, this kind of extension of assignment functions is not due to
processes of accommodation in the usual sense; the antecedent of the con-
ditional (i.e., John is married) and the implicit premise should play a role
in extending the assignment.

These difficulties suggest that both DRT and dynamic semantics need
to be augmented with components to handle inferences within the systems.
Checking the validity of an inference is also needed to account for such tasks
as checking informativeness and consistency of semantic representations —
the tasks that play a crucial role in resolving anaphora and presupposition.29

Such a component is usually provided by setting up a proof system for a given
representation system, in particular, the language of dynamic semantics and
the language of DRSs in DRT. However, in the case of dynamic semantics,
only a semantic definition of logic is usually given.30 Indeed, there has been
no established proof system, mainly because of the unusual treatment of
variables in dynamic semantics.31 Accordingly, there is no direct, syntactic
way of checking the validity of an inference. In the case of DRT, several
attempts have been made to add a proof system to DRT (cf. Saurer 1993;

29See Blackburn and Bos (2005) for extensive discussions from the perspective of com-

putational linguistics.
30This applies to various authors working on dynamic semantics we mentioned in Section

3.2, including Dekker (1992, 1996), Groenendijk, Stokhof, and Veltman (1996), and Beaver

(1992, 1994, 2001).
31For example, in the case of DSq, ∃xFx ∧ ∃xFx is always undefined, and ∃xFx is not

equivalent to ∃yFy. Such facts will make it difficult to apply well-established techniques in

logic. We add that Groenenveld and Veltman (1994) discuss several attempts to formulate

a Gentzen-style proof system for Veltman’s (1996) update semantics.
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Kamp, van Genabith, and Reyle 2011); however, currently, there are no
detailed proposals for combining such a proof system with a component to
handle presupposition resolutions. In addition, the way in which DRSs are
presented makes comparisons difficult with usual logical systems.32 From a
methodological point of view, adopting an existing, well-understood proof
system would be preferable to creating a new theory.

Finally, we observe that dynamic semantics and DRT differ in their treat-
ment of indexing. Dynamic semantics, formulated as DSq, requires a full
coindexing of anaphoric elements and their antecedents prior to interpreta-
tion. Thus, representing a sentence like (48a) with its intended meaning in
DSq requires the task of coindexing the variables with their antecedents, as
indicated below:

(48a) If a farmer owns a donkey, he beats it.
∃x1∃x2(farmer x1 ∧ ownx1x2 ∧ donkey x2) → beatx1x2

On the other hand, DRT does not require this kind of external coindexing.
For example, using standard DRSs, rather than preliminary DRSs contain-
ing ∂-structures, the donkey sentence in (48a) is initially represented as in
(95), where noun phrases and pronouns are assigned different variables.

(95)

x1 x2

farmer(x1)
own(x1, x2)
donkey(x2)

⇒
beat(x3, x4)

In this case, the natural interpretation requires that x3 is bound to x1 and
x4 to x2, which satisfies the accessibility constraint we discussed before;
then, we can obtain the intended interpretation of the sentence in (48). We

32Instead of providing DRSs with a proof system in a direct way, one can make use of

the proof system of first-order logic via the translation of DRSs into first-order languages

as seen in Section 3.2.1. This possibility is suggested in Blackburn and Bos (1999). But

then, the level of DRSs would look as if they served merely as an auxiliary device to

facilitate the translation into first-order logic.
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may say that the process of anaphora resolution is internal to the construc-
tion of a DRS. Both approaches are technically tenable, but the method
of internal coindexing as in DRT is methodologically preferable because of
its simplicity and explicitness: in particular, the constraints on anaphora
resolutions, which are applied to presupposition resolution as well, can be
explicitly formulated as a process of constructing legitimate DRSs.33

We have accumulated desiderata for a formal theory of presupposition
projection. Such a theory should satisfy the following requirements:

• Be flexible enough to account for the fact that presuppositions may or
may not depend upon the antecedently given information;

• Provide correct predictions for quantified sentences;

• Provide a mechanism to handle the interaction between presupposed
information and reasoning about implicit assumptions.

Furthermore, our methodological reflection suggests that:

• a well-developed proof system is needed to account for the fact that
presupposition resolutions in general require us to perform inference;

• it is preferable to combine such a proof system with some mechanism
of internal coindexing.

The two major approaches to presuppositions in formal semantics — dynamic
semantics and discourse representation theory — are not well-suited to sat-
isfy these desiderata. It is time to take steps toward an alternative approach.

33See Muskens (2011) for an elaboration of the method of external coindexing within

the framework of compositional DRT of Muskens (1996).



4. A proof-theoretic framework

If we try to find a formal theory of presupposition projection satisfying the
desiderata listed in the last section, it may be worthwhile changing the per-
spective: rather than starting with a semantic (i.e., model-theoretic) defini-
tion of logic, we may start with a logic equipped with a well-established proof
system and explore its applications to the projection problem. Throughout
this section, we will concentrate on the treatment of definite descriptions,
which is a typical instance of presupposition triggers as we saw in Section
2. Later, we will briefly discuss how the methods developed here can be
applied to other presupposition triggers.

4.1 Descriptions in proof theory

The initial observation to motivate our approach is that the use of descriptive
phrases is quite common even in mathematics and computer science, and
that the phenomena of presuppositions we have seen so far also arise in
mathematical practice; in particular, in contexts where we reason about
partial functions or programs that are not defined for certain arguments.
Examples such as the ones in (96) could count as typical instances of definite
descriptions used in mathematics.

(96) a. The inverse of d is less than 5.

b. d−1 < 5.

Our first observation here is that it is quite unusual to assert a sentence like
(96) when the descriptive phrase does not refer to anything. Thus, unless
it is guaranteed that a number d has an inverse, it would be odd to assert

213
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a sentence like (96). This observation also applies to the case in which the
sentence in question is embedded under negation or supposition.

(97) a. d−1 ≮ 5. Negation

b. Suppose that d−1 < 5. Supposition

Furthermore, we observe that even if the number d is not known to have an
inverse, we can safely assert sentences like the following:

(98) a. d has an inverse and d−1 < 5.

b. If d has an inverse, then d−1 < 5.

c. If d is invertible, then d−1 < 5.

It is clear from these examples that whether such a description is well-defined
(i.e., has a value) is sensitive to the environment in which it occurs. Indeed,
these examples suggest that descriptive phrases that are a commonplace in
mathematical practice show a pattern of projection behavior similar to that
in examples discussed in Section 2.2.1

The fact that undefined or partial terms abound in mathematics and
computer science has stimulated the study of logic with undefinedness, which
is expected to be closer to mathematical practice than a standard logic.2

Among others, Stenlund (1973, 1975) develops a proof-theoretic analysis
of definite descriptions within the framework of classical first-order logic.
Stenlund’s view is particularly suitable for our purpose. It consists of two
ideas:

(P1) a definite description is a referring expression, not a quantificational
expression as in Russellian analysis;

1It has been sometimes argued that Strawson’s presupposition theory of definite de-

scriptions could be correctly applied to natural languages but not to languages used in

mathematics. Russell himself argued this way in his reply to Strawson (1950). See Rus-

sell (1957). As we have seen in Section 2.1, Mate (1973) raised a similar objection to

Strawson’s view. Historically, however, it was Frege (1892) who first proposed the pre-

supposition theory of descriptions, and it is worth emphasizing that Frege was mainly

concerned with the use of descriptions in mathematics.
2See Feferman (1995) for an illuminating survey.
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(P2) it can be properly used under the assumption that it refers to an
individual.

Comparisons with the other two views with respect to the treatment of
empty descriptions will be useful here. Consider the following classical ex-
ample:

(99) The present king of France is bald.

Under the Russellian analysis, which is summarized in (R1) and (R2) on
page 145 in Section 2.1, (99) is simply false. Under the presuppositional
analysis of Strawson, as summarized in (S1) and (S2) on page 146, (99) fails
to express a proposition. Under Stenlund’s proof-theoretic analysis, which
could be regarded as a refinement of the presuppositional analysis, (99)
can be used to express a proposition under the assumption that there is a
king of France. On this account, a sentence involving an empty description
can express a proposition simply because we can use any assumption we
want in the course of an inference. As we will see later, the notion of
assumption plays a crucial role in accounting for the projection problem of
presuppositions.

Stenlund (1973) introduced a natural deduction system of classical first-
order logic with ι-operators, where ιxA(x) is intended to give a logical analy-
sis of “the x such that A(x)” in mathematical reasoning.3 Roughly, the idea
is that a description like ιxA(x) can be properly used when the existence

3It should be added that Stenlend (1973) is skeptical about the possibility of applying

his theory to ordinary discourse, claiming that “ordinary usage seems to give little guid-

ance on questions of the truth or falsity of many sentences containing empty descriptions”

(Stenlund 1973: 2). However, if we focus on the projection problem of presuppositions

rather than on the problem of empty descriptions (or more generally, the problem of

presupposition failure), then we find that there is much in common between mathemat-

ical and ordinary uses of descriptions. Over a past few decades, the formal theories of

presupposition has centered around the projection problem rather than the problem of

presupposition failure, and this shift of focus led to a variety of novel proposals in formal

semantics and pragmatics as we have seen in Section 2. Of course, this does not mean

that formal semantics and pragmatics have nothing to say about the problem of presup-

position failure; for recent discussions of truth-value judgements about empty descriptions

and related examples, see Lasersohn (1993), von Fintel (2004), and Schoubye (2009).
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condition ∃xA(x) and uniqueness condition ∀x∀y(A(x)∧A(y) → x = y) are
both satisfied. Additionally, Stenlund (1975) introduces an intuitionistic
version of the system. Carlström (2005) presents a similar natural deduc-
tion system of intuitionistic first-order logic with ε-operators, where εxA(x)
is associated only with the existence condition ∃xA(x) and is intended to
capture the use of indefinite descriptions like “an x such that A(x)” in
mathematical reasoning. Interestingly, Carlström (2005) suggests that def-
inite descriptions in ordinary discourse could sometimes be represented by
ε-terms.

To summarize, depending on whether one takes the uniqueness implica-
tion to be part of the meaning of definite descriptions, there are at least two
possibilities that one could develop a proof system for definite descriptions.

1. If we decide to take uniqueness implications to be part of the meaning
of definite descriptions, then we could analyze descriptions of the form
“the F” as “ ιxF (x).”

2. Alternatively, if we do not incorporate uniqueness implications into the
semantics of definite descriptions, then we could analyze descriptions
of the form “the F” as “εxF (x).”

The former view is in accordance with the recent Fregean analyses of definite
descriptions (and related referring expressions such as pronouns and proper
names) like the one developed in Elbourne (2005). A long-standing problem
with such a view is how to deal with cases in which uniqueness implications
associated with definite descriptions are not in fact satisfied. The analysis in
(ii) is in agreement with the view in the philosophy and linguistics literature
that uniqueness implications associated with definite descriptions should be
derived pragmatically.4 Although the question whether uniqueness implica-
tions are to be explained in terms of semantics or pragmatics is admittedly
still open to debate, we will choose to pursue (ii) over (i), mainly because
it allows us to keep the semantics of definite descriptions simpler. Thus,

4Under this analysis, such a notion as salience (cf. Lewis 1979; McCawley 1979)

or familiarity (cf. Heim 1982) plays a dominant role in determining the referent of a

description. For a recent discussion, see Szabó (2000, 2005).
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in what follows, we will set aside the uniqueness condition and analyze a
definite description “the F” as “εxF (x).”

The considerations in Section 2 suggest that the issue between the vari-
ous theories of presuppositions ultimately turns upon the proper treatment
of logical operators (i.e., connectives and quantifiers) in natural languages.
We must then determine which logic is suitable to represent reasoning about
presuppositions in natural languages. A common assumption that is implic-
itly or explicitly held by proponents of the dynamic view of meaning is
that classical logic is unsuitable for handling certain aspects of discourse
phenomena, in particular, anaphora and presupposition. Recall a typical
case motivating dynamic predicate logic and DRT, taken from Kamp, van
Genabith, and Reyle (2011).

(100) A student arrived.
∃x(studentx ∧ arrivedx)

Given that ∃xA and ¬∀x¬A are equivalent in classical logic, it is expected
that (100) behaves the same way as sentences like (101).

(101) It is not the case that every student failed to arrive.
¬∀x(studentx→ ¬arrivedx)

As we already saw in Section 3.2.4, however, negation acts as an externally
static operator in that it does not pass a discourse referent to the subsequent
discourse. Thus, while (100) can be extended as in (102a), (101) cannot be
extended as in (102b).

(102) a. A student arrived. She/The student registered.

b. It is not the case that every student failed to arrive. # She/The
student registered.

These examples suggest that the antecedent of an anaphoric or presuppo-
sitional element has to be explicitly provided in a suitable context. To
account this fact, dynamic semantics and DRT adopt the view that classical
truth-conditions alone are insufficient to capture the dynamic dimension of
meaning, as we have already seen in Section 2. Thus, classical logical laws
such as ¬¬A ≡ A and ¬∀xA ≡ ∃x¬A no longer hold in various systems
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of dynamic semantics, including DSq and related systems that we discussed
in Section 3.2.4.5 Additionally, in the case of DRT, (100) and (101) are
assigned different DRSs that have different accessibility relations for subse-
quent sentences.6

Agreeing with these views, we take it that classical logic is not good at
accounting for the fact that the antecedent of an anaphoric element must
be explicitly given in a context. A natural alternative that is consistent
with the observations above is, we would claim, intuitionistic logic. As
is well known, logical connectives and quantifiers of intuitionistic logic are
given constructive interpretations (i.e., the so-called BHK interpretation;
see below), and consequently, classical laws such as ¬¬A ≡ A and ¬∀xA ≡
∃x¬A fail in intuitionistic logic. In particular, to assert existential formulas
∃xA(x), one has to find a particular individual satisfying A(x). As we will
see in detail later, this interpretation of existential quantifiers is well suited
for explaining the anaphoric linking as indicated in the examples above.

Indeed, applying constructive logic to the analysis of discourse phenom-
ena in natural languages is not new. In particular, building on earlier work
by Sundholm (1986, 1989), Ranta (1994) shows that Constructive Type
Theory developed by Martin-Löf (henceforth, abbreviated as CTT) provides
us with an alternative framework to the standard dynamic theories such
as DRT and DPL.7 Recently, CTT and type-theoretic methods have been

5These systems include dynamic predicate logic (Groenendijk and Stokhof 1991), elim-

inative dynamic predicate logic (Dekker 1993, 1996), and update semantics (Veltman

1996).
6The matter is a little complicated in the case of DRT, since as we saw in Section

3.3.1, DRSs can be translated into formulas of classical first-order logic. This means

that DRSs deliver two aspects of meaning: one is the dynamic aspect, which can be

captured by defining proper accessibility relations; the other is the informational or truth-

conditional aspect, which can be captured by the recursive definition of semantics or

by the translation into first-order logic. However, in the last section, we observed that

resolving presuppositions sometimes requires inferences, which are performed across the

two aspects of meaning. This suggests that a certain uniform system that is responsible

for both informational and dynamic aspects of meaning would be preferred.
7There are several versions of constructive type theory. One original system, called

the “polymorphic” type system, is presented in detail in Martin-Löf (1984) and Part I of

Nordström, et al. (1990) An alternative, the “monomorphic” type system, is presented in
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applied to various problems in natural language interpretations.8 Interest-
ingly, Martin-Löf (1984) suggests that ε-terms can be naturally interpreted
in terms of the existential quantification of CTT. Following this suggestion,
Carlström (2005) showed that his system (i.e., the natural deduction sys-
tem of intuitionistic first-order logic with ε-operators) can be translated into
CTT. The ε-calculus can then serve as an intermediate language in translat-
ing natural language sentences into formulas in CTT. As we will see later,
this translation has several nice properties that lead to a better formula-
tion of presupposition and anaphora resolution. For this reason, we will use
the intuitionistic (first-order) logic with ε-operators as a logic that handles
presupposition projection.

Before moving on, let us make a cautionary note. We take it that the
presuppositional analysis adopted here applies only to a definite description
occurring in the argument position of a predicate, as in (103a) below. It
is widely observed in the literature that there are at least two types of
constructions in which definite descriptions have a “non-referential” use.9

One is the case in which a definite description occurs in the predicative
position as in (103b), and another is the case in which a definite description
occurs in an existential construction as in (103c).

(103) a. The king of France is wise.

b. John is the king of France.

Part III of Nordström, et al. (1990). In what follows, we will work with the polymorphic

type system.
8See Fernando (2001, 2009), Cooper (2005a, 2005b), and Asher (2011). Applications

of CTT to the analysis of presuppositions in natural language are found in Krahmer and

Piwek (1999).
9For three types of uses of noun phrases, the standard reference in formal semantics

is Partee (1986). Strawson (1950: 320) has already observed that the predicational use

of definite descriptions does not carry any existential presupposition. For the predica-

tive use of descriptions, see also Fara (2000) and references given there. Geach (1950)

also advocated the presuppositional theory of definite descriptions, raising objections to

Russell’s theory. Geach remarked that while Russell’s theory makes incorrect predictions

for sentences like (103a), it works adequately for the predicative and existential uses of

descriptions as in (103a) and (103b). Such “non-referential” uses of noun phrases will be

discussed in detail in Chapter 3 of this thesis.
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c. The king of France does not exist.

It seems that the king of France in (103b) and (103c) are best analyzed as
predicates, rather than referential terms.10 The ε-terms employed here only
capture the referential use of definite descriptions. Thus, it is important
to recognize that by saying that descriptions like “the A” are translated as
εxA(x), we mean that certain occurrences of descriptions, or more specifi-
cally occurrences as an argument of a predicate as in (103a), can be analyzed
as such ε-terms; it is not a claim about the lexical properties of descriptions
that can be described independently of their occurrence.

4.2 Natural deduction system with ε-operators

Building on Carlström (2005), we introduce a natural deduction system of
intuitionistic first-order logic with ε-terms, abbreviated as ILε. In the next
section, we review how ILε can be translated into CTT.

The vocabularies of ILε consists of those of a standard first-order logic
augmented with ε-operators. We assume that there are predicate symbols
and individual constants corresponding to expressions appearing in the ex-
amples that we deal with in the subsequent discussion:

• Logical symbols: ∧, →, ⊥, ∀, ∃, ε
• 1-place predicate symbols: man,wise, donkey, etc.
• 2-place predicate symbols: king,wife, beat, etc.
• individual constants: john, france, etc.

10This is the view suggested by Geach (1950). We add that (103b) is ambiguous among

(at least) three readings. First, it can be used as an answer to the question “What is

John like?”. This is the predicative reading we have in mind here. In this reading, the

description the king of France seems to act as a predicate. Second, it can be used as an

answer to the question “Who is the king of France?”. This is what Higgins (1973) called the

specificational reading. Third, it has a reading equivalent to the identity statement, “John

is identical to the king of France.” All three readings must be carefully distinguished.

The presuppositional analysis seems to apply to the identity reading; for some discussion

of a related problem, see Section 3.3 of Chapter 3. Whether it can be applied to the

specificational reading as well is more intricate, and we leave this question for future

work.
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• individual variables: x, y, z, . . .

The terms and formulas of ILε are defined in a mutually dependent way.
The set of formulas, denoted by LILε, is defined by the rule

A ::= P (t1, . . . , tn) | ⊥ | A ∧B | A→ B | ∀xA | ∃xA,

where P ranges over the set of n-place predicate symbols, ti over the set of
terms with 1 ≤ i ≤ n, and A,B over the set of formulas. The set of terms
of ILε is defined by the rule

t ::= x | c | εxA(x),

where x ranges over the set of individual variables, c over the set of individual
constants, and A over the set of formulas.

Negation ¬A is defined to be A → ⊥. We exclude disjunction from our
considerations, since it introduces additional complexity to our discussion.11

Free and bound variables are defined in the usual way, and we adopt the
usual convention of omitting parentheses.

To formalize the presupposition theory of definite descriptions intro-
duced in the last section, we need to distinguish between (i) formulas and (ii)
formulas that express a proposition, and between (i′) terms and (ii′) terms
that denote an individual.12 We then need to formally represent inferences
like

11It seems that disjunction in natural languages works in a different way from disjunction

in intuitionistic logic. The constructive (BHK) interpretation of disjunction tells us that

to assert A∨B, one has to be in a position to assert A or to assert B. This interpretation

is reflected by the so-called disjunction property of intuitionistic proof systems, according

to which either A or B is provable whenever A ∨ B is provable. It seems clear that

disjunctive sentences in natural languages do not behave this way. Thus, we can correctly

assert the sentence John or Mary came even when we are not in a position to assert

either John came or Mary came. One possibility of handling natural language disjunction

within intuitionistic logic is to translate “A or B” as ¬A → B. This then predicts the

same project property for disjunction as dynamic semantics of Beaver (2001), which we

saw in footnote 5 on page 167. See also Klinedinst and Rothschild (2012) for arguments

in favor of treating disjunctions as conditionals with negative antecedents. We leave a

detailed analysis of disjunction within our framework for future work.
12Stenlund (1973) refers to (i′) as formula-expressions, and to (ii′) as term-expressions.
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(104) Suppose that “There is a king of France” is true. Then “the king of
France” refers to an individual. Hence, “The king of France is bald”
expresses a proposition.

This is written in a tree form as follows:

(105)
“There is a king of France” is true

“the king of France” refers to an individual
“The king of France is bald” expresses a proposition.

Here we assert that a sentence expresses a proposition, under the assumption
that a sentence is true. We call each statement appearing in this inference
a judgement, following the terminology of Stenlund (1973).13 Judgements
make explicit what is usually taken to be implicit in the meta-language of
a logical system. For our purpose, we need three kinds of judgements as
shown in Figure 4.1.

Judgement Reading

A true a formula A is true
A : prop a formula A expresses a proposition
t : ind a term t refers to an individual

Fig. 4.1 Three forms of judgements in ILε

In accordance with the notation in standard logic, henceforth, we write
A, instead of A true, in a formal derivation. However, it is always important
to keep in mind the distinction between a proposition A and a judgement
A true.14

Now the informal derivation in (105) can be represented as follows.
13The distinction between propositions and judgements has been widely adopted in type

theory since the work of Martin-Löf (1975, 1982, 1984).
14The distinction between propositions and judgements is made fully explicit in Frege’s

(1893) Begriffschrift, where notation is introduced to distinguish judgements from propo-

sitions; i.e., thoughts (Gedanken) in Frege’s terminology. As noted by Aczel (1980) and

Martin-Löf (1983), a judgement of the form A : prop in our notation is analogous to a

judgement of the form —–A in Frege’s notation, and a judgement of the form A true is

analogous to a judgement of the form |—–A, where the sign |—–, called a judgement-stroke,

is composed of a vertical line and a horizontal line (Frege 1893: 38). Frege’s notation for
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(106)
∃x king(x, france)

εx king(x, france) : ind

bald(εx king(x, france)) : prop

Here we assume that king is a relational noun and represent the king of
France as εx king(x, france). In this case, we make a hypothetical derivation.
In general, we may have more than one assumption; hence, a hypothetical
derivation has the form

J1 · · · Jn....
J ,

where the judgements J1, . . . , Jn are unproven assumptions and the judge-
ment J is the conclusion. Here J is asserted hypothetically ; that is, at the
final step of the derivation, we assert that J holds provided all the assump-
tions J1, . . . , Jn hold. In the case of (106), the final step of the derivation
hypothetically asserts the following: εx king(x, france)) expresses a proposi-
tion provided ∃x king(x, france) is true.

Note that types ind and prop are standardly expressed by types e and t

in Montague’s notion, where e is used for the type of individuals and t for
the type of truth values. Since we are working within intuitionistic logic,
where propositions are not interpreted as Boolean truth-values, we prefer
our notation.

Another important difference from the standard practice in formal se-
mantics is that in our framework, judgements of the forms A : prop and
t : ind, on the one hand, and judgements of the form A true, on the other,
may be mutually dependent in a derivation. In the standard setting, it is
usually assumed that the question of whether a given sentence A is true is
resolved only after the question of whether A expresses a proposition (i.e.,
A is of the type t) is settled. In our framework, by contrast, the question
of whether a given sentence expresses a proposition can be resolved after
resolving the question of whether a sentence is true, and such dependency
is crucial for representing reasoning about presuppositions.

judgement-strokes presupposes that what is asserted to be true must be a proposition (i.e.,

a bearer of truth-values in Frege’s case). Indeed, an analogous property holds for ILε. See

Proposition 4.3 below.



224 4. A proof-theoretic framework

Now we present a natural deduction system of ILε, which is obtained by
extending and modifying a standard system of natural deduction developed
by Gentzen (1934) and Prawitz (1965). As in standard systems, a derivation
has a tree form: it starts with an axiom or an assumption and proceeds by
means of inference rules.

Two kinds of assumptions are allowed in this system.

1. We may introduce x : ind as an assumption.
2. When we have a derivation of A : prop, we may introduce A as an

assumption.

In other words, we are always allowed to assume that a variable x ranges over
individuals, and when we know that a formula A expresses a proposition, we
are allowed to assume that A is true. In making assumptions of the latter
kind. we omit indicating the derivation of A : prop to simplify the whole
derivation. It should be understood that each assumption of the form A in
a derivation is associated with a derivation of A : prop.15

The inference rules are divided into three groups: formation rules, intro-
duction rules, and elimination rules.

Formation rules. There are two kinds of formation rules: those for forming
a term denoting an individual and those for forming a formula expressing a
proposition.

c : ind
cF

∃xA(x)
εxA(x) : ind

εF

t1 : ind · · · tn : ind

P (t1, . . . , tn) : prop
PF ⊥ : prop

⊥F
A : prop

[A]....
B : prop

A ∧B : prop
∧F

15A rule for making assumptions of this kind can be explicitly formulated in a sequent-

style natural deduction system in the following way:

Γ ` A : prop

Γ, A ` A .

Although the sequent-style presentation enables us to represent operations on contexts

in an explicit way, the resulting derivations would be more involved. To simplify the

presentation of a derivation, we adopt the Gentzen–Prawitz style system.
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A : prop

[A]....
B : prop

A→ B : prop
→F

[x : ind]....
A(x) : prop

∀xA(x) : prop
∀F

[x : ind]....
A(x) : prop

∃xA(x) : prop
∃F

The rules cF and PF are schematic rules: for every n-place predicate symbol
P and for every individual constant c, there is such a formation rule. Note
that the rule cF is to be understood as an axiom; i.e., a rule with no premises.
The rules ∀F and ∃F are subject to the restriction that x must not occur
free in any non-discharged assumption in the derivation of the conclusion of
the rule.

The rule εF is the only source of presuppositions; it states that εxA(x)
refers to an individual when ∃xA(x) is true. The rule PF states that an
atomic formula expresses a proposition when all terms appearing in it refer
to an individual. The rules ∧F and → F are in agreement with the idea
behind dynamic semantics and DRT that each new sentence is interpreted
in the context provided by the sentences preceding it. The rules ∀F and
∃F will play a role in predicting universal presuppositions for quantified
sentences.

Since negation ¬A is defined as A→⊥, the formation rule for negation,
the rule ¬F , can be derived in the following way:

A : prop

¬A : prop
¬F
.

Introduction and elimination rules. The introduction and elimination
rules are the following.

A B
A ∧B ∧I

A ∧B
A

∧El
A ∧B
B

∧Er
A : prop ⊥

A
⊥E

A A→ B
B

→E
A : prop

[A]....
B

A→ B
→I

∃xA(x)
A(εxA(x))

εI
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[x : ind]....
A(x)

∀xA(x)
∀I

∀xA(x) t : ind

A(t)
∀E

[x : ind]....
A(x) : prop t : ind A(t)

∃xA(x)
∃I

The rules ∀I and ∃I are subject to the usual variable restriction: x must
not occur free in any non-discharged assumption in the derivation of the
conclusion of the rule. We also need certain special restrictions that apply
to →E and ∃I, as stated in Carlström (2005).

Compared with standard first-order logic, the rules ∀E and ∃I have a
judgement of the form t : ind as an additional premise, in an analogous way to
standard systems of free logic.16 In particular, the restriction on the rule ∃I
is crucial when we want to combine intuitionistic logic with ε-operators. The
addition of the rule εI to the standard first-order intuitionistic logic is non-
conservative in the sense that, in the extended system, we can prove ε-free
formulas that cannot be proved in the original system. A crucial example is
∃y(∃xA(x) → A(y)), which is not provable in standard intuitionistic logic,
but is provable if we admit both the standard introduction rule for existential
quantification and the rule εI.

[∃xA(x)]1

A(εxA(x))
εI

∃xA(x) → A(εxA(x))
→I, 1

∃y(∃xA(x) → A(y))
♠

In ILε, the step indicated by ♠ is illegitimate, since to apply ∃I at this step,
we need the judgement εxA(x) : ind as an additional premise; i.e., we need
to ensure that εxA(x) has a reference.17

It is easily seen that the elimination rule ∃E in standard systems, shown

16See Lambert (1991, 2003) for an overview of free logic.
17See DeVidi (2004) and Carlström (2005) for overviews of attempts to block this in-

ference within systems of intuitionistic ε-calculus.
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below, can be derived using the rules εF and εI.

∃xA(x)

[x : ind][A(x)]....
B

B
∃E

The elimination rule ∃E, which is adopted by Gentzen (1934) and Prawitz
(1965), has been criticized for the reason that it does not agree with the fact
that it is normally only after deriving ∃xA(x) that we introduce t such that
A(t) holds.18 It can be argued that the rule εI is an improvement in this
respect: see Example 4.2 below for an illustration of the use of εI.

Example 4.1 Each step of the derivation in (106) can be annotated with
a label as follows.

∃x king(x, france)
εx king(x, france) : ind

εF

bald(εx king(x, france)) : prop
baldF

It should be noted that the assumption ∃x king(x, france) is properly intro-
duced since we have a derivation of ∃x king(x, france) : prop as shown below.

[x : ind]1 france : ind
franceF

king(x, france) : prop
kingF

∃x king(x, france) : prop
∃F , 1

Example 4.2 The following is a derivation of ∀x∃yP (x, y) from ∃y∀xP (x, y).

[x : ind]2 [y : ind]1

P (x, y) : prop
PF

∃y∀xP (x, y)
εy∀xP (x, y) : ind

εF

∃y∀xP (x, y)
∀xP (x, εy∀xP (x, y))

εI
[x : ind]2

P (x, εy∀xP (x, y))
∀E

∃yP (x, y)
∃I, 1

∀x∃yP (x, y)
∀I, 2

In ILε we cannot derive a judgement A : prop from a judgement A true.
However, interestingly, this inference is admissible in the following sense.

18See Cellucci (1995) for a useful overview of this issue.
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Proposition 4.3 Let A be a formula of LILε. If there is a derivation D of
A true from a set of assumptions Γ, then there is a derivation D∗ of A : prop

from Γ.

For a proof, see Carlström (2005).19 It is then ensured that whenever we
have a derivation of A true, we have a derivation of A : prop. This property
plays a particularly important role when A contains descriptions of the form
εxB(x). As will be explained below, what εxB(x) refers to is fixed, in some
sense, by a derivation of A : prop.

Comparisons between Stenlund’s system and earlier systems of free logic,
including those of Hintikka (1959), Smiley (1960), Scott (1967), and Schock
(1968), are found in Stenlund (1973). Additionally, Lambert (2003) dis-
cussed differences between Stenlund’s system and ε- and ι-calculus of Hilbert
and Bernays (1934). There are various proof systems of intuitionistic first-
order logic enriched with ε-terms in the literature: a sequent calculus of
Shirai (1971), which follows the work of Maehara (1955); E-logic of Scott
(1979); ε-calculus of Mints (1977), among others. Comparisons with these
systems are found in Carlström (2005). As stated above, an advantage of
Stenlund and Carlström’s system that we adopt here is that it can be trans-
lated into CTT, and the latter has been well studied in the context of natural
language semantics. In the next section, we will review CTT and see how
the translation from ILε into CTT works.

4.3 Constructive type theory

As we mentioned in the previous section, Ranta (1994) applied CTT to the
area of natural language semantics and showed that it serves as an alterna-
tive framework to discourse semantics such as DRT (Kamp 1981) and DPL

(Groenendijk and Stokhof 1991). One problem that arises when we apply
CTT to natural language semantics is how to formulate the translation pro-
cedure from natural language sentences or discourses into formal expressions

19This proposition was originally proved by Stenlund (1973) for a natural deduction

system with ι-operators.
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in CTT. In particular, the problem is how to deal with the resolution pro-
cess of presupposition and anaphora. Ranta (1994) handles this problem
by adopting the generation-based approach, according to which the trans-
lation proceeds from formulas in CTT to natural language sentences. In
contrast, ILε that we presented in the last section enables us to preserve a
usual parsing-based translation procedure, where natural language sentences
are mapped into formulas in CTT. The basic idea is to use formulas of ILε

as an intermediate language in the translation procedure from natural lan-
guages into CTT. From the linguistic point of view, a formula of ε-calculus
plays the role of an underspecified representation of what the utterance of
a sentence conveys. This makes it possible to separate the entire transla-
tion process into deterministic and non-deterministic parts, and thereby to
provide internal coindexing, as we desired.

The basic idea of CTT is to understand the truth of a proposition in
terms of the existence of a proof, where a proof is taken to be an individual.
Thus, a judgement of the form

A true

is replaced by a judgement of the form

p : A,

which reads as “a proposition A has a proof p.” Here, following the so-called
Curry–Howard correspondence (“propositions-as-sets” interpretation), the
meaning of a proposition is identified with the set of proofs of that proposi-
tion.20

In addition to judgements of the form p : A, we need hypothetical judge-
ments.21 Meanwhile, in ILε, a hypothetical judgement is implicitly employed

20See Curry and Feys (1958) and Howard (1980). In applications to natural language

semantics, such proofs are sometimes viewed as situations (Cooper 2005a) or events (Ranta

1994), in connection with situation semantics and event semantics in formal semantics.
21Here and henceforth we are working within the monomorphic type theory of Nord-

ström et al. (1990) in contrast to polymorphic type theory as used in Carlström (2005).

This is because it is easier to make comparisons with standard first-order logic, and nothing

substantial depends upon this choice.
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in a hypothetical derivation; here we need to represent it explicitly. We need
hypothetical judgements of the form

f(x) : B (x : A),

which can be read as “f(x) : B under the assumption that x : A.” This form
of hypothetical judgement introduces a function from A to B, and allows us
to derive that f(a) is an element of B whenever a is an element of A. This
meaning is captured by the substitution rule of the following kind.22

f(x) : B (x : A) a : A
f(a) : B

S

In general, hypothetical judgements have the form

f(x1, . . . , xn) : B (x1 : A1, . . . , xn : An).

In particular, corresponding to each n-place predicate symbol P in ILε, we
will allow hypothetical judgements of the form

P (x1, . . . , xn) : prop (x1 : ind, . . . , xn : ind),

which introduce an n-ary propositional function on the set ind of individu-
als. This form of hypothetical judgement is taken as being primitive; i.e.,
judgements that require no further justification. Note that every application
of the rule PF for an n-place predicate P in ILε can be simulated as n-times
applications of the substitution rule in CTT. Thus, we admit

a1 : ind · · · an : ind

P (a1, . . . , an) : prop

as a derived rule, in accordance with the rule PF in ILε.
22Note that in sequent-style systems where all the assumptions are indicated, the sub-

stitution rule can be written as follows.

Γ, x : A ` f(x) : B Γ ` a : A

Γ ` f(a) : B
S
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In contrast to standard first-order logic, the domains of quantification
are always made explicit in CTT. We write (Σx : A)B(x) for existential
quantification and (Πx :A)B(x) for universal quantification, where A is a
set term denoting the domain of quantification. In particular, ∃xA(x) in
ILε is replaced by (Σx : ind)A(x), and ∀xA(x) by (Πx : ind)A(x). Given
the identification between propositions and sets, A in (Σx : A)B(x) and
(Πx :A)B(x) may be a proposition, in which case x ranges over proofs of A.
As will be explained below, this plays a role in accounting for representing
donkey and cross-sentential anaphora.

As stated above, the meaning of a proposition is given in terms of what
counts as a proof of it.23 The intended semantics here is the so-called
Brouwer–Heyting–Kolmogorov (BHK) interpretation.24 According to this
interpretation, the following holds:

1. a proof of A→ B is a construction that returns a proof of B, given a
proof of A;

2. a proof of A ∧B consists of a proof of A and a proof of B;
3. a proof of ∀xA(x) is a function converting c into a proof of A(c);
4. a proof of ∃xA is a pair (a, b) where b is a proof of A(a).

In line with this interpretation, we have formation rules for each logical
connective and quantifier. As in ILε, the formation rules tell us when a
judgement of the form A : prop can be derived. We also need introduction
and elimination rules. In what follows, we will present the rules for existen-
tial and universal quantification, which are most relevant to our purpose.25

It will turn out that implication and conjunction are definable in terms of
universal and existential quantifiers.

Existential quantification. The meaning of an existential quantification
(Σx :A)B(x) is given by a pair (a, b) consisting of an individual a belong-
ing to set A and a proof b of the corresponding proposition B(a). This is
captured by the following introduction and elimination rules:

23This conception of meaning is best explained in Martin-Löf (1983/1996). Martin-Löf’s

approach to logic has been particularly successful for applications in computer science; see

Nordström et al. (1990).
24See Troelstra and van Dalen (1988).
25See Nordström, et al. (1990) for other inference rules.
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[x : A]....
B(x) : prop a : A b : B(a)

(a, b) : (Σx : A)B(x)
ΣI

c : (Σx :A)B(x)
ΣEl

πl(c) : A
c : (Σx :A)B(x)

ΣEr
πr(c) : B(πl(c))

Here πl and πr denote the left and right projections, respectively. This is
captured by the following computation rules:

πl(a, b) −→ a πr(a, b) −→ b.

In addition to introduction, elimination and computation rules, we have a
formation rule for existential quantification:

A : prop

[x : A]....
B(x) : prop

(Σx : A)B(x) : prop
ΣF
.

Universal quantification. The meaning of a universal quantification (Πx :
A)B(x) is given by a function that maps any entity x in A to a correspond-
ing proof of B(x). The introduction and elimination rules for universal
quantification are

[x : A]....
b(x) :B(x)

λxb(x) : (Πx :A)B(x)
ΠI
,

b : (Πx :A)B(x) a : A
app(b, a) : B(a)

ΠE
.

The corresponding computation rule is

app(λxb(x), a) −→ b(a).

The formation rule for universal quantification is

A : prop

[x : A]....
B(x) : prop

(Πx :A)B(x) : prop
ΠF
.
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Conjunction is defined in terms of existential quantification, and implication
is defined in terms of universal quantification. That is, we have

A ∧B ≡ (Σx :A)B

A→B ≡ (Πx :A)B,

provided B does not depend on x.

As an illustration of a derivation in CTT, let us consider some crucial
examples that led to the development of discourse semantics as we have seen
in the previous section.

Example 4.4 (Cross-sentential anaphora) As a case of cross-sentential
anaphora, we consider the following:

(107) a. A man walks. He whistles. [= (45a) at page 182]

b. (Σx : (Σy : ind)(man(y) ∧ walk(y))) whistle(πl(x))

Here (107a) is represented in CTT as (107b), where the first sentence of
(107a) corresponds to (Σy : ind)(man(y) ∧ walk(y)), the second sentence
corresponds to whistle(πl(x)), and these two are connected by existential
quantifier Σx.26 Here the variable x ranges over proofs of the proposition
(Σy : ind)(man(y) ∧ walk(y)), which consists of a pair (a, b) of an individual
a and a proof b of the proposition that a is a student who arrived. The
existential quantifier Σx passes such a proof to the subsequent sentence. In
this case, the left element of x, i.e., πl(x), is a student, and it is asserted
that this student has registered. This nicely captures the fact that exis-
tential quantification is externally dynamic in the sense of Groenendijk and
Stokhof (1991).

26An alternative way of translating sentences like (107a), which is adopted in Ranta

(1994), is the following:

(Σx : (Σy : man) walk(y)) registered(πl(x)).

In this analysis, the common noun man is translated into a set term man, while in (107b)

it is treated as a propositional function man(y). For our purpose, we pursue the analysis

in (107b), since it is in accordance with the analysis in ILε. A detailed comparison of the

two approaches is left for future work.
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On the other hand, in the case of sentences like (108a), there is no way
to link the pronoun he to the antecedent discourse.

(108) Every man walks. # He whistles.

The first sentence can be translated as (Πx :I)(man(x) → walk(x)), but what
this expression introduces is a function, which does not serve as a suitable
antecedent of the pronoun he in the second sentence.

Example 4.5 (Donkey anaphora) Donkey sentences are naturally rep-
resented in CTT.

(109) a. Every farmer who owns a donkey beats it.

b. (Πx :I)(Πz : farmer(x) ∧ (Σy :I)(donkey(y) ∧ own(x, y)))
beat(x, πl(πr(z))))

(110) a. If a farmer owns a donkey, he beats it.

b. (Πx : (Σy :I)(farmer(y) ∧ (Σz :I)(donkey(z) ∧ own(y, z)))
beat(πl(x), πl(πr(x)))

The treatment of donkey anaphora in CTT was first observed by Martin-Löf
and Sundholm (1986, 1989) and extensively developed by Ranta (1994).27

A natural question to be raised here is how to translate natural language
sentences into formal expressions in CTT in a systematic way. In particular,
it must be explained how to translate it in (109a) as πl(πr(z)) and he and it
in (110a) as πl(x) and πl(πr(x)), respectively. Although our intuition sug-
gests that these are correct interpretations, we need a systematic method to
map natural language sentences into corresponding formal representations.
As mentioned at the beginning of this subsection, we will solve this problem
using ILε as an intermediate language in the translation procedure. The rest
of this subsection is devoted to explaining how to translate ILε to CTT.

The translation from ILε to CTT is an extension of the well-known trans-
lation of intuitionistic (Heyting) first-order logic to CTT, which was origi-
nally provided by Martin-Löf (1975). See also Nordström et al. (1990) and
Ranta (1994).

27The analysis of donkey sentences here is different from that by Ranta (1994) for the

same reason as stated in footnote 26.
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Proposition 4.6 (Translation from ILε to CTT) Let D be a derivation
of A true in ILε from a set of assumptions Γ, and let D∗ be a derivation of
A : prop in ILε from Γ. Then we have:

1. D can be translated into a derivation of p : A′ in CTT from Γ′ for
some p;

2. D∗ can be translated into a derivation of A′ : prop in CTT from Γ′.

The proof is by induction on the complexity of a derivation D of A in ILε. As
will be seen below, it is important to recognize that when an formula A of ILε

is translated into a formula A′ in CTT, A′ is determined by a derivation of
A : prop in ILε, not by the formula A itself. The translation of the inference
rules of ILε basically follows the patterns described in Martin-Löf (1975),
and a sketch is found in Carlström (2005). Here we will see how to translate
into derivations in CTT the formation rules of ILε that are relevant to our
later discussion.

We fix a set ind, which corresponds to the domain of individuals indicated
by ind in ILε. Given the identification of propositions and sets, we assume
a judgement ind : prop as an axiom in CTT.

When a judgement J appears as an assumption, i.e., J is in Γ, we have
two cases. If J is of the form x : ind, then it is translated simply as x : ind

in CTT. If J is of the form A true, we have a derivation of A : prop in
ILε. Suppose that this derivation is translated into A′ : prop in CTT. The
assumption J is then translated into p : A′, where p is a fresh variable.

The formation rules are now translated as follows.

1. cF . For each individual constant c in ILε, we need an individual in ind,
which we write as c : ind in CTT, using the same symbol as in ILε.

2. εF . The rule εF is translated into the rule ΣEl.

∃xA(x)
εxA(x) : ind

εF ;
c : (Σx : ind)A(x)

ΣEl
πl(c) : ind

3. PF . As stated before, each predicate symbol P corresponds to an n-
ary propositional function on ind, which is introduced by a hypothetical
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judgement of the form:

P : prop (x1 : ind, . . . , xn : ind).

The rule PF is then simulated by means of n-times applications of the
substitution rule (S ).

4. ∧F and →F . The rules ∧F and →F are translated into the rules ΣF
and ΠF , respectively.

A : prop

[A]....
B : prop

A ∧B : prop
∧F

;
A : prop

[x : A]....
B(x) : prop

(Σx : A)B(x) : prop
ΣF

A : prop

[A]....
B : prop

A→B : prop
→F

;
A : prop

[x : A]....
B(x) : prop

(Πx :A)B(x) : prop
ΠF

5. εI. The rule εI is translated in terms of the rule ΣEr.

∃xA(x)
A(εxA(x))

εI ;
c : (Σx : ind)A(x)

ΣEr
πr(c) : A(πl(c))

6. The rules ∀F and ∃F are translated in terms of the rules ∀F and ∃F in
an obvious way.

[x : ind]....
A(x) : prop

∀xA(x) : prop
∀F

;
ind : prop

[x : ind]....
A(x) : prop

(Πx : ind)A(x) : prop
ΠF

[x : ind]....
A(x) : prop

∃xA(x) : prop
∃F

;
ind : prop

[x : ind]....
A(x) : prop

(Σx : ind)A(x) : prop
ΣF
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The crucial part is the translation of εF and εI in terms of ∃El and ∃Er,
respectively.28 To see how it works, let us look at some examples.

Example 4.7 The derivation in ILε shown in Example 4.1 is translated
into the following derivation in CTT.

bald(x) : prop (x : ind)
p : (∃x : ind) king(x, france)

πl(p) : ind
∃El

bald(πl(p)) : prop
S

As stated before, we abbreviate such a derivation as follows.

p : (∃x : ind) king(x, france)
πl(p) : ind

∃El

bald(πl(p)) : prop

As is the case in ILε, the assumption p : (∃x : ind) king(x, france) must be
accompanied by a derivation of (∃x : ind) king(x, france) : prop. To simplify
the presentation, we omit such a subderivation throughout.

Example 4.8 ∀x∃yP (x, y) is translated into

(Πx : ind)(Σy : ind)P (x, y),

and ∃y∀xP (x, y) is translated into

(Σy : ind)(Πx : ind)P (x, y).

The derivation shown in Example 4.2 can then be translated into a derivation
in CTT in the following way.

[x : ind]2 [y : ind]1

P (x, y) : prop

p : (Σy : ind)(Πx : ind)P (x, y)

πl(p) : ind

p : (Σy : ind)(Πx : ind)P (x, y)

πr(p) : (Πx : ind)P (x, πl(p)) [x : ind]2

app(πr(p), x) : P (x, πl(p))

(πl(p), app(πr(p), x)) : (Σy : ind) P (x, y)
ΣI, 1

λx(πl(p), app(πr(p), x)) : (Πx : ind)(Σy : ind) P (x, y)
ΠI, 2

28This translation is described in Stenlund (1975) and Martin-Löf (1984).
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We are now in a position to see how presupposition resolution is handled
within our proof-theoretic framework. We will show that a process of pre-
supposition resolution is naturally formulated as a process of searching for
a derivation in ILε, and that it accounts for problems that are difficult to
handle within dynamic semantics and DRT.

5.1 Presupposition resolution

From the linguistic point of view, a formula A in ε-calculus ILε can be
regarded as an underspecified representation of the content of an utterance.
Such a representation is disambiguated in a derivation of A : prop in ILε.
Here the process of finding a derivation of A : prop can be understood to
be a process of presupposition resolution. The point of the translation into
CTT is to make the anaphoric dependencies explicit.

We can distinguish two kinds of tasks involved in utterance interpreta-
tions: (i) the task of understanding an utterance, i.e., specifying the content
of the utterance, and (ii) the task of evaluating its content, i.e., determining
whether its content is true. These two kinds of tasks are naturally rep-
resented as tasks of finding derivations in ILε. Let A be a formula of ILε

that formalizes a given sentence S. The basic ideas are then summarized as
follows.

1. A task of specifying the content of an utterance of S in a context
(through presupposition resolution) is taken to be a task of searching
for a derivation of a judgement A : prop.

239
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2. What is presupposed by an utterance of S is taken to be open assump-
tions in a derivation of A : prop.

3. What is asserted by an utterance of S is taken to be a judgement A,
and a task of evaluating the content of an utterance of S is taken as a
task to search for a derivation of A.

In ILε, presuppositions are triggered by the occurrences of ε-terms. When a
formula A contains ε-terms, a derivation of A : prop depends upon a deriva-
tion of some truth-judgement of the form ∃xB true. This means that a task
of specifying the content of the utterance may involve a task of evaluating
and verifying the content of an existential sentence.

A task of specifying and evaluating the content of an utterance is done
in a particular context. Such a context can be formally represented by a
sequence of judgements, which work as assumptions in a derivation. In pro-
cedural terms, the hearer’s task of understanding an utterance of a sentence
S in a context Γ can be taken as a process of searching for a derivation
of A : prop in the bottom-up way under the context Γ, where the process
starts with the judgement A : prop, and stops when all the assumptions
upon which A : prop depends are closed or contained in Γ.

To see how this conception works, we begin with typical examples of
presupposition projection that we have discussed in earlier sections.

Example 5.1 The following is a typical case in which presupposition pro-
jection is blocked.

(111) If John has a wife, John’s wife is happy.

This sentence is translated into the following formula of ILε by way of a
certain semantic decoding procedure.1

(112) ∃xwife(x, john) → happy(εxwife(x, john))

The definite description John’s wife corresponds to εxwife(x, john), where
wife(x, y) is to be read as “x is a wife of y.” At this stage of translation,

1Since such a decoding procedure into ILε requires no special treatments, we are not

concerned with how to formulate it throughout our discussion.
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the anaphoric link between John’s wife and the individual introduced in the
antecedent is not yet established. Then the formula in (112) can be proved
to express a proposition from no assumptions in the following way.

(113)
[x : ind]1

johnF
john : ind

wifeF
wife(x, john) : prop

∃F , 1
∃xwife(x, john) : prop

[∃xwife(x, john)]2
εF

εxwife(x, john) : ind
happyF

happy(εxwife(x, john)) : prop
→F , 2

∃xwife(x, john) → happy(εxwife(x, john)) : prop

This means that the sentence in (111) as a whole does not have presuppo-
sitions. This prediction is correct.2 Interestingly, the antecedent of John’s
wife is determined in this derivation. By way of translating the derivation
into one in CTT, as shown below, we obtain the desired formula of CTT,
where the anaphoric link between John’s wife and its antecedent is made
explicit.

(114)
[x : ind]1 john : ind

wife(x, john) : prop
∃F , 1

(Σx : ind) wife(x, john) : prop

[y : (Σx : ind) wife(x, john)]2
ΣEl

πl(y) : ind

happy(πl(y)) : prop
ΠF , 2

(Πy : (Σx : ind) wife(x, john)) happy(πl(y)) : prop

The overall process of mapping sentences into CTT-formulas is summarized
in Figure 5.1. Here the overall process is divided into deterministic and
non-deterministic parts. Descriptions are uniformly translated as ε-terms.
A different derivation of a judgement of the form A : prop in ILε then leads
to a different translation. More specifically, the outcome of the translation
is determined by how to derive a truth-judgement of the form ∃xB that is
triggered by a judgement of the form εxB : ind. We can see that a process of
resolving presuppositions is realized internally as a process of constructing
a formal derivation.

2Alternatively we may count the axiom john : ind as a presupposition (cf. Mineshima

2008). This is in agreement with Frege’s (1892) famous analysis of presuppositions, ac-

cording to which (111) presupposes that the proper name John has a reference. Since the

presuppositions of proper names are not our main concern here, we do not discuss this

issue any further here.
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Sentence: If John has a wife, John’s wife is happy
↓ semantic decoding: deterministic

ILε-formula: ∃xwife(x, john) → happy(εxwife(x, john))
↓ presupposition resolution : non-deterministic

ILε-derivation of ∃xwife(x, john)→happy(εxwife(x, john)) : prop

↓ translation into CTT: deterministic
CTT-formula: (Πy : (Σx : ind) wife(x, john)) happy(πl(y))

Fig. 5.1 Translating sentence (111) into CTT via ILε

By inspection of the rule ∧F in ILε, it is clear that we can obtain a
similar derivation for sentences containing a conjunction like (115).

(115) John has a wife and John’s wife is happy.

This sentence is represented in ILε as shown in (116a), and then translated
into CTT as shown in (116b).

(116) a. ∃xwife(x, john) ∧ happy(εywife(x, john))

b. (Σy : (Σx : ind) wife(x, john)) happy(πl(y))

Example 5.2 As a typical case in which presupposition resolution interacts
with reasoning about implicit knowledge (cf. Problem 4 of Section 3.3.3),
consider the following example:

(117) If John is married, John’s wife is happy.

A derivation in which the existential presupposition triggered by John’s wife
does not project must look as follows:

(118)

john : ind

married(john) : prop

[married(john)]1.... D
∃xwife(x, john)

εxwife(x, john) : ind
εF

happy(εxwife(x, john)) : prop

married(john) → happy(εxwife(x, john)) : prop
→F , 1
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Hence, at the initial stage of the interpretation, the utterance of (117) is
taken to presuppose that there is a derivation D from the judgement

married(john)

to the judgement
∃xwife(x, john).

That is to say that the hearer is required to perform an inference to fill the
gap D in this derivation. In this case, the hearer may rely on the lexical
knowledge concerning the predicate married that licenses us to infer that for
any individual x, if x is married then x has a wife. We can formulate such a
lexical entry in the form of an inference rule. More specifically, we can use
the following kind of elimination rule for the predicate married.

married(y) y : ind

∃xwife(x, y)
marriedE

Let us assume that the hearer’s lexical and encyclopedic knowledge is for-
mally represented as a set of such inference rules.3 Now with the help of this
inference rule, we can obtain a closed derivation of the following form:

(119)

john : ind

married(john) : prop

[married(john)]1 john : ind

∃xwife(x, john)
marriedE

εxwife(x, john) : ind
εF

happy(εxwife(x, john)) : prop

married(john) → happy(εxwife(x, john)) : prop
→F , 1

This means that with the help of a suitable assumption about the hearer’s
implicit (lexical) knowledge, the utterance of (117) is predicted to presup-
pose nothing. This prediction is correct, as we have seen earlier.

3We do not enter into a debate concerning the nature of such knowledge; see Sperber

and Wilson (1986/95) for a proponent of the view that lexical entries are to be formulated

as a kind of elimination rule. Instead of inference rules, we may also adopt an axiom of

the form ∀y (married(y) → ∃x wife(x, y)). It is clear that such an axiom is derivable from

the corresponding inference rule, and vice versa. However, we prefer the current approach

since it simplifies the presentation of a derivation.
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The treatment of the cases like (117) shows an essential difference be-
tween the proof-theoretic approach adopted here and the model-theoretic
approach of DRT. As we saw in Section 3.3.3, a problem inherent to DRT is
that the standard analysis of presuppositions within DRT does not involve
reasoning about semantic representations like DRSs, and thus, the process
of ordinary inference and the process of presupposition resolution must be
treated at different levels of the system; i.e., the levels of meta-language and
object-language (cf. Problem 5 of Section 3.3.3). This separation would
make it difficult to handle examples such as (117) in DRT, as many writers
have pointed out (e.g., Beaver 2001). In our proof-theoretic framework, by
contrast, both processes can be represented at the same level by making
explicit the distinction between propositions and judgements, and the inter-
action between the two processes can be captured in a formal derivation.

Let us see how to handle within our framework some other problems that
we raised for dynamic semantics and DRT in the last section, specifically, the
proviso problem (Section 3.2.2), the problem of conditional presupposition
(Problem 2 of Section 3.3.3), and the problem of semi-conditional presuppo-
sition (Problem 4 of Section 3.3.3). These problems arise from constructions
that can be schematically represented as follows.

(120) a. If there is a P , then the P is Q.
∃xP (x) → Q(εxP (x))

b. If A, then the P is Q.
A→ Q(εxP (x))

c. If A and B, then the P is Q.
A ∧B → Q(εxP (x))

Both dynamic semantics and DRT can make correct predictions for (120a).
A problem arises for sentences of the form in (120b). Sentences of this form
can give rise to conditional or unconditional presuppositions:

(i) Conditional presupposition: If A then there exists a P .
A→ ∃xP (x)

(ii) Unconditional presupposition: There exists a P .
∃xP (x)
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For instance, sentences like If John is married, his wife is happy gives rise
to conditional inferences, while sentences like If John works hard, his wife
is happy gives rise to unconditional ones.4 As we saw in Section 3.3.3, the
conditional inference in (i) can be correctly handled by dynamic semantics
but not by DRT. This is the problem of conditional presuppositions (Prob-
lem 2 of Section 3.3.3). On the other hand, the unconditional inference in
(ii) can be correctly handled by DRT but not by dynamic semantics. This
is the proviso problem discussed in Section 3.2.2. Finally, both dynamic
semantics and DRT have difficulty in accounting for cases like (120c), where
the presupposition triggered by the consequent may depend upon one of the
conjuncts of the antecedent, so that it is presupposed that A → ∃xP (x),
not that A ∧B → ∃xP (x). This is the problem of semi-conditional presup-
position (Problem 5 of Section 3.3.3).

Our proof-theoretic framework can make correct predictions for all the
cases. To see this, it is crucial to understand how the formation rules of ILε

for conjunction and implication, repeated here, work for these cases.

A : prop

[A]....
B : prop

A→ B : prop
→F

A : prop

[A]....
B : prop

A ∧B : prop
∧F

In applications of the rules → F and ∧F , the judgement B : prop may or
may not depend upon the assumption A.5 In the case of sentences of the
form (120b), when A is irrelevant to deriving ∃xP (x) : prop, the derivation
is as seen on the left below, which corresponds to the case of unconditional

4In the case of If John is married, his wife is happy, the conditional inference that If

John is married, he has a wife can be derived from the hearer’s constant knowledge. In

such a case, the inference would not be felt as being presupposed. On the other hand, in the

case of the examples discussed in Problem 2 of Section 3.3.3, the conditional inferences in

question cannot be derived from constant knowledge. Consequently, the inferences would

be felt as being presupposed in the sense that the hearer must accept them to be true to

make sense of the utterance.
5It should be noted that the weakening rule, which is implicit in our presentation of

ILε but can be explicitly handled in a sequent-style system, is applied when A does not

appear in a derivation of B : prop.
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presuppositions. On the other hand, when A is relevant as in Example 5.2,
the derivation is as on the right, which accounts for the case of conditional
presuppositions.

....
A : prop

....
∃xP (x)

εxP (x) : ind
εF

Q(εxP (x)) : prop

A→ Q(εxP (x))
→F

....
A : prop

[A]1

....
A→ ∃xP (x)
∃xP (x)

εxP (x) : ind
εF

Q(εxP (x)) : prop

A→ Q(εxP (x))
→F , 1

Similarly, in the case of (120c), where the antecedent of a conditional consists
of A ∧B, there is no need to use both A and B in deriving ∃xP (x).

It should be emphasized that there is an essential difference between
the proof-theoretic approach and dynamic semantics. Although there is a
certain similarity between the inference rules like → F and ∧F and the
definition of context change potentials for implication and conjunction in
dynamic semantics (cf. Fernando 2001), these two theories make different
predictions. To be concrete, consider formulas like p→ (q) r) in DS. What
is presupposed by this formula is that the initial information state σ entails
the implication p → q; consequently, some additional mechanism that can
derive q from p → q is needed to account for the case of unconditional
presuppositions. On the other hand, our proof-theoretic approach predicts
that what is presupposed by examples like (120b) is that there is a derivation
of ∃xP (x) from an initial set of assumptions Γ together with an assumption
that A is true, where it is understood that not all the assumptions need to
be used in the derivation. The predictions made by dynamic semantics lack
this flexibility.

A question remains as to how those assumptions that are relevant to
deriving the presuppositions are identified. To answer this kind of question,
we need an additional theory. Obviously, we need a pragmatic theory of
inferences that accounts for questions as to how hearers draw inferences
from the speaker’s utterance, what direction they take their inferences, and
when they stop. Such a theory would be largely driven by considerations
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external to formal semantics. The notion of relevance that plays a role in
identifying assumptions in presupposition resolution should be considered
from such a general perspective of the role of inferences in communication.
Our goal here was to describe what the semantic representations of sentences
contribute to the presupposition resolution. It is not unreasonable to expect
that our proof-theoretic or deductive perspective could naturally connect to
a pragmatic theory of utterance interpretation in which inferences play a
dominant role.6

5.2 Pronominal anaphora

In Section 3.3.2, we saw that there are striking similarities between anaphora
resolution and presupposition projection, and that this parallel can be nicely
captured within the framework of DRT (van der Sandt 1992; Geurts 1999) by
treating anaphora resolution as a special case of presupposition resolution.
Now if we take it that a pronoun refers to an individual satisfying some
condition associated with its gender information, we can formally represent
a pronoun as an ε-term, in the same way as definite descriptions, and then
carry over the presuppositional analysis of pronominal anaphora within DRT

into our proof-theoretic framework. For our purpose, we will assume that he
is represented as εxmale(x), she as εx female(x), and it as εx non-human(x),
and so on. We also need to make use of inference rules (elimination rules)
like the following.7

man(x) x : ind

male(x)
manE

donkey(x) x : ind

non-human(x)
donkeyE

Such lexical information is implicitly assumed in the standard presentation
of DRT, as we have seen in Section 3.3.3. In our framework, these infer-

6A well-developed pragmatic theory of this kind is Relevance Theory (Sperber and

Wilson 1986/95). Chapter 3 is devoted to developing a relevance-theoretic approach to a

certain class of inferences in utterance interpretation.
7Although we cannot go into details here, such a treatment of lexical information

as formulated by elimination rules is found in Relevance Theory (Sperver and Wilson

1986/95).
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ence rules will be explicitly used to provide a bridge between a pronominal
element and its antecedent.

Example 5.3 (Cross-sentential anaphora) Let us consider the example
we considered in Section 4.3.

(107) A man walks. He whistles.

This sequence of sentences is first translated into the following formula of
ILε.

(121) ∃x(man(x) ∧ walk(x)) ∧ whistle(εxmale(x))

Here the pronoun he corresponds to εxmale(x). Note that the choice of
variable x in this ε-term is arbitrary, and that at this stage of translation
the “antecedent” of εxmale(x) is not yet determined. A derivation of the
judgement that (121) expresses a proposition can be obtained in a similar
way to the derivation for (117) that we have seen before. Abbreviating
εx(man(x) ∧ walk(x)) as t, the relevant part of the derivation is as follows:

(122)

....
∃x(man(x) ∧ walk(x)) : prop

[x : ind]

male(x) : prop

[∃x(man(x) ∧ walk(x))]1

t : ind
εF

[∃x(man(x) ∧ walk(x))]1

man(t) ∧ walk(t)
εI

man(t)
∧E

male(t)
manE

∃x male(x)
∃I

εx male(x) : ind
εF

whistle(εx male(x)) : prop
whistleF

∃x(man(x) ∧ walk(x)) ∧ whistle(εx male(x)) : prop
∧F , 1

It is easily checked that this derivation can be translated into a derivation
of the following judgement in CTT.

(123) (Σx : (Σy : ind)(man(y) ∧ walk(y))) whistle(πl(x)) : prop

This result corresponds to the desired translation of the original sentence
into a CTT-formula as shown in (107b).
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Example 5.4 (Donkey anaphora) An analysis of donkey anaphora within
our framework can be given in a similar way to that of cross-sentential
anaphora that we have just seen above. The donkey sentence in (124a) is
represented as (124b).

(124) a. If a man owns a donkey, he beats it.

b. ∃x (man(x) ∧ ∃y (donkey(y) ∧ own(x, y)))
→ beat(εzmale(z), εw non-human(w))

We can then derive the judgement that (124b) expresses a proposition with
the help of the lexical inference rules manE and donkeyE as shown before.
We omit the derivation since it is similar to that for (121). Then again,
by translating the ILε-derivation into a CTT-derivation, we can obtain the
following correct translation in CTT (cf. (109b) on page 234).

(125) (Πx : (Σy : ind)(man(y) ∧ (Σz : ind)(donkey(z) ∧ own(y, z)))
beat(πl(x), πl(πr(x)))

Similarly, (126a) is represented as (126b) in ILε, and proved to express a
proposition; then the translation into CTT yields the translation in (126c),
which coincides with the desired translation in (109a).

(126) a. Every man who owns a donkey beats it.

b. ∀x (man(x) ∧ ∃y (donkey(y) ∧ own(x, y)))
∧ beat(x, εz non-human(z))

c. (Πx : ind)(Πz :man(x) ∧ (Σy : ind)(donkey(y) ∧ own(x, y)))
beat(x, πl(πr(z))))

5.3 Embedded descriptions

Special consideration is required for cases in which one definite description
is embedded within another, as in (127).

(127) John’s aunt’s cousin disappeared.
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This sentence presupposes that John has an aunt and that John’s aunt has
a cousin. To account for this fact, we will translate the description John’s
aunt’s cousin as a whole into the following.

(128) εx (∃y aunt(y, john) ∧ cousin(x, y))

Here both aunt and cousin are analyzed as relational nouns. The crucial
point is that the outmost description John’s aunt’s cousin corresponds to an
ε-term, whereas the embedded description John’s aunt corresponds to an ex-
istentially quantified expression, rather than an ε-term like εy aunt(y, john).8

Now (127) is represented as follows.

(129) disappeared(εx(∃y aunt(y, john) ∧ cousin(x, y))

We then have the following derivation, which yields the desired result.

(130)

∃x(∃y aunt(y, john) ∧ cousin(x, y))
εx(∃y aunt(y, john) ∧ cousin(x, y)) : ind

εF

disappeared(εx(∃y aunt(y, john) ∧ cousin(x, y)) : prop
disappearedF

Let us consider how to deal with a more complex example involving a
pronoun. We consider the following example:

(131) His aunt’s cousin disappeared.

This sentence is translated as follows.

(132) disappeared(εx (∃ymale(y) ∧ (∃z aunt(z, y) ∧ cousin(x, z))))

Here the embedded pronoun and description, his and his aunt, are translated
as existentially quantified expressions. In this analysis, it can be shown that
(132) presupposes the following judgement:

(133) ∃z (∃y (∃x cousin(x, y) ∧ aunt(y, z)) ∧ male(z)).

8This will cause certain complications in a procedure to translate English sentences into

formulas of ILε in a systematic way: we need to translate all the descriptions embedded in

a description into generalized quantifiers with existential force and the outmost description

into an ε-term.
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5.4 Informative presuppositions

Sometimes the use of a presupposing sentence introduces novel information
into a discourse, in particular when the presupposed information is uncontro-
versial. As we saw in Section 3.2.3, such a case of informative presupposition
has been analyzed in terms of a mechanism called accommodation, since the
seminal works of Lewis (1979) and Heim (1983). To deal with informa-
tive presuppositions within our proof-theoretic framework, we introduce the
following procedure that transforms one derivation into another derivation.

(134) Accommodation as transformations of derivations. Given a
derivation in which a judgement of the form B : prop depends on an
open assumption of the form A true, we may transform the derivation
into one in which A : prop is located at some stage in the derivation
so that the assumption A true is discharged.

We call this transformation simply accommodation. In our terms, accom-
modation is a process of adjusting the content, rather than the context, of
an utterance. From the hearer’s point of view, to perform accommodation
is to add an implicitly understood proposition at some stage in the course
of a derivation. The procedure of accommodation as stated in (134) allows
us the following transformation:

A....
B : prop

is transformed into
A : prop

[A]....
B : prop

A ∧B : prop
∧F

Using this transformation, we can simulate within our framework the pro-
cesses of global and local accommodation that are adopted in standard dy-
namic theories of presuppositions, including Heim’s (1983) dynamic seman-
tics (cf. Section 3.2.3) and van der Sandt’s (1992) DRT (cf. Section 3.3.2).

Example 5.5 (Accommodation) Let us illustrate with the classical ex-
ample in (135) how the transformation works.

(135) The king of France is not bald.
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This sentence is translated into an ILε-formula as follows.

(136) ¬ bald(εx king(x, france))

We can then derive the following:

(137)

∃x king(x, france)
εx king(x, france) : ind

εF

bald(εx king(x, france)) : prop
baldF

¬ bald(εx king(x, france)) : prop
¬F

Given this derivation, the hearer can proceed in at least three different ways.

First, suppose that it is within the common ground that someone, say
John, is the king of France. This is to say, the context Γ contains the
judgement

king (john, france).

In this context, the presupposition would be simply satisfied. This reading
can be captured in the following derivation.

(138)

[x : ind]1 france : ind

king(x, france) : prop
kingF

john : ind king(john, france)
∃x king(x, france)

∃F , 1

εx king(x, france) : ind
εF

bald(εx king(x, france)) : prop
baldF

¬ bald(εx king(x, france)) : prop
¬F

As before, the fact that the description the king of France is anaphorically
linked to john is made explicit by translating the whole derivation into a
derivation in CTT.
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(139)

[x : ind]1 france : ind

king(x, france) : prop john : ind p : king(john, france)
(john, p) : (Σx : ind) king(x, france)

∃F , 1

πl(john, p) : ind
εF

bald(πl(john, p)) : prop

¬ bald(πl(john, p)) : prop
¬F

Here πl(john, p) computes to john by left projection. Accordingly, we can
obtain the following judgement in CTT.

(140) ¬ bald(john) : prop

This means that the utterance of (135) in this context could communicate
that John is not bald.

The second and third options involve accommodation. Consider a con-
text in which the hearer does not know whether or not there is a king of
France. In this context, the hearer might perform accommodation, which
transforms the original derivation into the following:

(141)

[x : ind]1 france : ind

king(x, france) : prop
kingF

∃x king(x, france) : prop
∃F , 1

[∃x king(x, france)]2

εx king(x, france) : ind
εF

bald(εx king(x, france)) : prop
baldF

¬ bald(εx king(x, france)) : prop
¬F

∃x king(x, france) ∧ ¬ bald(εx king(x, france)) : prop
∧F , 2

The translation into CTT yields a derivation of the following judgement.

(142) (Σy : (Σx : ind) king(x, france))¬ bald (πl(y)) : prop

This corresponds to the global accommodation reading in Heim’s (1983)
original analysis as seen in Section 3.2.3.

The third option is this. Consider a context in which the hearer knows
that there is no king of France. Given this context, to avoid a contradiction,
the hearer must perform accommodation at one stage above in the original
derivation. This yields the following result:
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(143)

[x : ind]1 france : ind

king(x, france) : prop
kingF

∃x king(x, france) : prop
∃F , 1

[∃x king(x, france)]2

εx king(x, france) : ind
εF

bald(εx king(x, france)) : prop
baldF

∃x king(x, france) ∧ bald(εx king(x, france)) : prop
∧F , 2

¬(∃x king(x, france) ∧ bald(εx king(x, france))) : prop
¬F

It is easily verified that the translation in CTT gives rise to a derivation of
the judgement:

(144) ¬(Σy : (Σx : ind) king(x, france)) bald (πl(y)) : prop.

This corresponds to the local accommodation reading in Heim’s analysis.

5.5 Quantified sentences

In Section 3.2.4, we examined the presuppositions of quantified sentences.
Let us see what predictions our account makes for such quantificational
cases. We will concentrate on the four representative cases discussed in
Section 3.2.4, and see that our account gives desired results for these cases.

Example 5.6 (Existential sentences) We start by examining an exis-
tential construction that has a similar structure to Heim’s example in (57)
on page 189.

(145) Some man loves his wife.

This sentence can be represented in ILε as

(146) ∃x(man(x) ∧ love(x, εywife(y, x))),

where we assume, for simplicity, that the antecedent of the embedded pro-
noun his is already resolved: it is bound to the subject NP some man. Then
a derivation of the judgement (146) : prop looks as follows.
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(147)

[x : ind]1

man(x) : prop

[x : ind]1

[x : ind]1 [man(x)]2....
∃ywife(y, x)

εywife(y, x) : ind
εF

love(x, εywife(y, x)) : prop

man(x) ∧ love(x, εywife(y, x)) : prop
∧F , 2

∃x(man(x) ∧ love(x, εywife(y, x)))
∃F , 1

Thus, our theory predicts that (145) presupposes that there is a derivation
from the judgements x : ind and man(x) to the judgement ∃ywife(x, y). This
prediction is similar to the universal presuppositions that Heim’s (1983) dy-
namic semantics predicts for existential constructions such as (57). Indeed,
the required derivation can be obtained if we have a judgement

∀x(man(x) → ∃ywife(y, x))

as an assumption.9 Note that by way of accommodation we may also obtain
the following proposition:

(148) ∃x (man(x) ∧ ∃y (wife(y, x) ∧ love(x, y))).

Again, the results are similar to what Heim’s dynamic semantics predicts
for such a case with the help of local accommodation.

We may also introduce an operation analogous to intermediate accom-
modation, proposed by van der Sandt (1992). It allows us the following
transformation.

A : prop

B....
C : prop

A→ C : prop
→F

=⇒ A : prop B : prop

A ∧B : prop
∧F

[A ∧B]
B

∧E
....

C : prop

(A ∧B) → C : prop
→F

9If we take it that the antecedent of the embedded pronoun his is not yet resolved,

we start with a formula like ∃x(man(x) ∧ love(x, εy(∃x(male(x) ∧ wife(y, x))))). It is then

easily verified that the intended reading is captured by the derivation of ∃x(man(x) ∧
love(x, εy(∃z(male(z) ∧ wife(y, z))))) : prop from ∀x(man(x) → ∃y wife(y, x)) in which the

witness for the existential quantifier ∃z associated male(z) is given by the existential

quantifier ∃x associated with man(x).
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This transformation can be regarded as a special case of the general proce-
dure in (134).

Example 5.7 (The nuclear scope of universal quantification) Next
we consider the case in which a description occurs in the nuclear scope of a
universal quantifier.

(149) Every man loves his wife.

This sentence is formalized as

(150) ∀x (man(x) → love(x, εywife(y, x))),

where we assume that the pronoun his is bound to the subject NP every
man in a similar way to (146). Then by the following derivation, which is
similar to the one in (147), we can predict the universal presupposition for
(149). This is the reading in which the description his wife is bound using
the assumption that every man has a wife.

(151)

[x : ind]1

man(x) : prop

[x : ind]1

[x : ind]1 [man(x)]2....
∃ywife(y, x)

εywife(y, x) : ind

love(x, εywife(y, x)) : prop

man(x) → love(x, εywife(y, x)) : prop
→F , 2

∀x(man(x) → love(x, εywife(y, x))) : prop
∀F , 1

Other interpretations are also possible. Starting with the derivation in (151)
where the assumption ∃ywife(y, x) remains open, we have four possibilities
for accommodation.

First, the intermediate accommodation we have just introduced yields
the following derivation.
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(152)

[x : ind]1

man(x) : prop

[y : ind]2 [x : ind]1

wife(y, x) : prop

∃ywife(y, x) : prop
2

man(x) ∧ ∃ywife(y, x) : prop

[x : ind]1

[man(x) ∧ ∃ywife(y, x)]3

∃ywife(y, x)
εywife(y, x) : ind

love(x, εywife(y, x)) : prop

man(x) ∧ ∃ywife(y, x) → love(x, εywife(y, x)) : prop
→F , 3

∀x(man(x) ∧ ∃ywife(y, x) → love(x, εywife(y, x))) : prop
∀F , 1

The resulting reading can be glossed as “Every man who has a wife loves
it.” Next, the local accommodation yields the following derivation.

(153)

[x : ind]1

man(x) : prop

[y : ind]2 [x : ind]1

wife(y, x) : prop

∃ywife(y, x) : prop
2

[x : ind]1
[∃ywife(y, x)]3

εywife(y, x) : ind

love(x, εywife(y, x)) : prop

∃ywife(y, x) ∧ love(x, εywife(y, x)) : prop
∧F , 3

man(x) → ∃ywife(y, x) ∧ love(x, εywife(y, x)) : prop
→F

∀x(man(x) → ∃ywife(y, x) ∧ love(x, εywife(y, x)) : prop
∀F , 1

The result can be glossed as “Every man has a wife and loves it.” Third,
by way of global accommodation, we obtain a derivation ending with the
following judgement.

(154) ∃ywife(y, x) ∧ ∀x(man(x) ∧ love(x, εywife(y, x))) : prop

This option is ruled out, since the formula contains a free variable. These
three options give the same results as van der Sandt’s (1992) analysis dis-
cussed in Section 3.3.2

Finally, we can perform accommodation at one stage before the applica-
tion of ∀F in the derivation (151). This yields a derivation ending with the
following judgement.

(155) ∀x(∃ywife(y, x) ∧ (man(x) ⊃ love(x, εywife(y, x)))) : prop

Here the information that every individual in the domain of discourse has a
wife is accommodated.
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Example 5.8 (The nuclear scope of no) It is not difficult to see that
the case in which ε-terms appear in the nuclear scope of no is handled in the
same way. Thus, the sentence in (156a) is represented as (156b), where we
concentrate on the definite description its king and do not take into account
how the pronoun its is bound to the subject NP no nation.

(156) a. No nation cherishes its king. [= (55)]

b. ¬∃x(nation(x) ∧ cherish(x, εy king(y, x)))

Then, setting aside the possibilities of accommodation, we predict that for
(156b) to express a proposition, there needs to be a derivation of ∃y king(y, x)
from x : ind and nation, which amounts to saying that every nation has a
king. Hence, we obtain the same prediction as Heim’s dynamic semantics
(cf. Example 3.25).

Finally, let us look at an example in which a description appears in the
restrictor of a universal quantifier.

Example 5.9 (The restrictor of a universal quantifier) We consider
the example discussed in Section 3.2.4.

(157) a. Every man who serves his king will be rewarded. [=(60)]

b. ∀x(man(x) ∧ serve(x, εy king(y, x)) → rewarded(x))

Again, it is easily seen that if we set aside the option of accommodation,
we obtain the universal presupposition as in Heim’s dynamic semantics (cf.
Example 3.27).

5.6 Summary and prospects

We have shown how the proof-theoretic framework based on intuitionistic ε-
calculus ILε accounts for the existential presuppositions triggered by definite
descriptions in natural language. In particular, we have shown how processes
of presupposition resolution, more specifically, processes of presupposition
projection and accommodation, are formally represented as processes of con-
structing and transforming derivations in a proof system. The underlying
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motivation for our approach is that presupposition resolution is best viewed
as inference, the sort of inference that can be reconstructed as a formal
derivation in a suitable proof system. This idea is not inconsistent with
the standard conception of presuppositions in dynamic theories (dynamic
semantics and DRT), according to which presuppositions are requirements
placed on background contexts. But the important difference is that in our
conception, what the hearers are required to do is to perform a certain in-
ference to determine whether the conditions induced by a presupposition
trigger are satisfied in a given context; and the internal structure of such an
inference, which is formally represented as a proof structure, is relevant to
the determination of the overall interpretation of an utterance. Note that
in our conception, contexts are essentially structured entities in a similar
way to the DRSs adapted in DRT. By contrast, in dynamic semantics, a
context is identified as a set of possible worlds as in DS (or alternatively, a
set of assignments as in DSq), and thus, it is regarded as unstructured. As
we discussed in Section 3.4, this makes it difficult for dynamic semantics to
discriminate between the relevant and irrelevant parts of the antecedently
given information in determining the required presupposition, and hence, to
answer to the proviso problem.

We have seen that our proof-theoretic approach satisfies the require-
ments for a proper formal theory of presuppositions that were summarized
at Section 3.4: (i) it is flexible enough to account for the fact that presuppo-
sitions may or may not depend upon the antecedently given information; (ii)
it provides correct predictions for a range of quantified sentences; and (iii) it
can handle the interaction between presupposed information and reasoning
about implicit assumptions. Moreover, by assigning ε-terms to expressions
giving rise to existential presuppositions such as descriptions and pronouns
in a uniform way, we can integrate a method of internal coindexing into our
proof-theoretic framework.

Finally, let us mention one possible direction to extend our approach to
handle presuppositional triggers other than those that we have discussed so
far. In ILε, presuppositions are only generated by ε-terms; more specifically,
among the formation rules of ILε, only the rule εF is responsible for making
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the judgements of the form A : prop dependent upon truth-judgements of
the form A true. It is interesting to extend the system so that formation
rules for expressions other than terms can generate such a dependency. For
instance, if we try to incorporate into our framework the binary operator) as we used in formalizing dynamic semantics, we will need a formation
rule for ) in which the judgement of the form A ) B : prop depends upon
the judgement of the form A true. Alternatively, and more directly, we
can adopt a system with partial predicates by making formation rules for
predicates dependent on truth-judgements. This would be a simple method
to handle presuppositions induced by aspectual verbs such as stop. Thus,
an application of the formation rule for stop would look as follows.

(158)
x : ind used-to-do(x, smoking)

stop(x, smoking) : prop
stopF

Needless to say, to incorporate such partial predicates into our framework
and make correct predictions for a wide range of data, we need to work out
the semantics of verbs, tense, and aspect, among others.10 This is left for
future work. Applications to a wider range of presupposition triggers as
we mentioned in Section 2.2, including factive verbs, additive particles like
too, cleft constructions, and iterative expressions like again, are also left for
future investigation.

10For an extensive study of these issues within the framework of DRT, see Kamp and

Reyle (1993); Kamp, van Genabith, and Reyle (2011).



Chapter 3

Contextualism and

Propositions Expressed

261





1. Introduction to Chapter 3

Recent studies in the semantics and pragmatics of natural language have
shown that there is a considerable gap between the linguistic meaning of
a sentence and the proposition expressed by an utterance of that sentence.
This raises the question: What kinds of pragmatic tasks are involved in
the determination of the proposition expressed by an utterance? There are
two influential approaches to this question, which we call “Indexicalism”
and “Contextualism.” Contextualism holds that purely pragmatic processes
called “free enrichment” are involved in the derivation of the proposition ex-
pressed. Indexicalism, on the other hand, denies the existence of such pro-
cesses, and maintains that no pragmatic processes are allowed to affect the
proposition expressed by an utterance unless the linguistic meaning of the
sentence itself so demands. Thus, according to Indexicalism, all elements in
the proposition expressed by an utterance (i.e., the truth-conditional con-
tent of an utterance) are linguistically controlled in the sense that they result
from fixing the values of indexical elements in the logical form (cf. Stanley
2000).

We agree with the Contextualists that not only processes of fixing values
of indexical elements in the logical form (i.e., what is usually called “sat-
uration”) but also pragmatic processes of free enrichment are involved in
determining the proposition expressed by an utterance. However, in our
view, the standard conception of Contextualism, as defended by relevance
theorists (Sperber and Wilson 1986/95; Carston 2002a), is in fact very rad-
ical in that it holds that there are almost no semantic factors or constraints
involved in the way the process of free enrichment works. Thus we will ar-
gue that both Indexicalism and the standard version of Contextualism are

263



264 1. Introduction to Chapter 3

mistaken in their conception of the way linguistic semantics is related to
the pragmatic processes involved in the determination of the proposition
expressed. Based on a close analysis of predicational copular sentences, we
will show that there is an interesting constraint on the applicability of free
enrichment, and argue that the existence of such a constraint poses serious
problems to both Indexicalism and the standard version of Contextualism.
More specifically, we argue that free enrichment is blocked for property con-
cepts, i.e., those concepts that are most typically expressed by predicate
nominals. Then we will propose a new version of Contextualism that is
compatible with the claim that there is a semantic constraint on free en-
richment. The theory proposed here is an elaboration of ideas presented in
Nishiyama and Mineshima (2005, 2006a, 2006b, 2007a, 2007b, 2010).

The structure of Chapter 3

This chapter is structured as follows.
In Section 2, we will briefly review the controversy between Contextu-

alism and Indexicalism, focusing on the issue whether a purely pragmatic
process of free enrichment is involved in the derivation of a proposition ex-
pressed. We then present a refinement of the classification of pragmatic
processes involved in the determination of a proposition expressed proposed
in Carston (2004). Our classification of pragmatic processes rests on a novel
characterization of the distinction between free enrichment and the so-called
ad hoc concept construction. Based on this classification, we clarify in what
sense free enrichment can be regarded as a purely pragmatic process.

In Section 3, we present the main claim that free enrichment is blocked
for property concepts. Several arguments motivating this claim will be pre-
sented, and they are extended to cases of adjectives.

Our claim is further elaborated in Section 4. We will take up possible
counter-arguments to our claim, and argue that they are all defective. Fur-
thermore, we attempt to answer the question why free enrichment could
never intrude into property concepts.

In Section 5, we will argue that the so-called the “over-generation” prob-
lem pointed out by Stanley (2002, 2005) against Contextualism can be
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avoided in our Contextualist framework. We also discuss a recent proposal
by Hall (2008) that tries to account for the over-generation problem solely
in terms of pragmatic principles.

In Section 6, we will draw some consequences on the controversy be-
tween Contextualism and Indexicalism, and discuss how to understand the
Underdeterminacy Thesis, one of the central claims of Contextualism.





2. Background on Indexicalism and Contex-

tualism

We start with reviewing some background on the debate between Index-
icalism and Contextualism over basic issues in the semantics-pragmatics
interface.

2.1 Three levels of meaning

Although there are many subtle differences among various authors, it is
generally accepted that three notions that play a role in utterance interpre-
tations can be distinguished: (i) the linguistic meaning of a sentence S, (ii)
the proposition P expressed by uttering S in a given context, and (iii) what
is implicated by saying P in that context. A simple illustration is provided
by the following example.

(1) I am a philosopher.

This sentence has a certain conventional meaning that is constant across
contexts. Such a context-independent level of meaning is what we call the
linguistic meaning of a sentence. It is now widely accepted that there is
such a level of meaning; it is called “linguistically encoded meaning (LEM)”
by relevance theorists (e.g. Carston 2002b, 2008), and “standing linguistic
meaning” by proponents of Indexicalism such as Stanley (2005) and King
and Stanley (2005). Roughly, this level of meaning is determined by the
syntactic structure of a sentence and the meanings of the individual words
constituting that sentence. For ease of exposition, we assume in the fol-
lowing discussion that there are lexically and structurally disambiguated
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semantic (conceptual) representations that correspond to this level of mean-
ing. Following the standard terminology in relevance theory (Sperber and
Wilson 1986/95), we call such semantic representations logical forms, and
the process of arriving at a logical form of sentence S the process of linguistic
decoding.

While the linguistic meaning of (1) remains the same across contexts, the
sentence (1) is used to express different propositions on different contexts
of utterance. Thus, if someone, say Lisa, utters (1), it would express the
proposition that Lisa is a philosopher. With a different speaker or a different
time, the proposition expressed by (1) would be different accordingly. This
second level of meaning is what we call “the proposition expressed by an
utterance of a sentence” or simply “the proposition expressed.”

Important issues here are what role the linguistic meaning of a sen-
tence plays in determining the proposition expressed and to what extent the
proposition expressed is dependent upon pragmatic inferences. There are
various answers to these questions; accordingly this second level of mean-
ing is characterized variously as “what is said” (Grice 1989; Recanati 1989,
2004), “explicature” (Sperber and Wilson 1989/1995; Carston 2000, 2004),
“semantic content” (Stanley 2005; King and Stanley 2005), “impliciture”
(Bach 1994), and so on. Nonetheless, there is a general agreement that sev-
eral roles are assigned to the proposition expressed by an utterance. Most
importantly, it serves to capture the intuitive truth-conditional content of
what the speaker says by uttering a sentence on a given occasion. Hence it
must be a propositional, truth-evaluable entity, rather than an incomplete,
non-propositional one. Also, it is this level of propositions, not the first level
of meaning, that plays a role in deriving contextual implications from the
speaker’s utterance. The proposition expressed by an utterance serves as a
premise in the inference process of deriving further implications.

The third level is the so-called “what is implicated” or “implicature,”
a notion that originated from the work of Paul Grice (Grice 1989). For
example, an utterance of (1) in response to the question “Can you read
Latin?” can communicate that the speaker, Lisa, can read Latin. What
is implicated by uttering a sentence on a particular context is determined
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by a certain specific intention the speaker has in mind, namely, what is
called “communicative intention” in relevance theory (cf. Sperber and Wil-
son 1986/95). On the basis of the proposition expressed by an utterance
and some general pragmatic principles governing its use, the hearer has to
infer the implicatures by specifying the speaker’s intention.

Our main interest is in the relationship between the first and the sec-
ond levels of meaning, that is, between linguistic meaning and proposition
expressed. How is the linguistic meaning of a sentence S related to the
proposition expressed by an utterance of S? One naive approach to this
question is what we call Literalism, following the terminology of Recanati
(2004).

(2) Literalism. The proposition expressed by the utterance of a sen-
tence S is solely determined by the linguistic meaning associated
with S. No pragmatic inferences are required in order to determine
the proposition expressed by an utterance.

According to Literalism, the proposition expressed is fixed by the linguistic
rules independently of any pragmatic consideration. It should be noticed
that this does not necessarily mean that Literalists deny the existence of
context-sensitive expressions in natural languages. Rather, they hold that
such contextual expressions are confined to what Kaplan (1989) calls “pure
indexicals,” i.e., words like I, today, and yesterday whose denotations are
automatically determined if objective features of the context of utterance,
such as the speaker and the date, are given.1 Kaplan emphasizes this point
when he says about pure indexicals;

The linguistic rules which govern their use fully determine the
referent for each context. No supplementary actions or intentions
are needed. (Kaplan 1989: 491)

The Literalist conception in (2) is compatible with the existence of this
kind of indexical expression. The point is that the Literalist view given in
(2) can allow contributions of context-sensitive elements to the proposition

1Here and henceforth, linguistic expressions are indicated in italics.
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expressed, only if the denotation of that context-sensitive expression is fixed
by linguistic rules alone, independently of considerations of the speaker’s
beliefs and intentions.

It is difficult to maintain Literalism, however, since context-sensitive ex-
pressions in natural languages are not restricted to indexicals in this narrow
sense. It is now widely accepted that the class of context-sensitive expres-
sions or constructions whose interpretations contribute to propositions ex-
pressed is larger than is traditionally assumed. We will examine some typical
examples in the next section. Indeed, as some authors have noted, even in-
dexicals such as now and here are not “pure” indexicals in the strict sense
above, since the speaker’s intentions can play a crucial role in determining
the temporal or spatial scopes of the denotations of now and here.2 For
example, the possible denotations of the indexical expression here uttered
on a particular context can range from the very small section of space oc-
cupied by the speaker to more inclusive areas such as the room, building,
town, or country in which the utterance occurs. Thus, given the fact that al-
most all cases of reference assignment to indexical expressions require some
pragmatic considerations of inferring speaker’s intention, we conclude that
Literalism, as construed above, must be rejected.

Recently, there are new attempts to defend some version of Literalism,
called “Semantic Minimalism,” which are proposed by Borg (2004, 2007)
and Cappelen and Lepore (2005). They claim that the semantic content
of an utterance departs only minimally from the linguistic meaning of a
sentence. More specifically, they argue that it is not the job of “minimal”
propositions to capture our intuitive judgement of what speakers say when
they utter sentences. A principal objection to Minimalism is that such a level
of minimal proposition plays no relevant role in utterance comprehension;
see Recanati (2004: chap.4) and Carston (2008) for detail criticisms from the
Contextualist point of view. Although there is now a considerable literature
on the debate between Contexualism and Minimalism (see, e.g. Preyer and

2See Perry (2001: 61) and Carston (2002a: 218, note 48). Perry (2001) only classifies I

and today as what he calls “automatic indexicals,” i.e. those indexical expression whose

denotation is fixed independently of speaker’s intention.
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Peter 2007; Bezuidenhout 2006; Cappelen and Lepore 2006), to follow up
this matter would take us beyond the scope of this chapter.

2.2 Two approaches to propositions expressed

To deny the Literalist conception of propositions expressed commits our-
selves to the following claim, which we call the Underdeterminacy Thesis
following Carston (2002a: 19–20).3

(3) The Underdeterminacy Thesis. The linguistic meaning of a sen-
tence used underdetermines the proposition expressed by the utter-
ance.

The Underdeterminacy Thesis claims that there are considerable pragmatic
tasks involved in arriving at the proposition expressed. Thus, anyone who
accepts the Underdeterminacy Thesis commits herself to the rejection of
Literalism. However, there is an ambiguity about the word “pragmatic pro-
cesses” or “pragmatic tasks” here. Accordingly, there are several ways of
interpreting the Underdeterminacy Thesis, depending upon how to under-
stand the extent of the required pragmatic processes.4 Among them, we
focus on two dominant views, which we call Indexicalism and Contextualim,
following the terminology of Recanati (2004).

2.2.1 Indexicalism

According to Indexicalism, there are only two kinds of pragmatic tasks in-
volved in the determination of the proposition expressed, namely, disam-
biguation and saturation.5 Disambiguation is a process of selecting one

3 The Underdeterminacy Thesis (or sometimes called the Underdetermination The-

sis) is particularly emphasized by proponents of Contextualism, including Bezuidenhout

(2002), Carston (2000, 2002a, 2004), Neale (1990, p.114; 2004, p.88), Recanati (2004),

Sperber and Wilson (1986/95), and Wilson and Sperber (2002, 2005), among others.
4We put aside the question whether all sentences in natural language require pragmatic

tasks, in other words, the question whether there is a sentence which does not require any

pragmatic task to understand. For a discussion, see Carston (2002a).
5For advocates of Indexicalism, see Stanley (2000, 2002, 2005), Stanley and Szabó

(2000), King and Stanley (2005), Taylor (2001), and Mart́ı (2006). Indexicalism has been



272 2. Background on Indexicalism and Contextualism

among a number of possible interpretations provided by the linguistic sys-
tem itself. The interpretation of the bracketed element in (4) is due to
disambiguation.

(4) John wrote a letter. [a letter of the alphabet]

Saturation is a process of supplying contextual values, not only for explicit
indexical expressions such as pronouns and demonstratives as in (5a), but
also for “hidden” indexicals involved in the logical form of a sentence, as
exemplified in (5b).

(5) a. He fell down yesterday.

b. John’s paper is too long. [the paper in relation R to John]
[too long for X]

Indexicalism holds that all elements in the proposition expressed by an ut-
terance are linguistically controlled in the sense that they result from fixing
the values of elements in the logical form (cf. Stanley 2000, 2005; Stanley
and Szabó 2000). Thus, according to Indexicalism, the proposition expressed
by an utterance departs from the linguistic meaning of the sentence uttered
only when the linguistic meaning itself demands that some contextual value
be assigned. On this account, any context sensitivity that affects the propo-
sition expressed is traceable to some indexical element in the logical form.

Now consider the following examples. In appropriate contexts, the ut-
terances of (6a), (7a) and (8a) could express the propositions shown in (6b),
(7b) and (8b) respectively.

(6) a. The painter disappeared.

b. The painter [living in this village] disappeared.

(7) a. I met every linguist.

b. I met every linguist [attending the party].

(8) a. It’s snowing.

b. It’s snowing [in Tokyo] [at time tk].

partly motivated by analyses of context-dependent expressions within formal semantics,

for example, the analysis of quantifier domain restriction by von Fintel (1994).
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Indexicalists take these as instances of saturation.6 They maintain that the
logical form of each sentence contains some hidden variables—the domain
variables in (6) and (7) and the time and location variables in (8)—that
must be filled for each utterance to express a truth-evaluable proposition.

As particularly emphasized by Stanley (2002, 2005), one motivation
for Indexicalism is to preserve the idea of the compositionality of truth-
conditional contents. According to it, the intuitive truth-conditional content
of a sentence uttered on a given occasion must be compositionally derivable,
i.e., it must be obtained by assigning values to the elements of the logical
form of a sentence and combining them in accord with its structure. Index-
icalists respond to apparent counter-examples to this claim, such as ones in
(6)–(8), by positing some covert syntactic variables in logical forms.

A general worry about Indexicalism is that the postulation of such covert
variables tends to be non-explanatory; sometimes it may be possible to ex-
plain why the construction in question can have such context-sensitive inter-
pretations without complicating the syntax and semantics of that construc-
tion.7 These considerations provide us with initial motivations to explore
an alternative position, namely Contextualism. Contextualists hold that
interpretations like (6b), (7b), and (8b) can be accounted for in terms of
pragmatic principles, without stipulating the existence of hidden variables
in logical forms. Such a pragmatic approach to analyzing propositions ex-
pressed would be generally preferable, because the mechanisms used are
independently needed for other pragmatic phenomena such as implicature

6For a treatment of nominal expressions as in (6) and (7) within the framework of

Indexicalism, see Stanley and Szabó (2000) and Stanley (2002). For a discussion of time

and location as in (8), see Stanley (2000).
7Stanley (2000, 2002) attempts to provide some linguistic evidence for certain covert

variables (the so-called “binding argument”). There is a considerable literature on Stan-

ley’s argument. For critical discussions, see Bach (2000), Neale (2000, 2004), Recanati

(2004: chap.7), and Elbourne (2008). In addition, Indexicalism faces a number of objec-

tions based on theoretical and empirical grounds. For arguments against Stanley’s version

of Indexicalism, see Carston (2000), Perry (2001), Wilson and Sperber (2002, 2005), and

Hall (2008). In Section 3.4, we will give yet another argument against Stanley’s Indexical-

ism on the basis of the claim that predicate nominals do not allow contextual restrictions.
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derivations. The main worry about the Contextualist view is that pragmatic
inferences are so powerful and unconstrained that they generate interpre-
tations that do not actually occur (cf. Stanley 2002, 2005). This is the
so-called the “overgeneration” problem and will be discussed in Section 6.

2.2.2 Contextualism

Let us review the Contextualist view in more detail. Contextualists agree
that there are pragmatic processes of disambiguation as in (4) and saturation
as in (5). As mentioned above, however, they deny that (6), (7), and (8) are
instances of saturation.8 As Recanati (1989, 2004) observes, the pragmatic
processes involved in (5) are mandatory in the sense that they must be
carried out in any context in which the linguistic expressions at issue are
used; without such a process, the utterance cannot communicate a complete
proposition. In contrast, the pragmatic processes involved in (6), (7), and
(8) are optional : the utterances could communicate complete propositions
without those processes. In this respect, the pragmatic processes involved in
(5) are essentially different from those involved in (6), (7), and (8). Following
the terminology of relevance theory (see, in particular, Carston 2004) we call
the type of pragmatic process involved in (6), (7), and (8) “free enrichment.”

Free enrichment is the process of adding further conceptual materials to
the logical form without any linguistic mandate. Such additional materials
are often called “unarticulated constituents” (cf. Perry 1986). The brack-
eted elements in (6b), (7b), and (8b) are typical examples of unarticulated
constituents. As further examples, consider sentences (9a), (10a), and (11a),
which are often discussed by relevance theorists.9

(9) a. They got married and had many children.

b. They got married and [then] had many children.

(10) a. She insulted him and he left the room.

b. She insulted him and [as a result] he left the room.

8See Footnote 3 for proponents of Contextualism.
9An earlier discussion is found in Carston (1988). Further examples and discussion can

be found in Carston (2000, 2002a, 2004).
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(11) a. Mary took out her key and opened the door.

b. Mary took out her key and [then] opened the door

[with the key].

The utterances of (9a), (10a), and (11a) could express the propositions as
enriched in (9b), (10b), and (11b) respectively. Note that each utterance
could be understood literally without the bracketed elements. According
to relevance theory, such literal interpretations are often not worth process-
ing, hence optional inferential processes automatically take place in order
that the resulting overall interpretation would be relevant enough to hearers.
This means that the motivation for these processes taking place is not lin-
guistic as in the case of saturation, but pragmatic through and through. The
same remark applies to the examples in (6), (7), and (8) discussed above.

We assume here that the process of free enrichment takes place not for
a proposition as a whole but for a particular constituent of a proposition; in
other words, free enrichment is a local process (cf. Carston 2000a; Recanati
2004; Hall 2008). Notice that, in a typical case, the process of free enrich-
ment is triggered by the fact that the (literal) proposition would be not rele-
vant enough to attract the hearer’s attention. However, this does not imply
that the target of free enrichment is the proposition as a whole. Rather, the
fact is that the proposition might be made more relevant through enriching
some constituent of it. Thus, in dealing with examples of free enrichment,
it is important to ask which constituent of the proposition is enriched.

Before moving on, it will be useful to distinguish several types of free
enrichment. In examples like (6) and (7), what is enriched is a concept en-
coded by a nominal expression. For example, in (6), the concept [painter]

is enriched to the concept [painter living in this village]. The process
underlying such cases may be called the nominal enrichment. On the other
hand, in examples like (8), (9), (10), and (11), the concepts encoded by ver-
bal expressions are enriched; thus, in (8), the concept [snowing] is enriched
to the concept [snowing in Tokyo at time t]. This process may be called
the verbal enrichment. In discussing examples involving conjunction as in
(9), (10), and (11), people often talk as if the literal interpretation of and is
modified so that various temporal or causal interpretations of conjunction,
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such as [and then] and [and as a result], are obtained. However, as
shown in (12), the same type of enrichment occurs when two sentences are
simply conjoined.

(12) a. She insulted him. [As a result] He left the room.

b. Mary took out her key. [Then] She opened the door.

In these cases, the enriched material such as [then] or [as a result] mod-
ifies the concept expressed by a verbal phrase in the second sentence. Thus,
the examples like (9), (10), and (11) can also be classified as verbal enrich-
ment, in a similar way to the example in (8).

Another kind of example that is often taken up by relevance theorists
as an instance of free enrichment is the so-called “subsentential” or “incom-
plete” utterances. Typical examples are the following:

(13) a. [Context: Holding up a bottle of wine.] From France.

b. This wine is from france

(14) a. Nice shirt.

b. You are wearing a nice shirt

It is widely agreed that the expressions in (a) can be used to express the
propositions in (b). There is an ongoing debate about the nature of such sub-
sentential utterances. Contextualists, including Recanati (2004), Carston
(1988, 2002a, 2004), Sperber and Wilson (1986/95), and Hall (2008), claim
that examples like (13) and (14) are genuine examples of free enrichment.
On the other hand, indexicalists, including Stanley (2000, 2002, 2005) and
King and Stanley (2005), argue that these examples are best accounted for
by positing hidden sentential structures. Although this issue is important
for a comprehensive understanding of pragmatic processes involved in the
recovery of a proposition expressed, we will put it aside here and concentrate
on the enrichment of fully sentential examples.
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2.3 The classification of pragmatic processes

We have already mentioned three types of pragmatic processes, namely,
disambiguation, saturation, and free enrichment. There is another type of
pragmatic process which Contextualists admit. Following relevance theorists
(Sperber and Wilson 1986/95, 1998; Carston 1996, 2002a, 2004; Wilson and
Sperber 2002), we call this type of processes “ad hoc concept construction.”10

Ad hoc concept construction is the process of replacing an encoded lexical
concept appearing in the logical form with a contextually adjusted one, so
that the concept interpreted as communicated by the particular lexical item
is different from the lexically encoded concept. The following are examples
from Carston (1996).

(15) a. I want to meet some bachelors. [bachelors*]

b. This steak is raw. [raw*]

c. Our boss is a bulldozer. [bulldozer*]

Suppose (15a) is uttered by a young lady who has decided to go to a party to
find a potential husband. What she communicates by bachelor is not the en-
coded lexical concept but rather something much more specific, say, [bach-

elors eligible for marriage], which is indicated by [bachelors*].11

Here, a narrowing of the encoded lexical concept is involved. Now suppose
(15b) is uttered by a customer at a restaurant. What he communicates
by the predicate raw is not the encoded lexical concept [uncooked] but
a loosening of the concept, namely, [undercooked] which is indicated by
[raw*]. Similarly, in (15c), what the speaker communicates by bulldozer is

10 The same type of pragmatic process is called “specifization” in Bach (1994) and Re-

canati (2004: chap.2), and “modulation” in Recanati (2004: chap.9). Recanati (2004: 24)

mentions the following pair of examples involving a mass term rabbit as a case of “speci-

fization.”

(i) He wears rabbit. [rabbit fur]

(ii) He eats rabbit. [rabbit meat]

In our terminology, these examples are a typical case of ad hoc concept construction.
11Following the standard practice in relevance theory, we use capitals like “bachelor”

to denote entities at the level of conceptual representation (i.e., concepts and propositions).
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not the encoded lexical concept, but a looser concept like [being powerful

and aggressive].12

As in the case of free enrichment, ad hoc concept construction is also an
optional process in the sense that the utterance of a sentence could deliver a
complete proposition without such a process. For example, the utterance of
(15b) could be understood literally by taking raw as expressing the encoded
concept [uncooked], though it would be false in usual situations. These
literal interpretations are often not worth processing, so that optional infer-
ential processes automatically take place in order that the resulting overall
interpretation would be relevant enough.

Carston (2004: 643) suggests that “[ad hoc concept construction], like
free enrichment, takes us well away from encoded linguistic meaning and
has no linguistic mandate.” It should be noted, however, that the range of
possible interpretation provided by ad hoc concept construction is strictly
constrained by the hearer’s lexical and encyclopedic knowledge concerning
the original encoded concept. For example, [bachelor*] in (15a) is derived
by combining the original encoded concept [bachelor] with the encyclo-
pedically related concept [being eligible for marriage]. In the case of
[raw*] in (15b), the range of possible interpretation is restricted to some
class of related concepts, varying from [uncooked] to various degrees of
[undercooked]. Similarly, [bulldozer*] in (15c) is derived from the orig-
inal encoded concept by deleting one of its defining properties such as [being

a machine used for knocking down buildings], and leaving only the
encyclopedically associated concept [being powerful and aggressive].

As these examples show, the process of ad hoc concept construction
should be characterized as the process of making pragmatic adjustment
within the restricted range of interpretation licensed by a hearer’s general
lexical and encyclopedic knowledge concerning the original encoded concept.
The process of free enrichment, on the other hand, is not bounded in this
way. For example, in the interpretation of (6a) discussed above, the addi-
tional concept [living in this village] cannot be derived from the encoded

12For a more discussion on the distinction between narrowing and loosening, see Carston

(1996).
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concept [painter] through some general lexical-encyclopedic knowledge. In
this respect, there is an essential difference between free enrichment and
ad hoc concept construction.

Free enrichment and ad hoc concept construction are not always carefully
distinguished in the literature.13 Thus, Carston (2004) takes the following
examples as typical cases of free enrichment.

(16) a. She has a brain. [a high-functioning brain]

b. It’s going to take time for these wounds to heal. [considerable

time]

In the light of the discussion above, this analysis is questionable. In (16a),
the lexically encoded concept [brain] is pragmatically adjusted so that the
utterance would express some interesting fact rather than an obvious truth.
Although the process is generated for purely pragmatic reasons, the possi-
ble range of interpretation would surely be bounded by the lexical concept
[brain]. (16b) is analogous to (15b) in that the pragmatic process gives rise
to the adjusted concept with a suitable degree of application. In the case of
(16b), the encoded concept [taking time] is pragmatically adjusted. Thus,
these cases should be taken as instances of ad hoc concept construction.

As a further illustration of the distinction between free enrichment and
ad hoc concept construction, consider again the paradigm example of free
enrichment in (11), repeated here.

(11) a. Mary took out her key and opened the door.

b. Mary took out her key and [then] opened the door [with the

key].

Recanati (2004: 25) suggests that some cases involving free enrichment may
be construed as instance of ad hoc concept construction (i.e., what he calls

13It should be emphasized that according to the taxonomy of pragmatic processes in

explicature derivation proposed by Sperber and Wilson (1986/95) and Carston (2002a),

free enrichment and ad hoc concept construction are classified into the same type of

pragmatic process; both processes are labeled as “enrichment.” What we adopt here is a

more fine-grained taxonomy, which is basically the one presented in Carston (2004). This

new taxonomy should be distinguished from the earlier proposals in relevance theory.
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“specifization” or “modulation”; see Footnote 10). Thus he says of the
example in (11b) that the implicit instrument in the second conjunct could
be construed either (i) as an unarticulated constituent corresponding to
the implicit prepositional phrase with the key, or (ii) as an ad hoc concept
[open with key], derived from the general concept [open] by a process
of narrowing. However, as Carston (2007: 46) correctly points out, even if
a hearer could derive the narrowed concept [open with key], she would
still need to pragmatically infer that Mary opened the door with the key
mentioned in the first conjunct, in order to obtain the intended meaning of
(11a). In our terms, while the ad hoc concept [open with key] might be
derived from the concept [open] using some lexical-encyclopedic knowledge,
the concept involving reference to a particular object, i.e., [open with the

key], cannot be derived in that way. In other words, it is not predictable
from our general knowledge about the concept [open] that what the speaker
intends to communicate is something about a particular key Mary took out
(at a particular place at a particular time). Thus in our view, the concept
[with the key] in the example (11b) should be construed as a result of
free enrichment, rather than ad hoc concept construction.

We have so far classified the hearer’s task in constructing a proposition
expressed into four types:

(17) a. Disambiguation: Selecting one of the candidate conceptual
representations provided by the linguistic system.

b. Saturation: Supplying contextual values to variables in the log-
ical form.

c. Ad hoc concept construction: Replacing an encoded concept
appearing in the logical form with a contextually adjusted one.

d. Free enrichment: Adding further conceptual constituents to
the decoded logical form.

When Carston (2004: 639) introduces the process of free enrichment, she says
“it is ‘free’ in that it is not under linguistic control.” However, the notion
of “linguistic control” here could be construed in two ways. A pragmatic
process is said to be under linguistic control if it satisfies (18a) or (18b).
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(18) a. The process is mandated in the sense that it must be carried out
in any context in which the linguistic expression at issue is used.

b. The process is bounded in the sense that the range of possible
interpretations is provided by the linguistic system itself or by
hearer’s lexical/encyclopedic knowledge concerning the original
encoded concept.

Then, the four types of processes in (17) can be classified as follows.

Mandated? Bounded?

Disambiguation Yes Yes
Saturation Yes No
Ad hoc concept construction No Yes
Free enrichment No No

Among the four types of processes, free enrichment is special in that it is
neither mandated nor bounded. This is why free enrichment is considered
to be a “purely pragmatic” process and thus to play a distinctive role in the
determination of a proposition expressed.

2.4 The standard conception of free enrichment

According to Contextualism, there is a gap between the linguistic meaning
of a sentence and the proposition expressed that is to be filled by pragmatic
processes, in particular, by free enrichment. Now the question arises: what
role does the linguistic meaning of a sentence play in deriving a proposi-
tion expressed via a process of free enrichment? In particular, what kind of
constraint is imposed on processes of free enrichment? In this section, we
make explicit the standard answer to these questions within the framework
of Contextualism. Roughly speaking, according to the standard Contextu-
alist view, the linguistic meaning of a sentence is just an evidence to recover
a proposition expressed, in a similar way as the proposition expressed is
an evidence to derive a conversational implicature of the utterance. Thus,
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on this view, what plays a crucial role in constraining free enrichment is a
pragmatic consideration, such as the relevance and informativeness of the
resulting propositions. By contrast, we will propose an alternative concep-
tion, according to which there is a semantic constraint on a process of free
enrichment. The main aim of the next section is to argue for this alternative
conception.

Before going on, let us first explain what we mean by “semantics” here.
Throughout our discussion, we assume the relevance-theoretic framework
(Sperber and Wilson 1986/95; Carston 2002a), which is one of the most de-
veloped theories among currently available Contextualist positions. By “se-
mantics” we mean what is often labeled by relevance theorists as “linguistic
semantics” or “translational semantics.” Its role is to map one representa-
tion, i.e., a natural language sentence, into another representation, i.e., a
semantic or conceptual representation called a logical form.14 The sort of
semantics which explicates the relation between propositions expressed and
what they represent may be called “denotational semantics,” in distinction
from linguistic or translational semantics. Thus, on this view, “semantic”
interpretations take place in two stages. At the first stage, linguistic se-
mantics provides an algorithm that assigns a semantic representation, i.e.,
a logical form, to a natural language sentence (or a set of semantic repre-
sentations to an ambiguous sentence). Such representations are often not
fully propositional but only schemas to be further elaborated. Thus they
are pragmatically selected, completed, enriched, and modulated in various
ways as described in the last section, so as to yield a fully propositional form
expressed by the utterance. At the second stage of semantic interpretation,
denotational semantics gives truth-conditions to the fully propositional rep-
resentations.15

14See Sperber and Wilson (1986/95: 257–8) and Carston (2002a: 58). The view outlined

here is shared by some authors outside relevance theory as well. See, for example, Neale

(2004: 82).
15It should be mentioned that the so-called “structured propositions” view, as defended

by Soames (1987) and King (2007), among others, also shares such a two-stage view of

semantic interpretation. What is special about the conception of relevance theory is the

appreciation of the roles played by pragmatic inferences that bridge the output of the first
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A variant of the relevance-theoretic view is discussed in Neale (1990,
2004), who calls it the “explicit” approach to pragmatic enrichment. Ac-
cording to Neale (2004:121), enrichment is a process whereby a natural lan-
guage expression that is actually uttered (e.g., the painter in example (6))
is mapped into another natural language expression, namely, an expression
that the speaker could have used if she was asked to be more explicit (e.g., the
painter living in this village). In other words, the sentence actually uttered
is a shorthand for a richer phrase the speaker might have used.16 (Neale
carefully distinguishes such a process of “contextual recovery” from a pro-
cess involved in syntactic ellipsis such as VP ellipsis as discussed in syntactic
theory.) For concreteness, we focus on the relevance-theoretic view on free
enrichment and regard it as a representative position in Contextualism; but
it should be noted that our argument in following sections is neutral with
respect to the choice between the relevance-theoretic view and the explicit
view, and hence that it can be applied to the explicit view on enrichment
as well.

With this picture in mind, let us now return to the main issue. The
question is: what kind of constraint is imposed on free enrichment? And
what role does the linguistic meaning of a sentence play when a process of
free enrichment takes place?

The standard answer to this question within Contextualism is two-fold.
First of all, free enrichment is pragmatically constrained. Let us state the
pragmatic constraint on free enrichment in the following way:

(19) Pragmatic Constraint on Free Enrichment (PC)
Free enrichment can take place only when the resulting proposition
is consistent with pragmatic considerations such as relevance and
informativeness.

More specifically, according to relevance theory, one general pragmatic prin-
ciple, namely, the principle of relevance, is at work in the determination

phase (i.e., a linguistic meaning or logical form) with the input of the second phase (i.e.,

a proposition expressed or explicature).
16A related view is found in Bach (1994, 2000). See also Elbourne (2008) for a discussion

on the difference between the relevance-theoretic view and the explicit view.
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of a proposition expressed as well as in the derivation of an implicature.
Roughly, at each stage in disambiguation, saturation, free enrichment and
ad hoc concept construction (as well as implicature derivations), the hearer
would choose the interpretation (hypothesis) that requires the least effort
and abandon it when it fails to be consistent with the principle of rele-
vance. Carston calls such a general procedure “the least effort strategy,”
and describe it in the following way:

(20) Consider interpretations (disambiguations, saturations, enrichments,
implicatures, etc) in order of accessibility (i.e., follow a path of least
effort in computing cognitive effects); stop when the expectation of
relevance is achieved. (Carston 2002b: 139)

For some illustrations of how this strategy works, see Wilson and Sperber
(2002: 606–619), Carston (2002a: 142–145), and Carston (2002b: 139–140).
On this view, the linguistic meaning of a sentence uttered (i.e., the logi-
cal form of a sentence) is regarded as having just an evidential role in the
identification of the proposition expressed by an utterance.17

However, to say that the linguistic meaning of a sentence is just an
evidence in determining the proposition expressed does not mean that the
role of linguistic meaning in this process is exactly the same as the one
a proposition expressed plays in the derivation of the implicatures of an
utterance. The crucial fact is that the proposition expressed is built out
of the semantic representation (i.e., the logical form) associated with the
linguistic expression used. This point can be clearly seen in the following
remark by Recanati (2004: 6) on the difference between what is said (i.e.,
propositions expressed in our terms) and what is implicated.

The difference between ‘what is said’ and ‘what is implicated’ is
that the former is constrained by sentence meaning in a way in
which the implicatures aren’t. What is said results from flesh-
ing out the meaning of the sentence (which is like a semantic
‘skeleton’) so as to make it propositional. The propositions one
can arrive at through this process of contextual enrichment or

17See Carston (2002b: 130).
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‘fleshing out’ are constrained by the skeleton which serves as in-
put to the process. Thus ‘I am French’ can express an indefinite
number of propositions, but the proposition in question all have
to be compatible with the semantic potential of the sentence;
this is why the English sentence ‘I am French’ cannot express
the proposition that kangaroos have tails. There is no such con-
straint on the propositions which an utterance of the sentence
can communicate through the mechanism of implicature. Given
enough background, an utterance of ‘I am French’ might impli-
cate that kangaroos have tails. What is implicated is implicated
by virtue of an inference, and the inference chain can (in princi-
ple) be as long and involve as many background assumptions as
one wishes. (Recanati 2004: 6)

To use the terminology of relevance theory, the proposition expressed (i.e.,
explicature) must be a development of the logical form of a sentence used; in
other words, it must be composed of all the elements of the logical form to-
gether with some additional elements.18 Furthermore, it can be reasonably
assumed that free enrichment must preserve the semantic type of an element
in a logical form; accordingly, free enrichment can never give rise to mean-
ingless propositions.19 For instance, in (21a), the concept [linguist] and
the enriched concept [linguist attending the party] are of the same se-
mantic type; both are semantically monadic predicates. Similarly, in (21b),
the concept [opened the door] and the enriched concept [opened the

door with the key] are of the same semantic type.

(21) a. I met every linguist [attending the party]

18See Sperber and Wilson (1986/95: 182) and Carston (2002a: 116–125).
19Such a constraint seems to be implicitly assumed by contextualists in discussing ex-

amples of enrichment (i.e., what we called nominal and verbal enrichment) as we saw in

Section 2.2. Recanati (2011: 11, footnote 9) briefly mentioned this kind of constraint. We

should note that Recanati (2011) does not distinguish between what we called free enrich-

ment and ad hoc concept construction. We will remain neutral about the question whether

a process of ad hoc concept construction in our sense always preserves the semantic type

of a concept to which it applies.
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b. John opened the door [with the key]

Let us say that contextualists are committed to the Minimal Linguistic
Constraints on Free Enrichement, abbreviated as MLC.

(22) Minimal Linguistic Constraint on Free Enrichment (MLC)

a. A proposition expressed by an utterance of a sentence S is ob-
tained via free enrichment only if it is a development of the logical
form of S.

b. Free enrichment must preserve the semantic type of an element
in a logical form; that is, if concept α+ is obtained by enriching
concept α in a proposition, then α and α+ must be of the same
semantic type.

The standard Contextualist conception of how free enrichment works in
deriving propositions expressed can be summarized as follows.

(23) The standard conception of free enrichment
A process of free enrichment can take place if it observes the prag-
matic constraint (PC) and the minimal linguistic constraint (MLC).

That is, according to the standard conception, the only constraints imposed
on free enrichment are PC and MLC. In fact, it turns out that this conception
imposes a weak constraint on how free enrichment works; the standard con-
ception says that, except for MLC, there is no linguistic factor or constraint
involved in the way the process of free enrichment works. More specifically,
the standard conception is committed to the view that free enrichment could
apply to any concept in the logical form of a sentence, as far as PC and MLC

are observed. Thus, Sperber and Wilson (1986/95: 176) claim:

The semantic representations recovered by decoding are useful
only as a source of hypotheses and evidence for the second com-
munication process, the inferential one. Inferential communica-
tion involves the application, not of special purpose decoding
rules, but of general-purpose inference rules, which apply to any
conceptually represented information.
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We agree with the standard Contextualism that it is not saturation but
free enrichment that is involved in the derivations of the propositions ex-
pressed in such examples as (6)–(11). Thus, we admit the existence of free
enrichment, and reject the Indexicalist view that such examples are con-
strued as instance of saturation. However, we will argue that the standard
Contextualist claim in (23) is false. In the next section, we will show that the
applicability of free enrichment is far more restricted than is assumed within
the current framework of Contextualism as we reviewed so far, and in par-
ticular, that there is a certain semantic restriction on how free enrichment
works.





3. Semantic constraint on free enrichment

The goal of this section is to argue that there is a certain restriction on
how free enrichment can work in deriving the proposition expressed by an
utterance. Specifically, we will first focus on predicational sentences like
(24), and argue that in no context can the process of free enrichment apply
to the concept encoded by a predicate nominal like a painter in (24).

(24) John is a painter.

This is to say that we cannot imagine any context in which the concept
encoded by a painter in (24) might be enriched so that (24) would express
the proposition in (25).

(25) John is a painter living in this village.

Since the data bearing on this matter are often not easy to assess, we will
present several arguments to defend our claim. Before going on, we provide
some preliminary background on the semantic interpretation of predicate
nominals.

3.1 Predicate nominals

A copular sentence of the form “NP1 is NP2” has several readings.1 Among
them we pay special attention to the predicational reading. Typical examples
are the following.

(26) a. Mary is a linguist.
1For discussions of the classification of copular sentences, see Higgins (1973), Declerck

(1988), Nishiyama (2003), and Mikkelsen (2005). For a useful survey, see Mikkelsen (2011).
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b. John is a fool.

Noun phrases occurring in a predicate position, such as a linguist and a
fool in (26), are called “predicate nominals.” Predicate nominals are non-
referential in that they stand for a property ascribed to the referent of the
subject noun phrase. Thus, the predicate nominal a linguist in (26a) does
not denote any individual but stands for a property ascribed to Mary. Sim-
ilarly, in (26b), the property of being a fool is ascribed to John.

This characteristic of predicate nominals is more manifest when we con-
sider examples involving negation like (27):

(27) John is not a linguist.

Intuitively, an utterance of (27) does not establish an individual referent
corresponding to the noun phrase a linguist. Rather, (27) is interpreted as
expressing that John lack a certain property. These peculiarities of predicate
nominals are already pointed out by Geach (1980: 36):

[. . .] if I use the term “man” in the context “. . . is a man” or
“. . . isn’t a man”, it is mere nonsense to ask which man or men
would be referred to, or whether every man or just some man
would be meant. If I said “Tibbles isn’t a dog” and some non-
philosopher asked me with apparent seriousness “Which dog?”,
I should be quite bewildered—I might conjecture that he was a
foreigner who took “isn’t” to be the past tense of a transitive
verb.

There are several arguments which show that predicate nominals are
semantically different from “referential” noun phrases. First, as noted by
Kuno (1970), Doron (1988), and Mikkelsen (2005), among others, three is a
close connection between the referentiality of a noun phrase and the choice
of a pronominal expression. Consider the following examples, taken from
Kuno (1970: 365).

(28) a. A doctor i came to see me. I could trust {the doctori/himi}.

b. My brother is a doctor. I cannot trust {*the doctor/him}.
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In (28a), the noun phrase a doctor appears in an argument position of
the sentence and can be the antecedent of the definite noun phrase the
doctor as well as the personal pronoun him. In (28b), the noun phrase a
doctor appears as a predicate nominal. In this case, a doctor cannot be
interpreted as the antecedent of the definite noun phrase the doctor. The
personal pronoun him is acceptable, but it is anaphoric on the noun phrase
my brother in the subject position, not on the predicate nominal a doctor.
As Kuno (1970:365) observes, the pronoun that is anaphoric on the predicate
nominal must be it, rather than personal pronouns such as he or she.

(29) He is a fool, although he doesn’t look {it, *him}.

This contrast can be explained by assuming that noun phrases in argument
position can establish an individual referent, whereas predicate nominals
denote a property and hence do not establish such an individual referent.

This explanation is further supported by the following example.2

(30) He is a gentleman, {which/*who} his brother is not.

(30) shows that the relative pronoun formed on the predicate nominal a
gentleman must be which, rather than who. Note that which is also used for
an adjective such as foolish, which inherently denotes a property.

(31) John is foolish, which you are not.

Additionally, the interrogative pronoun what, but not who, is used for asking
a property ascribed to the referent of the subject noun phrase.

(32) What is he? — He is {tall/a doctor}.

It should be noted here that predicate nominals do also appear in the en-
vironments other than the post-copula position of a predicational sentence.

(33) a. Socrates became a philosopher. (Geach 1962: 35–36; Higgins
1973: 224–225; Williams 1983)

b. John used to be a philosopher. (Higgins 1973: 225)

2See Kuno (1970: 365) and Mikkelsen (2005: 95–99) for more detailed discussions.
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c. John considers Mary a genius. (small clause complements: Roth-
stein 2006: 57)

d. John, as a judge, earns $50,000 a year. (as-pharses: Szabó 2003)

e. Being a non-smoker, Mary approves the new law. (free adjuncts:
Jäger 2003)

f. He was born a Republican and he died a Republican. (secondary
predication: Rothstein 2006: 223)

Each construction can be understood as involving a predication at some
level. Thus, (33c) involves the predication that Mary is a genius, and (33d)
involves the predication that John is a judge.

Let us introduce some terminology. We are concerned with noun phrases
that have a structure as shown in Figure 3.1.

NP

Determiner (Det)

a/the/every

Restrictor (Res)

painter

Fig. 3.1 The structure of noun phrases

When a noun phrase of the form [[Det α][Res β]] appears in an argument
position of a sentence, where α is a determiner and β is its restrictor, we say
that the concept expressed by β is an object-directed concept. The semantic
function of an object-directed concept is to indicate who or what the entire
concept corresponding to the noun phrase in question refers to or quantifies
over.3 On the other hand, when a noun phrase of the form [[Det α][Res β]]

3As is often observed, quantificational phrases such as every F or most F cannot be

used as a predicate nominal; see Williams (1983: 425–6), Higginbotham (1987), Doron

(1988: 297–9), and Fara (2001: 17–8) for detailed discussions.

(i) *John is every linguist from New York.

We can say that the restrictor F of a quantificational phrase of the form every F, most

F, and the like inherently expresses an object-directed concept. Note also that such

quantificational noun phrases can introduce individuals that are referred back to by a
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appears as a predicate nominal, we call the concept expressed by β a non-
object-directed concept or, simply, a property concept. The semantic function
of a property concept is to indicate a property that is to be ascribed to an
object (or objects) introduced in an argument position of a sentence.

As an illustration, consider the following:

(34) a. A linguist disappeared.

b. [[a linguist] disappeared]

(35) a. John is a linguist.

b. [John is [a linguist]]

The sentences in (34a) and (35a) express the propositions in (34b) and (35b)
respectively. We say that the concept linguist in (34b) is an object-directed
concept, while the concept linguist in (35b) is a property concept.

Note that the concept linguist itself is a monadic concept, that is, a
semantically one-place predicate.4 This means that whether a concept F is
object-directed or not is not determined by the semantic type of F that can
be specified independently of how it occurs in a proposition. Rather it is
determined by the position that the concept F occupies in a proposition. To
say that the concept F is an object-directed concept or a property concept
is a claim about a particular role played by F in a proposition.

pronominal phrase (cf. Evans 1980).

(ii) Every studenti arrived. Theyi registered.

In these respects, the semantic function of quantificational noun phrases is crucially dis-

tinguished from that of predicate nominals.
4We are assuming that each concept is associated with an adicity that determines how

it can be combined with other concepts to form a proposition. There is a debate about

what semantic type is to be assigned to a predicate nominal as a whole (e.g., a linguist

in John is a linguit), as well as to the copular verb be; the classical reference is Partee

(1986); see also Fara (2001), Neale (2005), Kripke (2005), and Heim (2011) for discussion.

We are not committed to a particular view on this issue. We will also remain neutral

about the question whether definite and indefinite descriptions appearing in argument

position should be treated as a quantificational expression, i.e., an expression of type

((e, t), t), or as a referring expression, i.e., an expression of type e. Our argument below

will be independent of these issues. (See Chapter 2 of this dissertation for a defense of the

analysis of definite descriptions as referring expressions.)



294 3. Semantic constraint on free enrichment

In the next section, we will see how free enrichment can take place for
object-directed concepts. Then, in Section 3.3, we will turn to the case of
property concepts.

3.2 Free enrichment and object-directed concepts

The process of free enrichment can take place for an object-directed con-
cept, i.e., a concept expressed by a noun phrase appearing in an argument
position. Typical examples are the following.5

(36) a. Every linguist disappeared. [every linguist attending the

party]

b. A painter died. [a painter living in this village]

c. She gave presents to some children but not to others. [some

children at the party]

For each sentence in (36), when uttered in the right situation, we naturally
interpret it with the enriched material indicated in brackets. Without these
enriched materials, the utterances would communicate irrelevant proposi-
tions. In the case of (36a), the propositions literally expressed would be
obviously false in usual situations. In the case of the examples in (36b)
and (36c), the literal propositions might be true but not informative enough
to attract the hearer’s attention. This means that each example satisfies
the pragmatic constraint on free enrichment (PC) in (19). Note also that
each enriched proposition preserves the logical form of an original sentence;
hence the minimal linguistic constraint on free enrichment (MLC) in (22)
is observed as well. On the standard relevance-theoretic account, then, the
process of free enrichment is automatically invoked in these cases, and those
enriched propositions which satisfy the hearer’s expectation of relevance are
derived.

There are several points to note about the examples in (36). First, free
enrichment can take place not only for the concepts expressed by definite
noun phrases such as every painter and the painter, but also for the concepts

5The example (36c) is indebted to Robyn Carston (personal communication).
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expressed by indefinite noun phrases such as a painter in (36b) and some
children in (36c).6 Second, free enrichment can take place for the concept
expressed by the subject noun phrase, as in (36a) and (36b), as well as for
the concept expressed by the object noun phrase, as in (36c). Third, each
example in (36) involves a narrowing of the object-directed concepts. Thus
in the case of (36a), the concept [linguist] is made more specific by the
enriched material [attending the party], resulting in a more restricted
extension. Similarly for the cases of (36b) and (36c).

3.3 Free enrichment and predicate nominals

With the case of object-directed concepts in mind, let us turn to the case of
property concepts, i.e., concepts expressed by predicate nominals. We claim
that free enrichment is blocked for property concepts.

Consider the following conversation. Suppose that, in a certain village
meeting, the village chief Lisa finds an unfamiliar guy. She wonders whether
the guy is an inhabitant of her village or not. John is aware of her worry
and utters (37).

(37) He is a painter.

Here, (37) is a predicational sentence, in which the noun phrase a painter
functions as a predicate nominal. In this context, it seems impossible to
interpret John’s utterance of (37) as expressing a proposition like (38b) by
enriching the concept expressed by a painter. Rather, it should be inter-
preted literally as in (38a).

(38) a. Bill is a painter

b. Bill is a painter [from this village]

Indeed, we cannot imagine any context in which the concept encoded by
a painter in (37) might be enriched. Note that, in this context, while the
proposition in (38a) is not relevant enough, the proposition in (38b) would

6For discussion on whether indefinites could exhibit such pragmatic interpretations as

free enrichment, see Bach (1994); Stanley and Szabó (2000).
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most likely contribute to the satisfaction of Lisa’s expectation of relevance,
since she wants to know whether the guy is living in her village or not.
That is, the pragmatic constraint on free enrichment (PC) in (19) seems
to be satisfied in this case. In this respect, the situation is analogous to
the examples in (36b) and (36c). In both cases, the literal proposition
is not informative enough to meet the hearer’s expectation of relevance.
Additionally, it seems clear that the minimal linguistic constraint on free
enrichment (MLC) in (22) is satisfied as well, because the proposition in (38b)
is a development of (38a) and the enriched concept [a painter [from this

village]] is of the same semantic type as the original concept [a painter];
both are semantically monadic predicates.

Hence, the contextualist account predicts that the literal proposition
should be enriched to a point where the hearer’s expectation of relevance
would be satisfied. However, this is not possible in the case of (37), in
contrast to the case of (36b) and (36c). This means that the standard
conception of free enrichment as summarized in (23) gives a wrong prediction
in the case of concepts expressed by predicate nominals.

It might be objected here that in the above example, since John’s utter-
ance to Lisa gives her no grounds for supposing that the guy is from their
village rather than from somewhere else, she could not enrich the proposition
one way or the other even if free enrichment were a technical possibility.7

The objection might go further as follows. Consider a context in which Lisa
knows that all the people coming to the meeting are inhabitant of her vil-
lage but doesn’t know who the particular guy in front of her is. John is
aware of her concern and utters (37). Then, it might be claimed that John’s
utterance would express the enriched proposition in (38b). This means that
if it were assumed that the domain at issue was just people from the village,
the property concept encoded by the predicate nominal a painter could be
enriched as in (38b).

To this objection, we can reply as follows. It is true that John’s utter-
ance of (37) in this context can be understood as communicating (38b). In
this case, however, (38b) can be taken as a contextual implication of the

7This possible objection is pointed out by Robyn Carston (personal communication).
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utterance, rather than the proposition expressed by the utterance. In fact,
(38b) follows deductively from (38a) together with the assumption that Bill
is from the village. And the latter assumption follows from the premise that
the domain at issue consists of just people from the village, together with
the premise that Bill, the guy John points out, belongs to that domain.

This alternative explanation in terms of contextual implication is prefer-
able because it is consistent with the case in which a quantificational noun
phrase appears in the subject position of a predicational sentence. To see
this, consider the utterance of a quantified predicational sentence in (39).

(39) Everyone is a painter.

(40) a. Everyone [from the village] is a painter.

b. Everyone is a painter [from the village].

Suppose that, as before, the domain at issue consists of just people from the
village. In this context, the utterance would be interpreted as (40a) rather
than as (40b). Given the fact that the noun phrase a painter in (39) has the
same semantic status as the one in (37), that is, both are predicate nominals
in predicational sentences, it is natural to conclude that, in the case of (37)
too, the additional element [from the village] does not apply to the
property concept [a painter]. Thus we conclude that if the assumption
that the speaker is talking about people from the village is contextually
available, the proposition in (38b) derives as a contextual implication of the
utterance of (37). The objection mistakenly construes it as a proposition
expressed by the utterance.

Argument from negation

In examples like (36a), the existence of free enrichment is easily de-
tectable because it changes the truth value of a proposition; the literal
proposition is false but the enriched proposition is true. In such cases,
the enriched materials appear in the so-called downward entailing contexts,
such as the scope of negation or the restrictor of a universal quantifier.8 To

8Let C and C′ be concepts such that the extension of C′ is a subset of the extension of

C. If a proposition ϕ(C) entails a proposition ϕ(C′), C is said to appear in a downward

entailing context in ϕ(C).
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test our claim, then, consider a case in which a predicate nominal appears
in a downward entailing context. Suppose that Lisa and John go to a dinner
party, where some painters are gathering. They are looking for a painter
living in their village. Although Lisa happens to find a painter, she realizes
that he is not an inhabitant of her village. Suppose, then, Lisa utters (41)
to John.

(41) That guy is not a painter.

It is clear that John will regard her utterance as false, because the guy she
pointed to is a painter. Note that if it were possible to interpret her utterance
as communicating the proposition enriched as in (42), her utterance would
be true.

(42) That guy is not a painter living in her village

However, John cannot interpret (41) in this way, even if he knows that Lisa
is looking for a painter living in her village: it is quite impossible for John
to regard her utterance as true. Note that the situation here is analogous
to the case of (36a). In both cases, the literal proposition is obviously false.
Thus the standard contextualist account predicts that the process of free
enrichment should be automatically invoked so as to give a true proposition.
However, this is not possible in the case of (41). The concept encoded by a
painter in (41) cannot be enriched.

Argument from definite descriptions

It is well known that not only an indefinite description such as a painter
but also a definite description such as the king of France and Mary’s husband
can appear as a predicate nominal in a predicational sentence.9

(43) a. John is not the king of France.

b. John became the king of France.

c. John is Mary’s husband.

For example, the noun phrase the king of France in (43a) does not refer to
any individual, but expresses a property. Note that a definite description

9See Fara (2001) and references given there.
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appearing in a post-copula position can have a referential interpretation as
well. Thus, by taking the noun phrase the king of France as referential, (43a)
can be interpreted as expressing that John is not identical to the individual
referred to by that noun phrase. This type of reading for (43a) is called an
identity reading.10

Now consider the following sentence.

(44) John is the painter. [*predicational reading]

In usual contexts, while it is possible to interpret (44) as an identity sentence
by taking the noun phrase the painter as referential, it is impossible to take
(44) as a predicational sentence. This can be explained on the basis of the
following hypothesis:

(45) A copular sentence of the form “a is the F” is acceptable as a pred-
icational sentence if it is commonly assumed by the speaker and
hearers that there is exactly one F in the world.

We usually assume that there are a lot of painters in the world. However,
the use of a definite description the painter implies that there exists exactly
one painter in the world, and this contradicts the common assumption.

Now consider the following sentence.

(46) John is the painter from Lisa’s village. [okpredicational reading]
10Given a copular sentence containing a definite description in the post-copula position,

we can check whether it has a predicational reading or an identity reading by the following

tests. If a sentence of the form “a is the F” has an identity reading, it is possible to use a

pronominal phrase to refer back to the object introduced by the noun phrase the F. Thus,

if we take the first sentence in (i) as an identity sentence, it is possible to use a pronoun

they as in the second sentence.

(i) John is not the chairman of the committee. They are not the same person.

On the other hand, if we take the first sentence as a predicational one, it is impossible

to use the pronoun they to refer back to both John and the chairman of the committee.

It should be further noticed that (43a) has another reading, a specificational reading. On

this reading, (43a) says the answer to the question “Which person is the chairman of the

committee ?” is not John. We will discuss the specificational reading in the next section.
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Suppose that there is exactly one painter from Lisa’s village, and that this
fact is commonly assumed by the speaker and hearers. Then, (46) is clearly
acceptable as a predicational sentence, because the condition in (45) is sat-
isfied. Note that even in the same setting, it is impossible to interpret (44)
as a predicational sentence. If it were possible to enrich (44) as in (46),
(44) would be acceptable as a predicational sentence, since the condition in
(45) would be satisfied. However, the predicational reading of (44) is quite
impossible. This counts as evidence that the property concept expressed by
the painter in (44) blocks free enrichment.

From the above arguments, we claim the following.

(47) The Semantic Constraint on Free Enrichment (SC).
Free enrichment is blocked for property concepts, whereas it is al-
lowed for object-directed concepts.

This claim diverges from the standard conception of Contextualism, ac-
cording to which the process of free enrichment is directed by pragmatic
considerations (relevance-seeking heuristics in the case of relevance theory),
in accordance with the minimal linguistic constraints (MLC). Under this
conception, we should be able to put additional material into any position
in the logical form of a given utterance. Our arguments show that this is
not the case. Thus, we claim that the Contextualist claim in (23) does not
hold.

(23) The standard conception of free enrichment.
A process of free enrichment can take place if it observes the prag-
matic constraint (PC) and the minimal linguistic constraint (MLC).

Note that we accept PC and MLC; thus our claim is that in addition to
PC and MLC, the semantic constraint SC is at work for the process of free
enrichment.

3.4 An argument against Indexicalism

We have argued that the process of free enrichment is blocked for concepts
expressed by predicate nominals. It should be noted here that the same point
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does not hold for the other three types of pragmatic processes discussed ear-
lier, namely, disambiguation, saturation, and ad hoc concept construction.
It is easy to see that these processes can be applied to concepts expressed
by predicate nominals, as shown in the following examples:

(48) a. This is a bat. [a flittermouse] (Disambiguation)

b. John is the chairman. [the chairman of this committee]
(Saturation)

c. He is an enemy. [an enemy of our group] (Saturation)

d. Jane is a bulldozer. [bulldozer*] (Ad hoc concept construction)

Interpretation of utterances of each sentence would, in an appropriate con-
text, include the bracketed element by using the respective pragmatic pro-
cesses.11 It should be noted that in contrast to the case of free enrichment,
each process can apply to a property concept under the scope of negation.

(49) a. This is not a bat. [a flittermouse] (Disambiguation)

b. John is not the chairman. [the chairman of this committee]
(Saturation)

c. He is not an enemy. [an enemy of our group] (Saturation)

d. Jane is not a bulldozer. [bulldozer*] (Ad hoc concept con-
struction)

These facts show that free enrichment is crucially distinguished from the
other three types of processes in that it is blocked for concepts in a predica-
tive position.

From this, we can draw an argument against the indexicalist view that
free enrichment is reducible to saturation. According to Stanley and Szabó

11In discussing whether indefinite descriptions can have pragmatic enrichment, Bach

(2000) mentions the following example:

(i) Dr. Atkins is not [what I would describe as] a physician but a quack.

In our criterion, this additional bracketed element is not externally supplied to the concept

[a physician], hence not caused by free enrichment. Rather, it is due to the adjustment

of the concept [a physician] and hence is best classified as an instance of ad hoc concept

construction.
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(2000) and Stanley (2002), any nominal expression, whether it appears in
an argument position or in a predicative position, contains a hidden domain
variable, which restricts the extension of the nominal expression. However,
what our argument shows is that predicate nominals never allow contextually
restricted interpretations. The trouble for Indexicalism is that, if a predicate
nominal contains a hidden domain variable, it is difficult to explain why
contextual restriction as in the case of a noun phrase in argument position
is not allowed for predicate nominals. For example, Indexicalism predicts
that the predicate nominal a painter in (50a) has a domain variable D as in
(50b), which restricts the extension of the nominal expression painter.12

(50) a. John is a painter.

b. John is a painterD.

c. John is a painter [a painter from this village].

Thus, it wrongly predicts that the contextual restriction in (50c) is possible.
The point is that Indexicalists like Stanley and Szabó (2000) and Stanley
(2002) fail to notice the fact that the applicability of contextual restriction
(i.e., free enrichment in our terms) is sensitive to the semantic function
an expression plays in a proposition. In this respect, Stanley and Szabó’s
version of Indexicalism has a serious problem.13

3.5 Verbs and adjectives

Verb phrases can be regarded as expressing object-directed concepts, be-
cause they are naturally analyzed as expressions involving reference to events

12Indeed, Stanley and Szabó (2000) and Stanley (2002) posit a more complex form

of hidden variable in a nominal expression in order to capture what Stanley and Szabó

(2000: 242) called “quantified contexts.” However, it does not matter here whether we

take such a complicated form or the simple form as in (50b), since both predict the same

reading in (50c) for (50a).
13The same difficulty applies to those who deny the existence of free enrichment by

assuming that all cases of free enrichment could be reanalyzed as cases of ad hoc con-

cept construction. Carston (2000) suggests this position without endorsing it. Recanati

(2004: 25) also suggests this possibility.
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or states.14 This view is supported by the fact that an anaphoric pronoun
can refer back to a verb phrase that represents an event or state. Thus, the
pronoun it can refer to an event as in (51a) or a state as in (51b).

(51) a. It’s snowing. It will continue until tomorrow.

b. They had many children. It was five years ago.

Given the hypothesis that the class of concepts that allow free enrichment
coincides with the class of object-direct concepts in our sense, we predict that
free enrichment can take place for concepts expressed by verb phrases. This
prediction is borne out by the examples discussed in Section 2; see examples
in (8), (9), (10), and (11). Thus, the verb phrase is snowing in (8a) and
had many children in (9a), repeated below, can be regarded as expressing
object-directed concepts that involve reference to an event of snowing and
a state of having many children, respectively.

(8) a. It’s snowing.

b. It’s snowing [in Tokyo] [at time t].

(9) a. They got married and had many children.

b. They got married and [then] had many children.

Here, the enriched materials make these object-directed concepts more spe-
cific by means of temporal and locative modification.

Next, let us consider the following predicative constructions involving
adjectives.

(52) a. This steak is raw.

b. John is tall.

It is well known that these constructions show a variety of linguistic under-
determinacy effects as in the following examples.

(53) a. This steak is raw [to such and such degree].
14As is well known, Davidson (1967) argues that action verbs are best analyzed as

involving existential quantification over events. Higginbotham (1985) and Parsons (1990),

among others, generalize Davidson’s approach to verbs in general, including state verbs.
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b. John is tall [compared to his classmates/for a football

player].

It should be noted that the processes at issue here are not instances of free
enrichment. The process of modifying the degree of the application of a pred-
icate as in (53a) is an instance of ad hoc concept construction, as discussed
in Section 2.3. The process of providing the criterion of the application of
a predicate, as in (53b), is an instance of saturation: without the criterion,
the utterance of a sentence containing the adjectives would not deliver a
truth-evaluable proposition. These processes are linguistically mandated or
bounded in the sense discussed before, hence not purely pragmatic in our
sense.

We assume that not only predicate nominals but also adjectives express
property concepts. This accounts for why there is no context in which (52b)
could be freely enriched as follows.

(54) John is [tall and clever]

If it were possible to interpret (52b) as in (54), it would be a genuine instance
of free enrichment. In fact, (54) is a development of the logical form of (52b).
However, the interpretation in (54) is not possible, even though we can easily
manipulate the context in such a way that the literal interpretation of (52b)
is not relevant enough so that there is good reason to derive the proposition
in (54). The standard Contextualist account fails here just as in the case of
predicate nominals.

One might argue that the following sentence is a counter-example to our
claim.

(55) My husband is a gentleman [in my parent’s home].

The interpretation of an utterance of (55), in an appropriate context, may
include the bracketed element which seems to be provided on pragmatic
grounds alone. Indeed, this is an instance of free enrichment. However, it
should be noted that (55) could be paraphrased as in (56).

(56) In my parent’s home, my husband is a gentleman.
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It is doubtful that such an occurrence of in my parent’s home is a genuine
modifier of the nominal expression gentleman. This means that the free
enrichment does not take place for the property concept gentleman. One
plausible explanation is that the enriched element [in my parent’s home]
restricts the concept associated with the entire verb phrase, namely, [is a

gentleman], which may be analyzed as involving reference to a certain
state.15

The next question is why free enrichment is blocked for property con-
cepts. Before tackling this important question, however, we first discuss
some possible counter-examples to our claim. This may help clarify our
position.

15Maienborn (2001) calls modifiers like In my parent’s home in (56) “frame-setting”

modifiers and semantically distinguishes them from standard adverbial modifiers.





4. Some challenges and the nature of free

enrichment

In this section, we take up some apparent counter-examples to the claim
that free enrichment does not take place for property concepts. We argue
that they are based upon misunderstandings of the relevant notions and
hence are not genuine counter-examples to our claim.

4.1 Specificational sentences

First, consider the following example.

(57) a. John is the bank robber.

b. John is the bank robber [who was arrested at leices-

ter square yesterday]

An utterance of (57a) in a proper context can be interpreted as expressing
the proposition in (57b). This case might look like a counter-example to
our thesis. However, (57) is not a predicational sentence but what is called
a specificational sentence; the noun phrase the bank robber in (57a) works
differently from the case of predicate nominals in predicational sentences.
To see this, let us first explain the difference between predicational and
specificational sentences. Roughly, a copular sentence of the form “NP1 is
NP2” has a specificational reading if NP2 stands for a predicate and NP1

specifies the value which satisfies it.1 Some examples are given in (58).
1See Higgins (1973), Declerck (1988), Nishiyama (1997, 2003) and Mikkelsen (2005)

for more discussion on specificational constructions. Higgins (1973) calles the NP2 in a

specificational sentence a superscriptional noun phrase. Nishiyama (1997, 2003) calls it a

307
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(58) a. John’s article was the cause of the riot.

b. John’s tie is what I don’t like about him.

At a certain level of semantic representation, the noun phrase in the post
copular position of a specificational sentence is associated with a WH-
question. For instance, the noun phrase the cause of the riot in (58a) is
closely associated with the WH-question, (59).

(59) What was the cause of the riot?

The whole sentence (58a) says the answer to this WH-question is John’s
article. In contrast, the predicate nominal in a predicational sentence is not
associated with such a specificational WH-question. For instance, as noted
in Section 3.1, the predicational sentence in (60) should not be regarded as
an answer to the questions in (61).

(60) John is a linguist. (predicational reading)

(61) a. Who is a linguist?

b. Which person is a linguist?

Rather (60) can be regarded as an answer to the following kind of question:

(62) What is John?

Another characteristic which distinguishes specificational sentences from
predicational ones is that unlike predicational sentences, the order of the two
noun phrases in specificational sentences is reversible. Thus, the sentences
in (58) can be paraphrased as follows.

(63) a. The cause of the riot was John’s article.

b. What I don’t like about John is his tie.

On the other hand, the order of the two noun phrases in (60) is not reversible:

(64) *A linguist is John.

In these two respects, there is a crucial difference between predicational and
specificational sentences.2

noun phrase involving a variable (NPIV).
2A further example may help clarify the distinction between the two readings:
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Having the distinction between the two types of copular sentences in
mind, let us go back to the example in (57). Our claim that (57a) is not
predicational but specificational is based on the following observations. To
begin with, (57a) is not associated with the predicational question as in
(65a), but with the specificational question as in (65b).

(65) a. What is John?

b. Who is the bank robber?

The point is further confirmed by the fact that (57a) can be paraphrased as
(66).

(66) The bank robber is John.

We can conclude that the bank robber in (57a) is not a predicate nominal
expressing a property concept, and hence, that (57) is not a counter-example
to our claim.

A possible confusion comes from the following kind of example: (67a)
can easily be interpreted as (67b).

(67) a. John is a painter from a village.

b. John is a painter from a village [near here].

From this, it might be concluded that the concept expressed by a predicate
nominal could be enriched. In this example, however, the process of free
enrichment applies to the object-directed concept expressed by the noun
phrase a village, which is a part of the property concept expressed by the

(i) What I don’t eat is food for the dog. (Declerck 1988: 69)

(i) is ambiguous between a predicational reading and a specificational reading. On the

predicational reading, (i) is a comment about a particular food identified as “something

which I don’t eat.” (i) says of that food that it has the property expressed by food for the

dog. Notice that here food for the dog is not a referring expression. On the specificational

reading, (i) can be interpreted as (ii).

(ii) It is food for the dog that I don’t eat.

Under this interpretation, what I don’t eat in (i) is not referential. It contains a variable,

which is supposed to be assigned a value. Food for the dog specifies that value.
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whole noun phrase a painter from a village. Thus, this is not a counter-
example to our claim either.

Another potential argument against our claim concerns the following
sentence.3

(68) This is every student. [every student in my class]

The interpretation of an utterance of (68) may include the bracketed element
which is provided by free enrichment. It should, however, be noted that
every student in (68) does not express a property of the referent of this;
indeed, it can be argued that (68) is not a predicational sentence but a
certain type of identity sentence.4 Therefore, we conclude that this is not a
genuine counter-example too.

4.2 Hall’s alleged counter-example

Hall (2008) presents some arguments against the claim that free enrichment
is blocked for predicate nominals.5 In this subsection, we discuss Hall’s
(2008) alleged counter-example and reject it by showing that her argument
depends on some misconceptions of the relevant semantic properties of pred-
icate nominals.

Before examining Hall’s example, it should be pointed out that Hall
seems to misunderstand the thesis at issue. Nishiyama and Mineshima
(2006b) presented an example such as (69) as evidence to support the thesis
in (70).

(69) a. That guy is not a painter.

b. That guy is not a painter [from our village].

(70) Free enrichment cannot take place for the concepts expressed by
predicate nominals.

3This example is pointed out by Chris Tancredi (personal communication).
4See Doron (1988) for this view and further discussion on quantifiers in predicate

position.
5Hall (2008) criticizes the view put forward by Nishiyama and Mineshima (2006b),

which is an earlier version of the view we present here.
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However, Hall (2008: 431) takes (69) as an example to support the claim in
(71).

(71) Free enrichment cannot take place for the concepts expressed by
indefinite descriptions.

It is clear, from the discussion so far, that the hypothesis defended by taking
up an example like (69) is not (71) but (70). That is, the question is whether
free enrichment can take place for predicate nominals, not for indefinite
descriptions. Note that whether a noun phrase is an indefinite description
or not solely depends on its form, i.e., whether it is of the form an F. By
contrast, whether a noun phrase is a predicate nominal or not depends on
the position it occupies in a sentence, more specifically, whether it appears
in the post copular position of a predicational sentence.

Indeed, there are counter-examples to (71), which are already discussed
in (36) at Section 3.2. The relevant examples are repeated here:

(72) a. A painter died. [a painter living in this village]

b. She gave presents to some children but not to others. [some

children at the party]

In these examples, indefinite noun phrases appear in argument position and
hence express object-directed concepts. In this case, it would be easy to
imagine a context in which an utterance of each sentence is relevant when
it is interpreted as including the bracketed element. Thus, a process of free
enrichment can take place for the indefinite description appearing in argu-
ment position. This fact is compatible with the claim in (70) but constitutes
a clear counter-example to the claim in (71).

Contrary to what she claims, however, Hall’s argument (as we will discuss
below) could be viewed as an attempt to show the thesis (70) does not hold
for some case. Setting aside the above problem, then, let us move on to
examine her argument.

Hall (2008: 431) considers the following example:6

6Hall (2008) ascribes this example to Richard Breheny.
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(73) Context: At a departmental party for professors and students. The
professors all attend evening classes at a different college, so they
are students too, and this is (mutually) known to the interlocutors,
who are trying to tell if people at the party are students in the
department, or professors. The speaker points at a professor and
utters (74).

(74) He is not a student.

(75) a. He is not a student.

b. He is not a student [in this department].

Hall claims that the utterance of (74) in this context would be judged to be
true, even though all professors attend evening classes and the speaker and
the hearer know it. According to Hall, this data can naturally be explained
if we assume that the free enrichment to the concept a student takes place
so that the utterance of (74) is interpreted as (75b) rather than (75a). Hall’s
argument here can be summarized as follows.

1. In the context (73), the utterance of (74) can be judged as true.7

2. If the utterance of (74) expresses the proposition in (75a), it would
be judged false, given the fact that all the professors attend evening
classes and the speaker and the hearer share this fact.

7Strictly speaking, Hall says that an utterance of (74) is “uniformly judged

true”(p.432). Surely, it is natural to take an utterance of (74) to be true in the con-

text (73). However, it is possible to judge the utterance to be false; for example, the

hearer who knows that the professor in question studies at evening classes can respond to

the speaker of (74) in the following way.

(i) No, he is a student. He studies at evening classes.

To defend Hall’s position, it might be replied that the interpretation which takes (74) to

be false is due to the fact that (74) is interpreted as in (ii):

(ii) He is not a student [in evening classes].

However, whether this reply is true or not, Hall’s argument should be based on the claim

that the utterance of (74) can be true, rather than “uniformly judged true.” Such a

modification seems not to affect the main point of her argument.
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3. Hence, the utterance of (74) does not express the proposition expressed
as in (75a).

4. On the other hand, if the utterance of (74) expresses the proposition in
(75b), it would be judged as true, on the basis of the same assumption.

5. Therefore, it is reasonable to take the utterance of (74) to express the
proposition in (75b).

The problem of this argument is that there are several ways to interpret
the proposition in (75b); indeed, the notation in (75b) allows several differ-
ent interpretations. To begin with, the concept student has two possible
interpretations: (i) it may be interpreted as an unsaturated concept, i.e., a
concept like enemy or chairman which requires saturation, or (ii) it may be
interpreted as a saturated concept, i.e., a concept like painter which does
not require saturation. In the former case, the proposition in (75b) would
be derived from the logical form as shown in (76) in terms of saturation,
rather than free enrichment.

(76) He is not a student in e.

Thus, if Hall’s example is concerned with free enrichment, the concept stu-

dent needs to be interpreted as a saturated concept. This interpretation,
however, leads to some inconsistency in Hall’s argument. The thesis that the
proposition in (75b) is taken to be true crucially depends on the interpreta-
tion of the negation in (75b). To see the point, consider first the following
example, in which a saturated noun painter appears.

(77) He is not a painter from this village.

Depending upon how to interpret the focus of negation, (77) has at least
three readings.

(78) a. He is not [a painter from this village]F .

b. He is not a painter [from this village]F.

c. He is not [a painter]F from this village.

Here the focused part is indicated by [. . .]F. Now consider the following
conversation:
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(79) A: He is a painter from our village.

B: No, he is not a painter

In this case, it is natural to interpret B’s utterance as (78c), which can be
paraphrased in the following way.

(80) He is from this village but is not a painter.

This means that B’s utterance in (79), if enriched, implies (81).

(81) He is not a painter.

The same thing can be said to Hall’s example. If the concept student is
a saturated concept, the proposition expressed by (74) in that context has
the focus structure as indicated in (82a), and can be paraphrased as (82b).
Thus, it entails the proposition in (82c).

(82) a. He is not [a student]F in this department

b. He is in this department, but he is not a student.

c. He is not a student. [ =(75a)]

However, if the utterance of (74) implies (82c), Hall’s argument is committed
to the claim that the utterance of (74) would be judged to be false after all.
In short, if the concept student is taken to be a saturated concept and
the focus of negation is on this concept, then the reading in which (74) is
construed to be true cannot be salvaged by appealing to free enrichment.

In our view, nouns such as student and professor are semantically am-
biguous: they may be interpreted as expressing saturated concepts or unsat-
urated concepts. Accordingly, there are two possible logical forms associated
with (74).

(83) a. He is not a student

b. He is not a student in e

Under the interpretation in (83a), the utterance of (74) is false.8 By contrast,
under the construal in (83b), there are two possible ways of supplying a value
to e, as in (84a) and (84b), respectively.

8This interpretation is one that the hearer who utters (i) of footnote 7 would typically

have in mind.
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(84) a. He is not a student in [this department]

b. He is not a student in [evening classes]

The natural reading in this context is the one in (84a); the utterance of (74)
would then be true. Thus, in our view, the reading in which the utterance of
(74) is true is captured in terms of saturation, rather than free enrichment.
To sum up, the two readings, namely, the reading in which the utterance
of (74) is true and the reading in which it is false, are compatible with our
position: in the former case, free enrichment does not take place since the
concept expressed by a student is a saturated concept. In the latter case, a
pragmatic process can take place but it is not an instance of free enrichment
but saturation. Hence we conclude that Hall’s example is not a genuine
counter-example to our thesis.

Finally, let us see Hall’s positive proposal on this matter. Based on the
above argument, Hall (2008) suggests the following hypothesis.9

(85) Hall’s pragmatic constraint (I)
Free enrichment can take place for given/backgrounded contents,
while it is blocked for at-issue contents.

The distinction between given and at-issue contents could be interpreted in
several ways, but Hall does not settle one interpretation. One likely interpre-
tation is that a given content corresponds to a question under discussion,
whereas an at-issue content corresponds to an answer to it. Under this
construal, however, there are clear counter-examples to Hall’s hypothesis.
Consider:

(86) To be a painter is fun.

It seems to be plausible to regard a painter to be part of the given content
of this sentence, since it is part of the subject noun phrase of a predicational
sentence. However, if our argument in the previous section is correct, it is a
predicate nominal and hence cannot be subject to free enrichment. On the
other direction, consider Mary’s utterance of (87b) given the question under
discussion indicated in (87a)

9Hall (2008) presents and defends some additional pragmatic constraints, which we will

discuss in Section 6.
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(87) a. Question under discussion: How did you open the door?

b. Mary: I took out the key and opened the door [by using the

key].

In (87b), the enriched element as indicated in the brackets answers the
question under discussion. This shows that free enrichment can take place
for for at-issue contents (construed as an answer to a question). Thus, we
conclude that the Hall’s hypothesis (85) fails to account for the distribution
of free enrichment.

4.3 The nature of free enrichment

We have argued so far that free enrichment is blocked for property concepts,
and that the standard contextualist view, including the current framework
of relevance theory, fails to explain this fact. As we saw in Section 2.2.1, one
major advantage of the standard contextualist position over the indexicalist
position is that it dispenses with covert variables and hence can have ex-
planatory power; it sets out to explain why free enrichment can take place
in terms of pragmatic considerations, without semantic resources such as
covert variables. The situation is analogous to one in which conversational
implicatures are derived from propositions expressed using some pragmatic
principles; in this case it is generally accepted that it is desirable to handle
conversational implicatures without complicating semantic properties of the
linguistic expressions in question.

Now the claim that there is a semantic constraint on free enrichment
may face a similar challenge; it would lack explanatory force if the semantic
constraint in question was simply stipulated. To meet this challenge, we
will argue, in this subsection, that the applicability of free enrichment is
explained in terms of the difference in semantic function between object-
directed concepts and property concepts. That is, we will not only argue
that there is a semantic constraint on free enrichment but also attempt
to answer why such a constraint plays a role in deriving the proposition
expressed by an utterance. More specifically, we will try to answer why
free enrichment is applicable to object-directed concepts, while it is blocked
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for property concepts. In what follows, we will outline the answer to this
question.

To begin with, it is important to recognize the difference in function be-
tween object-directed concepts and property concepts. Recall typical con-
structions that involve expressions associated with object-directed concepts.

(88) {A/Every/Some} painter disappeared.

Here the noun phrase a/every/some painter occurs in argument position
of the sentence and hence the concept painter expressed by the nominal
expression painter is an object-directed concept. As noted in Section 3.1,
such concepts are typically associated with objects in the world; thus, in the
case of (88), it is meaningful to ask which painter or painters the speaker
is talking about by using the noun phrase a/every/some painter. Note also
that, as discussed in Section 3.1, the occurrence of an object-directed ex-
pression allows us to use anaphoric expressions to refer back to the entity
or entities introduced by that expression.

As for object-directed concepts, then, we can argue in the following way.

(R1) The function of object-directed concepts is to pick out an object or a
set of objects that a speaker intends to talk about.

(R2) The expression the speaker uses to indicate an object-directed concept
is just a hint or a clue that might help the hearer to pick out the object
or the set of objects.

(R3) Hence, the hearer has to undertake the process of adding conceptual
material that would provide information sufficient to pick out the in-
tended object. This is nothing but the process of free enrichment.

(R4) For the purpose of picking out objects, a more specific concept with
a restricted range of application must be provided by the process of
adding some conceptual material; to use the terminology of relevance
theory, the process in question is a narrowing of the encoded concept.

It is useful to restate the claim in (R4) as an additional constraint on free
enrichment.

(89) The process of free enrichment must be a narrowing process.
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On the standard Contextualist view, free enrichment takes place in order
to make sense of what proposition the speaker intends to express, that is, to
make sense of the overall proposition expressed by the speaker’s utterance
or, more generally, the speaker’s communicative intention. In our view, the
role of free enrichment is more specific: it takes place in order to specify
what object or objects the speaker intends to talk about ; in other words, the
role of free enrichment is to make sense of the speaker’s referential intention.

Now let us turn to the case of property concepts. Consider a typical
instance of predicational sentences:

(90) Mary is a painter.

In this sentence, the noun phrase a painter is a predicate nominal and the
concept painter expressed by the nominal expression painter is a property
concept (i.e., non-object-directed concept). In this case, it is meaningless to
ask which painter the speaker intends to talk about by using the predicate
nominal a painter. Furthermore, as noted in Section 3.1, a personal pronoun
such as he or she cannot be anaphoric on this predicate nominal (cf. (29)
discussed at page 291).

In the case of property concepts, then, we can argue as follows.
(P1) The function of property concepts is not to pick out objects but to

indicate a property ascribed to an object.
(P2) Accordingly, it does not require the hearer to supply some additional

material that would provide information for picking out objects.
(P3) In order to interpret a property expression, the only thing the hearer

has to do is determine what concept it expresses in a given context.
(P4) In order to do this, the hearer has to decode the linguistic expression

used, and if necessary, to undertake the other three types of pragmatic
processes, namely, disambiguation, saturation, and ad hoc concept
construction.

(P1) says that the function of a property concept in a proposition is to pred-
icate something of an object introduced by some other part of the propo-
sition. Object-directed concepts, by contrast, play a different function: the
concepts themselves point to objects in the world. Free enrichment is spe-
cial in that it is sensitive to this difference in the semantic function between
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object-directed and non-object-directed concepts. In short, a process of free
enrichment can only apply to a concept that points to objects, and its effect
is to narrow down that concept. Recall here that as shown by the examples
in (48) at page 301, the other three types of pragmatic processes, namely,
disambiguation, saturation, and ad hoc concept construction, operate on a
concept independently of its semantic function in a proposition.

Our conception of free enrichment may be clarified in terms of a model
of how the various pragmatic processes work in the course of the deriva-
tion of a proposition expressed. According to this model, disambiguation,
saturation, and ad hoc concept construction, on the one hand, and free en-
richment and reference assignment, on the other, work at different stages in
the cognitive process of deriving the proposition expressed by an utterance.
More specifically, we hypothesize that there are two different phases in the
process of deriving the proposition expressed. The first phase consists of the
process of what we call concept-determination, namely, the process of deter-
mining the concept expressed by a linguistic expression; such a process takes
place independently of the semantic function a concept plays in a proposi-
tion. Pragmatic processes performed in the phase of content-determination
include disambiguation, saturation, and ad hoc concept construction. The
overall process of determining a concept expressed is shown in Figure 4.1.

The second phase consists of the process of what we call reference-
determination, namely, the process of determining the reference of an object-
directed concept provided as an output by a concept-determination process.
The pragmatic processes pertaining to reference-determination include free
enrichment and reference assignment, as pictured in Figure 4.2.

It is worth noting that under the standard conception of relevance theory
(cf. Carston 2004), both (91) and (92) are regarded as cases of saturation.

(91) a. I like John’s book. [the book written by John]

b. This paper is too long. [too long for publication in this

journal]

(92) a. John/He/That guy is young. [johnx / hex / that guyx]

b. The murderer is insane. [the murderery] (referentially used
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linguistic expressions

a set of lexically encoded concepts C1,..., Cn

  linguistic decoding

the selected concept Ck

  (1) disambiguation

saturated/adjusted concepts

  (2) saturation [saturation A]
  (3) ad hoc concept construction

object-directed concepts property concepts

Fig. 4.1 A model of concept-determination processes.

descriptions)

In our view, there is an important difference between the examples in (91)
and those in (92). In (91), some concepts are contextually provided in
order to determine complete propositions. Thus, in the case of (91a), some
relation R that holds between the book and John is contextually provided.
In the case of (91b), a concept that fills the gap X in [too long for

X] is supplied. We can say that “saturation” in (91) is an instance of
the process of concept-determination. On the other hand, the examples
in (92) are instances of reference assignment, where indices like x, which
point to particular objects in the world, are assigned to concepts expressed
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object-directed concepts

enriched concepts

  (4) free enrichment

indexed concepts

  (5) reference assignment
 [saturation B]

objects in the world

  referring

Fig. 4.2 A model of reference-determination processes.

by referential expressions. To distinguish these two types of “saturation”
processes, we call the processes operating in (91) “saturation” (Saturation
A), and those in (92) “reference assignment” (Saturation B).

It should be noted that saturation in our sense (i.e., Saturation A) can
be applied to property concepts, as shown in (93).

(93) a. This is John’s book. [a book written by John] (predicational
reading)

b. He is an enemy. [an enemy of our group] [= (48c)]

In contrast, reference assignment (i.e., Saturation B) cannot be applied to
property concepts. Relevant examples are the following.

(94) a. John is that guy. [that guyx]. (identity reading)

b. He is John Smith. [(i) John Smithx (identity reading) / (ii) a

man named “John Smith” (predicational reading)]
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The only possible reading of (94a) is the identity reading, where the noun
phrase that guy functions as a referential noun phrase. The example in
(94b), where a proper name John Smith occurs in a predicative position,
can be interpreted either as having the identity reading or the predicational
reading. In the case of the predicational reading, the noun phrase John
Smith does not need to be indexed, since it does not purport to refer to
an individual at all. Indeed, it can be paraphrased as a man named “John
Smith,” which stands for a property ascribed to the individual referred to
by the subject noun phrase.10 This contrast would suggest that saturation
and reference assignment are different kinds of pragmatic processes which
work at different stages of derivation: like disambiguation and ad hoc con-
cept construction, saturation works in the phase of concept-determination,
whereas like free enrichment, reference assignment works in the phase of
reference-determination.

10For a discussion on proper names in a predicative position, see Nishiyama (2003).



5. Free enrichment and the overgeneration

problem

5.1 A problem of “overgeneration”?

Stanley (2005) presents the following argument against those who admit
optional pragmatic processes like free enrichment. An utterance of (95a) can
communicate the proposition expressed by (95b), but never the proposition
expressed by (95c).

(95) a. Every Frenchman is seated.

b. Every Frenchman in the classroom is seated.

c. Every Frenchman or Dutchman is seated.

Stanley argues that if the process of free enrichment were constrained only
by general pragmatic principles, it would be a mystery why an interpreta-
tion like (95c) is blocked, since in certain contexts there might be a good
pragmatic reason to derive (95c) from the utterance of (95a). According to
Stanley, if we admit the process of free enrichment, there would be numerous
sentences that would be assigned interpretations that they do not actually
have. This is what he calls the problem of “over-generation” for the free
enrichment view. Thus Stanley (2005: 243, footnote 13) says,

Indeed, in the thousands of pages that have been written over
the last decade arguing for pragmatic (non-semantic) accounts
of a wide range of apparently semantic phenomena, I am not
aware of a single attempt to provide a response to the threat
of over-generation to pragmatic theories. Indeed, I am not even

323
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aware, aside from passing footnote references, [of] a discussion
of the over-generation threat facing such theories.

On the position of Indexicalism defended by Stanley, the problem of “over-
generation” does not arise, simply because it is assumed that there is no
process of “free enrichment,” and hence, that all elements in the truth-
conditional content of an utterance are the result of assigning values to the
elements in the logical form of a sentence uttered. As we have seen so far,
Stanley’s indexicalist view nonetheless faces the challenge from Contextual-
ism: appealing to covert variables tends to be non-explanatory and hence
less attractive than the contextualist view in which how free enrichment
works could be explained in terms of pragmatic notions.

Now we agree that the standard contextualist view has difficulty in ac-
counting for the problem of “over-generation”, since in the standard view
there is almost no linguistic constraint upon the applicability of free enrich-
ment. However, this does not mean that we must deny the existence of
free enrichment. Indeed, given our semantic constraint on free enrichment,
we can avoid the problem of “over-generation,” and defend the existence
of free enrichment. Moreover, as we argued in Section 4.3, the existence
of a semantic constraint on free enrichment is not stipulated but can be
explained in terms of differences in function between object-directed and
non-object-directed concepts.

Indeed, Stanley’s example above is explained in terms of the constraint
we already observed. Recall that we proposed the following constraint on
free enrichment in Section 4.3.

(89) The process of free enrichment must be a narrowing process.

To see how this constraint works to avoid the problem of “over-generation,”
look at the examples in (95) above. In relevance-theoretic terms, the process
of modifying the concept [frenchman] in (95b) is an instance of narrow-
ing, namely a process of restricting the extension of a concept, whereas the
process in (95c) is an instance of loosening, namely a process of broadening
the extension of a concept. In fact, the interpretation in (95c) does not
contribute to the determination of what the speaker intends to talk about.
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Thus, the constraint in (89) correctly predicts that the reading in (95b) is
available, while the reading in (95c) is not.

5.2 Hall’s pragmatic account

The semantic constraint on free enrichment we propose here is not as-
sumed within the standard framework of relevance theory. Thus, Carston
(2002a: 40) claims:

[A]s well as not uniquely determining the objects they can be
used to refer to, natural language expressions seem to be in-
trinsically underdetermining of the properties and relations they
may be used to predicate of an object.

This means that standard relevance theory does not rely on the seman-
tic constraints on free enrichment to avoid Stanley’s over-generation prob-
lem. Recently, however, Hall (2008) has defended standard relevance theory
against Stanley’s objection, arguing that an interpretation like (95c) can be
blocked by general pragmatic considerations alone. Thus, Hall claims:

In principle, any local enrichments may be possible, but since
enrichment, like any pragmatic process, will take place only as
far as it has some worthwhile effects, it should be possible to
predict, for any given utterance, how much enrichment will take
place [...].” (Hall 2008: 452–453)

In this section, we argue that Hall’s pragmatic account has some serious
problems. In Section 5.2.1, we take up cases of the over-generation of dis-
junctive elements, and in Section 5.2.2, we consider cases of conjunctive
elements.

5.2.1 Disjunction

Hall’s pragmatic solution for the over-generation problem of disjunctive el-
ements as in (95c) is based on the following claim:
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(96) Hall’s pragmatic constraint (II)
Any pragmatic inference that derives a less informative proposition
than its premise(s) is blocked since it lacks a motivation for expend-
ing extra effort.

Her argument runs as follows (Hall 2008: 451–452):

A1. A pragmatic inference from (95a) to (95c) requires or -introduction.

A2. or -introduction always has a trivial result, since the output propo-
sition, schematically represented as P or Q, is considerably less in-
formative than the input proposition P .

A3. Pragmatic inference involves the expenditure of processing effort, so
it requires some motivation (e.g., the lack of expected informative-
ness or relevance); in the absence of any motivation for expending
extra effort, pragmatic inference won’t get off the ground.

A4. Any inference that derives a less informative proposition than its
premise(s) lacks a motivation for expending extra effort.

A5. Therefore, the inference from (95a) to (95c) is blocked.

This account has several problems. The first one is concerned with the
notion of “or -introduction” in A1. It should be noted that the rule of
or -introduction in the standard sense is a logically valid inference rule,
which takes an arbitrary proposition as premise, and derives its disjunc-
tion with any other arbitrary proposition as conclusion (cf. Sperber and
Wilson 1986/95: 96).

(97) or -introduction

Input: P

Output: P or Q

However, note that (95c) cannot be paraphrased as (98).

(98) Every Frenchman is seated or every Dutchman is seated.

Thus, the pragmatic inference from (95a) to (95c) is not a case of or -
introduction in the sense of (97). One might argue that “or -introduction”
in A1 should be understood as “or -enrichment” in the following sense.
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(99) or -enrichment is a general pragmatic process that takes an arbitrary
proposition as input and derives the one enriched with a disjunctive
element somewhere in the proposition.

Accordingly, A1 and A2 should be replaced by A1′ and A2′, respectively.

A1′. A pragmatic inference from (95a) to (95c) requires or -enrichment.

A2′. or -enrichment always has a trivial result, since the output proposi-
tion is considerably less informative than the input proposition.

However, there are counter-examples to A2′. Recall Stanley’s examples in
(95a) and (95c).

(95) a. Every Frenchman is seated.

c. Every Frenchman or Dutchman is seated.

Here, (95a) does not entail (95c); rather, (95c) entails (95a). Note that ac-
cording to the standard definition of informativeness, proposition P is more
informative than proposition Q if and only if P entails Q but Q does not
entail P , i.e., P asymmetrically entails Q. If we adopt this definition of
informativeness, then it follows that the output proposition (95c) is more
informative than the input proposition (95a). More generally, adding a dis-
junctive element to a concept appearing in a downward entailment context
such as the restrictor of a universal quantifier and the antecedent of a con-
ditional gives rise to a more informative proposition. Some other counter-
examples to A2′ are given in (100) and (101).

(100) a. If John met a painter, I will be surprised.

b. If John met a painter or a writer, I will be surprised.

(101) a. Everyone who meets a painter will be disappointed.

b. Everyone who meets a painter or a writer will be disappointed.

Here the propositions in (b) are more informative than the propositions
in (a); in these cases, or -enrichment does not weaken but strengthen the
proposition expressed. We conclude that even if we replace A1 and A2 with
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A1′ and A2′, Hall’s pragmatic account still cannot block the over-generation
caused by disjunctive elements.

The second problem with Hall’s pragmatic account is that the claim in
A4, repeated here, is simply false.

A4. Any inference that derives a less informative proposition than its
premise(s) lacks a motivation for expending extra effort.

There are two cases in which a pragmatic inference derives a less informa-
tive proposition but has a motivation for expending effort. The first one is
concerned with free enrichment. Consider the following examples.

(102) a. Every window is open.

b. Every window in Mary’s room is open.

(102a) can express the proposition in (102b) via free enrichment. But (102b)
is less informative than (102a), since (102a) entails (102b) while (102b) does
not entail (102a).

The second type of counter-examples to A4 is concerned with ad hoc
concept construction. Consider (103):

(103) a. I met a Frenchman.

b. I met a Frenchman or Belgian. (cf. Hall 2008: 451)

c. I met a frenchman*

d. [frenchman*] = [french-speaker]

(103a) can be loosely interpreted as (103b), when French-speakers are rel-
evant in the context. This interpretation is an instance of ad hoc concept
construction, since the similarity between the concept frenchman and bel-

gian (i.e., the property of being a French-speaker in this case) is crucial
for deriving the loosened interpretation. Note that (103b) is less informa-
tive than (103a), because (103a) asymmetrically entails (103b). Since A4

is claimed to hold for any kind of pragmatic process, it fails to provide the
reason why the disjunctive interpretation is possible in the case of ad hoc
concept construction, whereas it is impossible in the case of free enrichment.
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This would suggest that the difference between these two cases cannot be
explained by general pragmatic considerations alone.

In contrast to Hall’s pragmatic constraints, our semantic constraints on
free enrichment, repeated below, can account for the phenomena discussed
so far.

(104) Semantic Constraints on Free enrichment:

a. Free enrichment is applicable to object-directed concepts, but it
is blocked for property concepts in general.

b. If free enrichment is applicable, it must be a narrowing process.

Free enrichment is allowed in (102b), since the nominal window in every
window expresses an object-directed concept and the process in question is
a narrowing process. On the other hand, the interpretation in (103b) is an
instance of ad hoc concept construction, hence the constraint in (104b) does
not apply to this case.

5.2.2 Conjunction

Stanley also presents an example involving conjunction as a case of over-
generation by free enrichment (Stanley 2002: 165–6). Suppose that Bill ut-
ters (105b) in the context shown in (105a).

(105) a. Context: Everyone who likes Sally likes his mother.

b. Bill: Everyone likes Sally. (cf. Stanley 2002: 165)

Even in the context of (105a), Bill’s utterance in (105b) could not commu-
nicate the proposition in (106).

(106) Everyone likes sally and his mother.

According to Stanley, however, if there were a process of free enrichment,
then it would be possible to utter (105b) and thereby successfully deliver
(106) as an explicature. But this is not possible. Thus, he concludes that
the hypothesis that there are such pragmatic processes should be rejected.
Hall (2008) takes up this example and argues that the alleged case of over-
generation can be avoided using general pragmatic constraints.

Hall’s account is based on the following constraint.
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(107) Hall’s pragmatic constraint on free enrichment (III)
If an assumption (developed from the logical form) is needed as a
premise in the derivation of further intended aspects of meaning,
then it cannot be developed any further at the level of proposition
expressed. (Hall 2008: 447)

Then Hall’s account goes as follows.
1. The proposition everyone likes Sally is needed as a premise to an

inference process together with the context given in (105a) to derive
the proposition everyone likes his mother.

2. Thus, the constraint in (107) predicts that the proposition everyone

likes Sally cannot be developed any further at the level of proposi-
tion expressed.

3. Hence, Bill’s utterance in (105b) cannot express the proposition in
(106).

In this case, Hall’s pragmatic constraint in (107) successfully explains why
adding a conjunctive element as in (106) is blocked.

However, there is a more difficult case, as pointed by Hall herself. Con-
sider Bill’s utterance of (108c) in the context of (108a) and (108b).

(108) a. Context: If John likes Sally and his mother, then he likes domi-
nant women. (If P and Q then R)

b. Independently motivated assumption: John likes his mother.
(Q)

c. Bill: John likes Sally. (P )

(109) #Explicature: John likes sally and his mother. (P and Q)

Even in the context of (108a), Bill’s utterance could not express the propo-
sition in (109). But the constraint in (107) predicts that it could, since the
proposition in (109) is needed as an input to an inference process together
with the context in (108a) to derive the proposition John likes dominant

women (R).
To solve this problem, Hall considers two possible ways of deriving

the same implication (Hall 2008: 448ff.), which we call “Derivation A” and
“Derivation B.”
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• Derivation A starts with the logical form P and the independently mo-
tivated assumption Q. Then the explicature, P and Q, is derived via
free enrichment. Since the context contains the assumption If P and
Q then R, the contextual implication R is derived by an application
of modus ponens.

• Derivation B starts with the logical form P , and the explicature is
the same proposition P . Since the context contains the assumption
If P and Q then R, the contextual implication If Q then R can be
derived by an application of conjunctive modus ponens as shown in
(110) below. Then, given an independently motivated assumption Q,
one can obtain the desired contextual implication R via modus ponens.

(110) Conjunctive modus ponens (cf. Sperber and Wilson 1986/95: 99)

Input: (i) If P and Q, then R

(ii) P

Output: If Q then R

It has been argued within relevance theory that conjunctive modus ponens
is psychologically plausible, while introduction rules, including the rule of
and -introduction, are not; that is to say, introduction rules play no part in
the spontaneous deductive processing of information (cf. Sperber and Wilson
1986/95: 95–100). Based on these claims, Hall (2008) argues that Derivation
B is psychologically more plausible than Derivation A.

Hall’s argument here can be summarized in the following way.

1. Given the context in (108a) (= If P and Q, then R), the proposition
John likes Sally (= P ) is needed as a premise in the derivation via
conjunctive modus ponens to yield the proposition If John likes his

mother, then he likes dominant women ( = If Q then R).

2. Then, the pragmatic constraint in (107) implies that the proposition
John likes Sally cannot be developed any further at the level of
proposition expressed.
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3. Hence, Bill’s utterance in (108c) cannot communicate (109) as a propo-
sition expressed (i.e., as an explicature).

Now we can see that the general pragmatic constraint in (107) implies the
following constraint as a corollary.

(111) In any context, a proposition P cannot be developed into a proposi-
tion that is logically equivalent to P and Q at the level of proposition
expressed.

However, there are two problems with Hall’s pragmatic account. Firstly,
consider Bill’s utterance of (112c) in the context of (112a) and (112b).

(112) a. Context: If someone likes Sally and his mother, then people will
be surprised.

b. Independently motivated assumption: Everyone likes his mother.

c. Bill: Someone likes Sally.

(113) #Explicature: Someone likes Sally and his mother.

Even in the context of (112a), Bill’s utterance in (112c) could not express
the proposition in (113). But the pragmatic constraint in (107) predicts that
it could, since the proposition in (113) is needed as an input to an inference
process together with the context in (112a) to derive the proposition people

will be surprised. Note here that Hall’s derivation using conjunctive
modus ponens cannot apply to this case, since (113) cannot be paraphrased
as a propositional conjunction as shown in (114).

(114) Someone likes Sally and someone likes his mother.

Thus, Hall’s revised solution is not enough to avoid the over-generation
problem for conjunctive elements.

Secondly, if our claims in the previous sections are correct, free enrich-
ment can never take place for property concepts. However, Hall’s pragmatic
constraint in (107) fails to account for this type of restriction. If there was
such a process of enriching a property concept, it would be a process operat-
ing on a constituent of a proposition, not a process going beyond the level of
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full proposition. Thus, if there was such a process of enriching the concept
painter in (115a) so as to obtain the proposition in (115b), it would be a
process that develops a given logical form.

(115) a. John is a painter.

b. John is a painter [living in this village].

This case is structurally similar to the standard case of nominal restric-
tion, i.e., the case of enriching the concept painter in (116a) to derive the
proposition in (116b).

(116) a. {A/Evenry} painter disappeared.

b. {A/Evenry} painter [living in this village] disappered.

To use Hall’s terminology, the incorporation of an additional material in
both cases arises from local development, as opposed to global inference.
If our argument in Section 3 is correct, however, there is an important
contrast between these two cases: enriching an object-directed concept as
in (116) is possible, whereas enriching a property concept as in (115) is
not. If the constraint in (107) does not allow free enrichment to apply to
property concepts, then it would lead to the undesirable consequence that
free enrichment does not take place for nominal concepts at all, whether they
appear in argument position or in predicative position. We can conclude
that the type of constraint on free enrichment as exemplified in (115) is not
accounted for in terms of purely pragmatic principles such as the one in
(107).

Note that our constraints correctly block the interpretations in (106),
(109), and (113), since in these cases, the additional elements do not narrow
down object-directed concepts.

(106) #Everyone likes Sally and his mother.

(109) #John likes Sally and his mother.

(113) #Someone likes Sally and his mother.

We thus conclude that Hall’s pragmatic approach to the “overgeneration”
problem faces serious troubles, and that our semantic account is preferable
both on conceptual and empirical grounds.





6. Summary and Conclusion

In the final section, we will discuss how Contextualism and the Underde-
terminacy Thesis can be properly understood given the existence of the
semantic constraints on free enrichment.

As we argued in Section 2.4, the semantic constraints on free enrichment
we proposed are not assumed in the standard framework of Contextualism,
including relevance theory. However, to claim this is not to commit our-
selves to Indexicalism. Unlike indexicalists, we do not deny the existence of
free enrichment. Thus, we propose an alternative version of Contextualism,
which is compatible with the claim that free enrichment can never intrude
into the position occupied by a property concept. To clarify our position, it
is worth reconsidering how the Underdeterminacy Thesis, one of the most
important claims in relevance theory, should be understood given our pre-
vious argument. As noted in Section 2, the Underdeterminacy Thesis is
characterized as follows (cf. Carston 2002a: 19–20):

The Underdeterminacy Thesis (UT): The linguistically en-
coded meaning of a sentence used underdetermines the proposi-
tion expressed by the utterance.

UT claims that there are considerable pragmatic tasks involved in arriving
at the proposition the speaker intends to express. Thus, anyone who accepts
UT is committed to the following claim.1

1In Section 2, the position rejecting UT is called Literalism, following the terminology

of Recanati (2004). According to Literalism, the proposition expressed by an utterance

is fixed by the linguistic rules independently of any pragmatic consideration. As noted in

Section 2, it is difficult to maintain Literalism, because even the tasks of disambiguation

and saturation require some pragmatic consideration.
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(117) Non-literalism: The proposition expressed by the utterance of a
sentence S is not solely determined by the linguistic rules associated
with S. Some pragmatic processes are required in order to determine
the proposition expressed by an utterance.

However, there is a vagueness about the word “pragmatic processes.” Ac-
cordingly, there are at least three ways of interpreting UT, depending on
how to understand the extent of the required pragmatic processes. The first
reading is what we called “Indexicalism” in Section 2:

(118) Indexicalism. The pragmatic processes involved in the determi-
nation of the proposition expressed by an utterance are exhausted
by linguistically mandated ones, namely, disambiguation and satu-
ration.

As discussed in Section 2, indexicalists like Stanley (2000) deny the exis-
tence of optional pragmatic processes like free enrichment, and claim that
all apparent cases of free enrichment should be analyzed as instances of
saturation.2

The second reading of UT is as follows:

(119) Radical Contextualism:

a. The pragmatic processes involved in the determination of the
proposition expressed by an utterance are not exhausted by lin-
guistically mandated ones, namely, disambiguation and satura-
tion. That is, some optional pragmatic processes are required.

b. Optional processes involved in the determination of the proposi-
tion expressed by an utterance are solely directed by pragmatic
considerations in the sense that, except for the minimal linguis-
tic constraint (MLC), there is no linguistic factor or constraint
involved in the way the processes work.

2It is noted that Stanley (2005), against relevance theorists, argues that the alleged

cases of ad hoc concept construction do not contribute to the truth-conditional content of

an utterance. See Wilson and Sperber (2002, 2005) for a defense of the relevance-theoretic

view.
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We call this position“Radical Contextualism.” Like Radical Contextualists,
we do not deny the existence of optional pragmatic processes, in particular,
the existence of free enrichment. Thus, we accept the claim in (119a). In
this respect, we side with the contextualist positions. What distinguishes
our position from Radical Contextualism is rejection of the claim in (119b).
According to the claim in (119b), the conceptual schema delivered by the
encoded logical form of an utterance provides the mere “skeleton” on which
a proposition expressed is developed, and except for the case of disambigua-
tion and saturation, the gap between the “skeleton” and the proposition ex-
pressed is bridged by pragmatic considerations without semantic constraints.
We reject this view. As discussed in Section 2, we take there to be two types
of optional pragmatic processes, namely free enrichment and ad hoc concept
construction. We claim that the conceptual schema delivered by the logical
form of an utterance plays a more important role in deriving the proposition
expressed through each type of optional pragmatic process, in the following
way:

(120) a. Ad hoc concept construction is linguistically bounded in the
sense that the range of possible interpretations is provided by
the lexical-encyclopedic knowledge concerning the encoded con-
cept.

b. The applicability of free enrichment is constrained by the se-
mantic function an encoded concept plays in a proposition. In
particular, free enrichment is blocked for property concepts.

Thus we propose the following interpretation of UT:

(121) Our version of Contextualism

a. The pragmatic processes involved in the determination of the
proposition expressed by an utterance are not exhausted by lin-
guistically mandated ones, namely, disambiguation and satura-
tion. [= (119a)]

b. Optional processes involved in the determination of the propo-
sition expressed by an utterance are semantically constrained as
in (120).
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The claim in (121b) implies that the “skeleton” provided by the encoded
logical form of an utterance imposes a strong semantic constraint on the way
in which a possible proposition could be developed by optional pragmatic
inferences. In particular, how free enrichment works is sensitive to whether
the target concept is object-directed or not. In this respect, our position
is essentially different from the radical contextualist position in (119). The
positions we considered so far may be summarized as follows:

Does the linguistic meaning fully determine
the proposition expressed by an utterance?

Yes
Literalism

No
Non-literalism

Are optional pragmatic processes involved
in the determination of a proposition expressed?

Yes
Contextualism

Are there semantic constraints imposed
on optional pragmatic processes?

Yes
Our position

No (except for MLC)
Radical Contextualism

No
Indexicalism

To sum up, we have shown that free enrichment can never intrude into
the position occupied by a property concept in a logical form. To inter-
pret property expressions such as predicate nominals and adjectives, hearers
cannot use free enrichment at all. Based on the existence of this semantic
constraint, we then argued that both the standard version of Contextualism
(Radical Contexualism), including current relevance theory, and Indexical-
ism are mistaken in their conception of the way that linguistic semantics
is related to the pragmatic processes involved in the determination of the
proposition expressed. Radical Contextualism is mistaken in that it holds
that a purely pragmatic process of free enrichment is not semantically con-
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strained. Indexicalism, on the other hand, is mistaken in that it denies the
existence of free enrichment and maintains that no pragmatic processes are
allowed to enter into the proposition expressed unless the linguistic meaning
of the sentence itself so demands. Furthermore, Indexicalism provides wrong
predictions for predicational sentences. By contrast, our new version of Con-
textualism is sensitive to the semantic constraint of free enrichment, and the
over-generation problem of Contextualism, pointed by Stanley (2002, 2005),
can be appropriately avoided within this framework.





Summary of the Thesis

In this thesis, we have investigated various aspects of inference in natural
language. Our main contributions can be summarized as follows.

In Chapter 1, we have introduced a syllogistic proof system for reasoning
with inclusion and exclusion relations, aiming at a better understanding of
inferences with basic categorical (quantified) sentences in natural languages.
Compared to existing systems for syllogistic inferences, our proof system has
the advantage of simplicity; in particular, it succeeds in formulating cate-
gorical syllogisms without appealing to axioms or inference rules concerned
with sentential negation. It also contributes to the program of natural logic,
one of whose aims is to study how significant parts of natural language in-
ferences can be formalized in a more simple and efficient logical system than
standard systems such as first-order logic. We proved the completeness and
normalization theorems, and then provided a precise characterization of nor-
mal proofs in this proof system. The simplicity of the system enables us to
characterize the notion of normal proofs in a perspicuous way, and thereby
to make comparison with other logical systems easier.

We then showed that categorical syllogisms with and without existen-
tial import can be faithfully embedded into our proof system. To make a
connection with standard logical systems, we also showed that our proof sys-
tem can be faithfully embedded into an implicational fragment of a natural
deduction system for minimal propositional logic. The proofs of these re-
sults relied on purely proof-theoretic methods, i.e., syntactic transformation
between normal proofs in each system.

We also established a correspondence between our proof system and

341



342 Summary of the Thesis

an inference system for Euler diagrams. This connection is theoretically
important because both syllogistic and diagrammatic inferences have been
of central importance in the cognitive study of human deductive reasoning,
yet a precise relationship between linguistic and diagrammatic proof systems
has not been provided in the previous literature.

As a step towards a more expressive system that is suitable for repre-
senting a wider range of inferences in natural languages, we extended our
basic syllogistic system with intersection, and showed a completeness result
with respect to its natural semantics. This kind of extensions will be a basis
for a more realistic framework for linguistic analyses.

In Chapter 2, we studied presuppositions from a proof-theoretical point
of view. We focused on the case of existential presuppositions triggered by
definite descriptions, which has long been discussed in the philosophy and
linguistics literature and hence serves a representative case for the study of
presuppositions.

We started with a brief overview of the controversy between quantifica-
tional and referential analyses of descriptions; we provided some linguistic
evidence against the quantificational (Russellian) analysis and then argued
that the referential (presuppositional) analysis has an explanatory advan-
tage in that it can explain the peculiar behavior of descriptions in terms of
a general mechanism of presupposition projection.

We compared two influential formal approaches to presupposition pro-
jection: Dynamic Semantics and Discourse Representation Theory. We ar-
gued that both approaches have empirical and methodological problems and,
accordingly, that it is worth exploring an alternative framework in which in-
ferences with presuppositions play a central role in accounting for projection
behavior.

We then proposed a proof-theoretical framework for handling existen-
tial presuppositions of descriptions, building on the study of ε-calculus and
constructive type theory in logic and computer science. In this framework,
processes of representing and reasoning about presuppositional contents are
formalized as natural-deduction proofs. We showed that the difficulties con-
fronting the previous approaches (Dynamic Semantics and Discourse Rep-
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resentation Theory) can naturally be avoided without complicating the se-
mantic mechanisms handling presupposition projection. We also discussed
how to extend our theory to handle various kinds of accommodation strate-
gies (i.e., local, global, and intermediate accommodation). In future work,
it will be interesting to see how our proof-theoretical framework can ap-
ply to various presupposition triggers other than the definite descriptions as
discussed in the current linguistics literature.

In Chapter 3, we discussed the nature of pragmatic processes called
free enrichment from a relevance-theoretic point of view. We started by
classifying three levels of meaning involved in the overall process of utterance
interpretation, namely (i) linguistic meaning, (ii) proposition expressed, and
(iii) implicature. We concentrated on the distinction between (i) and (ii),
and addressed the question of how a hearer can bridge the gap between
the linguistic meaning of a sentence and the proposition expressed by the
utterance of that sentence.

Two approaches to this issue were discussed: Indexicalism and Contextu-
alism. Indexicalism postulates covert variables for various context-sensitive
constructions, whereas Contextualism attempts to fill a gap between a lin-
guistic meaning and the proposition expressed, solely by relying on prag-
matic considerations, that is, without complicating the syntax and semantics
of the constructions in question.

We classified four types of pragmatic processes pertaining to the deriva-
tion of a proposition expressed: disambiguation, saturation, free enrichment,
and ad hoc concept construction. While the Contextualist position admits
all four types of pragmatic processes, the Indexicalist position only admits
disambiguation and saturation. We provided a novel characterization of
the distinction between free enrichment and ad hoc concept construction,
a distinction that has remained obscure in the literature. We pointed out
that under the standard Contextualist conception, free enrichment is solely
constrained by pragmatic considerations (except for the minimal linguistic
constraint).

We then argued that this standard conception of free enrichment has a
serious problem. The main empirical problem posed for the Contextualist
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position is that free enrichment is blocked for a concept expressed by a
predicate nominal, i.e., what we called a property concept. In our view, free
enrichment is only applicable to an object-directed concept, a concept whose
semantic function consists in referring to or ranging over objects in the world.
We argued that both Indexicalist and Contextualist views have difficulty in
accounting for such a constraint as imposed by predicate nominals. More
specifically, the Indexicalist position stipulates covert variables for nominal
expressions, whether they appear in argument position or in predicative
position; consequently, it predicts that contextual restriction on predicate
nominals is possible in principle, independently of the semantic function it
plays in a proposition. If our argument is correct, this assumption has to
be rejected. Contextualism, on the other hand, fails to explain why the
process of free enrichment is blocked for property concepts, since the only
constraints (except for the minimal linguistic constraint) imposed on the
way it works are pragmatic ones.

We discussed some challenges to our claim, and argued that they did
not make genuine counterexamples. We then argued that the semantic con-
straint on free enrichment can be explained in terms of the differences in
function between object-directed concepts and property concepts. Our con-
ception of free enrichment was made clear by comparing it with the recent
pragmatic approach proposed by Hall (2008), who defended the standard
framework of relevance theory. We argued that Hall’s argument against our
claim is based on a certain misconception of the relevant semantic notions;
more specifically, Hall’s argument fails to appreciate the semantic difference
between object-directed and property concepts.

Finally, we addressed the Indexicalist objection to those who admit free
enrichment, as first pointed out by Jason Stanley in his series of papers
(Stanley 2002, 2005). Hall (2008) addressed Stanley’s objection from the
standpoint of relevance theory. We argued that while Hall’s pragmatic ap-
proach fails to handle some typical examples discussed by Stanley and oth-
ers, the semantic constraints on free enrichment we proposed can naturally
avoid Stanley’s overgeneration problem without further stipulations.

Currently, various conceptions of semantics-pragmatics interface, other
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than those discussed in this chapter, have been proposed by linguists and
philosophers. We left it for future research to explore the consequence of our
view on these various conceptions of how linguistic meaning is related to the
proposition expressed by an utterance or, more generally, how pragmatic
inferences intervene in semantic representations.
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Stenlund, Sören. (1975). Descriptions in intuitionistic logic. In S. Kanger
(ed.), Proceedings of the Third Scandinavian Logic Symposium. 197–
212.

Strawson, Peter, F. (1950). On referring. Mind 59. 320–344.

Strawson, Peter, F. (1952). Introduction to Logical Theory. London:
Methuen.
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Szabó, Zoltán Gendler. (2003). On qualification. In J. Hawthorne (ed.),
Philosophical Perspectives 17: Language and Philosophical Linguistics.
409–438.
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