
The Challenge of Composition in
Distributional and Formal Semantics

Part II

Ran Tian1, Koji Mineshima2 and Pascual Martı́nez-Gómez3

1Tohoku University, Japan
2Ochanomizu University, Japan

3AIST, Japan

IJCNLP 2017, Taipei, Taiwan
November 27, 2017

1 / 51

Three Challenges

1. Meaning Representations (MRs): what are proper MRs for natural
languages?

2. Compositional Semantics: how to compute the MR of a complex
expression from the MRs of its parts?

3. Inference: how can we do inference with MRs?

• We start with Question 2:
• Combinatory Categorial Grammar (CCG)
• Lambda Calculus

• And then move on to Question 1 and Question 3
• Predicate-argument structure, first-order logic, and

higher-order Logic
• Inference-first conception: an MR is good if it enables correct

and efficient inferences

2 / 51

Semantic Composition via Phrase Structure Grammar

S → NP VP

[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N

[[NP]] = [[Det]]⊕2 [[N]]

VP → TV NP

[[VP]] = [[TV]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S

(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP

M3 ⊕3 M4

NP
Taipei

M4

TV
left

M3

NP

M1 ⊕2 M2

N
diplomat

M2

Det
The

M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules
• Many grammar rules, many composition rules

3 / 51

Semantic Composition via Phrase Structure Grammar

S → NP VP

[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N

[[NP]] = [[Det]]⊕2 [[N]]

VP → TV NP

[[VP]] = [[TV]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S

(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP

M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP

M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node

• Compute the MR of each phrase in terms of the MRs of its parts,
according to meaning composition rules

• Many grammar rules, many composition rules

3 / 51

Semantic Composition via Phrase Structure Grammar

S → NP VP

[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N
[[NP]] = [[Det]]⊕2 [[N]]

VP → TV NP
[[VP]] = [[TV]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S

(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP
M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP
M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules

• Many grammar rules, many composition rules

3 / 51

Semantic Composition via Phrase Structure Grammar

S → NP VP
[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N
[[NP]] = [[Det]]⊕2 [[N]]

VP → TV NP
[[VP]] = [[TV]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S
(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP
M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP
M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules

• Many grammar rules, many composition rules

3 / 51

Semantic Composition via Phrase Structure Grammar

S → NP VP
[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N
[[NP]] = [[Det]]⊕2 [[N]]

VP → TV NP
[[VP]] = [[TV]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S
(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP
M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP
M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules
• Many grammar rules, many composition rules

3 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

VP

λx .left(x ,Taipei)

NP
Taipei

Taipei

TV
left

λyλx .left(x , y)

NP

ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

Det
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other

and, at the same time, how to
compute the MR of a phrase node

.
• A small set of grammar rules and meaning composition rules

4 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

S\NP

λx .left(x ,Taipei)

NP
Taipei

Taipei

TV
left

λyλx .left(x , y)

NP

ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

Det
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other

and, at the same time, how to
compute the MR of a phrase node

.
• A small set of grammar rules and meaning composition rules

4 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

S\NP

λx .left(x ,Taipei)

NP
Taipei

Taipei

(S\NP)/NP
left

λyλx .left(x , y)

NP

ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

NP/N
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other

and, at the same time, how to
compute the MR of a phrase node

.
• A small set of grammar rules and meaning composition rules

4 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

S\NP

λx .left(x ,Taipei)

NP
Taipei

Taipei

(S\NP)/NP
left

λyλx .left(x , y)

NP

ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

NP/N
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other

and, at the same time, how to
compute the MR of a phrase node

.

• A small set of grammar rules and meaning composition rules

4 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

S\NP

λx .left(x ,Taipei)

NP
Taipei
Taipei

(S\NP)/NP
left

λyλx .left(x , y)

NP

ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

NP/N
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other and, at the same time, how to
compute the MR of a phrase node.

• A small set of grammar rules and meaning composition rules

4 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

S\NP
λx .left(x ,Taipei)

NP
Taipei
Taipei

(S\NP)/NP
left

λyλx .left(x , y)

NP
ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

NP/N
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other and, at the same time, how to
compute the MR of a phrase node.

• A small set of grammar rules and meaning composition rules

4 / 51

Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

S\NP
λx .left(x ,Taipei)

NP
Taipei
Taipei

(S\NP)/NP
left

λyλx .left(x , y)

NP
ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

NP/N
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other and, at the same time, how to
compute the MR of a phrase node.

• A small set of grammar rules and meaning composition rules
4 / 51

Combinatory Rules
Forward Function Application

X
F (M)

Y
M

X/Y
F

Backward Function Application

X
F (M)

X\Y
F

Y
M

5 / 51

Derivation trees
• Turn the tree upside down (for a historical reason)
• Derivation trees (proof trees)

John

NP
john

likes

(S\NP)/NP
λyλx .like(x , y)

Mary

NP
mary

S\NP
λx .like(x ,mary)

>

S
like(john,mary)

<

• Function Application rules
X/Y

F
Y
M

X
F (M)

>

Y
M

X\Y
F

X
F (M)

<

6 / 51

From AB to CCG

• The fragment of categorial grammar consisting of function
application rules is called AB grammar (Ajdukiewicz, 1935;
Bar-Hillel, 1953)

• Adding more combinatory rules leads to Combinatory Categorial
Grammar (CCG) (Steedman, 2000, 2012)

7 / 51

More combinatory rules

Function Composition rules

X/Y
f

Y/Z
g

X/Z
λx .f (g(x))

>B

Y\Z
g

X\Y
f

X\Z
λx .f (g(x))

<B

Crossed Composition rules

X/Y
f

Y\Z
g

X\Z
λx .f (g(x))

>B×

Y/Z
g

X\Y
f

X/Z
λx .f (g(x))

<B×

8 / 51

A more complicated derivation
John doesn’t like Mary
¬like(john,mary)

John

NP
john

doesn’t

(S\NP)/ (S\NP)

λFλx .¬F (x)

like

(S\NP) /NP
λyλx .like(x , y)

(S\NP)/NP
λyλx .¬like(x , y)

>B
Mary

NP
mary

S\NP
λx .¬like(x ,mary)

>

S
¬like(john,mary)

<

Right node raising shows that doesn’t like can be a constituent:
John [[respects] but [doesn’t like]] Mary.
respect(john,mary) ∧ ¬like(john,mary)

9 / 51

Lambda Calculus
• A formal system to represent computation
• Simple yet very expressive

function input output
λx .x + 2 number x x + 2
λx .walk(x) entity x proposition walk(x)

β-conversion (simplification, substitution):

(λx . [. . . x . . .])

function

(a)

argument

= [. . . a . . .]

Examples:
• (λx .x + 2)(5) = 5 + 2
• (λx .walk(x))(john) = walk(john)

10 / 51

β-conversion: more examples
β-conversion (simplification):

(λx . [. . . x . . .])

function

(a)

argument

= [. . . a . . .]

1. (λx .like(x , y))(john) = like(john, y)

2. (λy .like(x , y))(john) = like(x , john)

3. (λx .like(x , x))(john) = like(john, john)

4. (λx .like(mary , x) ∧ boy(x))(john) = like(mary , john) ∧ boy(john)

5. ((λy .λx .like(x , y))(john))(mary) =

(λx .like(x , john))(mary) = like(mary , john)

11 / 51

α-conversion

α-conversion (renaming):

λ x .[. . . x . . .] = λ y .[. . . y . . .]

Example:

λx .boy(x) ∧ love(x)(z) =
✻ ✻

λy .boy(y) ∧ love(y)(z)
✻ ✻

Lambda calculus vs. Set Theory

Lambda calculus Set Theory
λx .Fx {x | Fx}
(λx .Fx)(a) a ∈ {x | Fx}
(λx .Fx)(a) = Fa a ∈ {x | Fx} ⇔ Fa

12 / 51

α-conversion

α-conversion (renaming):

λ x .[. . . x . . .] = λ y .[. . . y . . .]

Example:

λx .boy(x) ∧ love(x)(z) =
✻ ✻

λy .boy(y) ∧ love(y)(z)
✻ ✻

Lambda calculus vs. Set Theory

Lambda calculus Set Theory
λx .Fx {x | Fx}
(λx .Fx)(a) a ∈ {x | Fx}
(λx .Fx)(a) = Fa a ∈ {x | Fx} ⇔ Fa

12 / 51

α-conversion

α-conversion (renaming):

λ x .[. . . x . . .] = λ y .[. . . y . . .]

Example:

λx .boy(x) ∧ love(x)(z) =
✻ ✻

λy .boy(y) ∧ love(y)(z)
✻ ✻

Lambda calculus vs. Set Theory

Lambda calculus Set Theory
λx .Fx {x | Fx}
(λx .Fx)(a) a ∈ {x | Fx}
(λx .Fx)(a) = Fa a ∈ {x | Fx} ⇔ Fa

12 / 51

Adding type information
• But is meaning composition via lambda calculus always safe?
• What we need: Type safety
• Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning

E Entity
T Proposition

X → Y A function from X to Y
Examples:

john, mary : E entity
λx .walk(x) : E → T function from entities

to propositions
λy .λx .like(x , y) : E → (E → T) function from two entities

to propositions
walk(john) : T proposition

like(john,mary) : T proposition
walk(like) : # type-mismatch

13 / 51

Adding type information
• But is meaning composition via lambda calculus always safe?
• What we need: Type safety
• Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning

E Entity
T Proposition

X → Y A function from X to Y
Examples:

john, mary : E entity
λx .walk(x) : E → T function from entities

to propositions
λy .λx .like(x , y) : E → (E → T) function from two entities

to propositions

walk(john) : T proposition
like(john,mary) : T proposition

walk(like) : # type-mismatch

13 / 51

Adding type information
• But is meaning composition via lambda calculus always safe?
• What we need: Type safety
• Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning

E Entity
T Proposition

X → Y A function from X to Y
Examples:

john, mary : E entity
λx .walk(x) : E → T function from entities

to propositions
λy .λx .like(x , y) : E → (E → T) function from two entities

to propositions
walk(john) : T proposition

like(john,mary) : T proposition
walk(like) : # type-mismatch

13 / 51

Adding type information
• But is meaning composition via lambda calculus always safe?
• What we need: Type safety
• Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning

E Entity
T Proposition

X → Y A function from X to Y
Examples:

john, mary : E entity
λx .walk(x) : E → T function from entities

to propositions
λy .λx .like(x , y) : E → (E → T) function from two entities

to propositions
walk(john) : T proposition

like(john,mary) : T proposition

walk(like) : # type-mismatch

13 / 51

Adding type information
• But is meaning composition via lambda calculus always safe?
• What we need: Type safety
• Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning

E Entity
T Proposition

X → Y A function from X to Y
Examples:

john, mary : E entity
λx .walk(x) : E → T function from entities

to propositions
λy .λx .like(x , y) : E → (E → T) function from two entities

to propositions
walk(john) : T proposition

like(john,mary) : T proposition
walk(like) : # type-mismatch

13 / 51

Types control semantic composition
β-conversion (simplification):

(λx . [. . . x . . .])

Type: A → B

(a)

Type: A

= [. . . a . . .]

Type: B

Example:

(λx .walk(x)

Type: E → T

(john)

Type: E

= walk(john)

Type: T

14 / 51

Types control semantic composition
β-conversion (simplification):

(λx . [. . . x . . .])

Type: A → B

(a)

Type: A

= [. . . a . . .]

Type: B

Example:

(λx .walk(x)

Type: E → T

(john)

Type: E

= walk(john)

Type: T

14 / 51

CCG-based Compositional Semantics
• Type information is always implicit in CCG-derivation trees

John

NP
john

: E

likes

(S\NP)/NP
λy .λx .like(x , y)

: E → (E → T)

Mary

NP
mary

: E

S\NP
λx .like(x ,mary)

: E → T

>

S
like(john,mary)

: T

<

15 / 51

CCG-based Compositional Semantics
• Type information is always implicit in CCG-derivation trees

John

NP
john : E

likes

(S\NP)/NP
λy .λx .like(x , y) : E → (E → T)

Mary

NP
mary : E

S\NP
λx .like(x ,mary) : E → T

>

S
like(john,mary) : T

<

15 / 51

Syntactic sugar
Special symbols (constants) to represent logical expression:

Logical expression Type
¬ T → T negation
∧ T → (T → T) conjunction
∨ T → (T → T) disjunction
→ T → (T → T) implication
∀ (E → T) → T universal quantifier
∃ (E → T) → T existential quantifier
ι (E → T) → E iota operator

We can write :

A ∧ B for ∧(A,B)
∀xFx for ∀(λx .Fx)
∃xFx for ∃(λx .Fx)

and so on.
• Logics can be encoded in Lambda Calculus!

16 / 51

From categories to types

Define a homomorphism (·)• from categories to types:

NP• = E

S• = T

(Y/X)• = (Y\X)• = X • → Y •

Example:

• (S\NP)• = E → T (intransitive verbs)
• ((S\NP)/NP)• = E → (E → T) (transitive verbs)

• As for as type homomorphism is preserved in the lexicon, there is
no danger of type-clash during meaning composition.

17 / 51

Lexicon: open words and closed words
• For an open word, we can use a template to specify its MR.
• ϕ is the position in which the lemma of a word appears.

Category Meaning templates Type
S\NP λx .ϕ(x) E → T

(S\NP)/NP λy .λx .ϕ(x , y) E → (E → T)

• For a closed word, we can directly assign its MR.
• For example, if we are interested in logical expressions, we can

use the following lexical entries:

Lemma Category MR Type
some NP/N λFλG.∃x(Fx ∧ Gx) (E → T) → (E → T) → T

every NP/N λFλG.∀x(Fx ∧ Gx) (E → T) → (E → T) → T

no NP/N λFλG.¬∃x(Fx ∧ Gx) (E → T) → (E → T) → T

18 / 51

Excerpts of Templates from ccg2lambda

CCG category Meaning Representation
NP λNF .∃x(N(ϕ, x) ∧ F (x))
S\NPnom λQK .Q(λI.I,λx .∃v(K (ϕ, v) ∧ (Nom (v) = x)))
S\NPnom/NPacc λQ2Q1K .Q1(λI.I,λx1.Q2(λI.I,λx2.∃v(K (ϕ, v)

∧ (Nom (v) = x1) ∧ (Acc (v) = x2))))
S/S λSK .S(λJv .K (λv ′.(J(v ′) ∧ ϕ(v ′)), v))
NP/NP λQNF .Q(λGx .N(λy .(ϕ(y) ∧ G(y)), x),F)

Types

Type ::= E | Event | T | X ⇒ Y

Mapping from syntactic categories to semantic types

NP• = ((E→T)→E→T)→(E→T)→T

S• = ((Event→T)→Event→T)→T

(C1/C2)• = (C1\C2)• = C2•→C1•

19 / 51

English!CCG!parser
"  !Penn!Treebank!

"  !CCGBank!
![Hockenmaier!and!Steedman!2007]!

" CCG!parser!
!W!C&C![Curran!and!Clark!2007]!
!W!EasyCCG![Lewis!and!Steedman!EMNLP2014]!
!W!depccg![Yoshikawa+!ACL2017]!

"  Seman)c!Parser!
W!Boxer![Bos+!2004]!
W!Langpro![Abzianidze!EMNLP2015]!
W!ccg2lambda![Mineshima+!EMNLP2015]!
!

6

(S (NP-SBJ-1 John)
(VP (VBN met)

(NP Mary)))

S

NP

John

S[pt]\NP

S[pt]\NP/NP

met

NP

Mary

John
NP

j

met
S[pt]\NP/NP

�y�x.(meet(x, y))

Mary

NP
m

S[pt]\NP
�x.(meet(x,m))

>

S[pt]
meet(j, m)

<

20 / 51

Japanese!CCG!parser
" !Kyoto/NAIST!Corpus!

" !Japanese!CCGBank!
![Uematsu+!ACL2013]!

" !CCG!parser!(Jigg,!depccg)!
!!!W!Jigg![Noji!and!Miyao!ACL2016]!
!!!W!depccg![Yoshikawa+!ACL2017]!

" Seman)c!parser!(ccg2lambda)!
!!W!ccg2lambda!![Mineshima+!EMNLP2016]!

大使が 交渉に 参加した
ambassador- negoatiation- participate-

ACC DAT PAST

VP

PP

Noun

大使

PostP

が

VP

PP

Noun

交渉

PostP

に

VP

VP

Noun

参加

Verb

し

Aux

た

21 / 51

Three levels of MRs

• (Level 0 : Individual words)
• Level 1 : Predicate-Argument structure
• Level 2 : Basic logical features (negation, disjunction, etc.)
• Level 3 : Higher-order logical features

22 / 51

Level 1: Predicate-Argument Structure

• Who did what, where, when?
• MRs in Event semantics (Parsons, 1990):

Brutus stabbed Caesar on the street at noon.

∃e(stab(e) ∧ (subj(e) = brutus) ∧ (obj(e) = caesar) ∧
(location(e) = street) ∧ (time(e) = noon))

• MRs have a flat structure with:
• ∃ (existential quantifier)
• ∧ (conjunction)

• Extensional descriptions of scenes or situations

23 / 51

Other notations: DRS and Graph
• Discourse Representation Structure (DRS) (Kamp and Reyle, 1993):

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

• Graph notation:

•stabbrutus carsar

street

noon

subj

obj

location

time

• These three notations deliver the same information
24 / 51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

⇒ (2) Brutus stabbed Caesar on the street
⇒ (3) Brutus stabbed Caesar at noon.
⇒ (4) Brutus stabbed Caesar.

(1)

(2) (3)

(4)

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25 / 51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

⇒ (2) Brutus stabbed Caesar on the street
⇒ (3) Brutus stabbed Caesar at noon.
⇒ (4) Brutus stabbed Caesar.

(1)

(2) (3)

(4)

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25 / 51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

⇒ (2) Brutus stabbed Caesar on the street
⇒ (3) Brutus stabbed Caesar at noon.
⇒ (4) Brutus stabbed Caesar.

(1)

(2) (3)

(4)

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25 / 51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

⇒ (2) Brutus stabbed Caesar on the street
⇒ (3) Brutus stabbed Caesar at noon.
⇒ (4) Brutus stabbed Caesar.

(1)

(2) (3)

(4)

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25 / 51

The Semantics of Voice
• Perceptual report:

John saw Bob walking on the street.
⇒ Bob walked on the street.

•walk •see JohnBob

street

obj

subjsubj

location

• Active-Passive alternation:
Brutus stabbed Caesar.
⇒ Caesar was stabbed by Brutus.

• Causative-inchoative alternation:
John closed the door.
⇒ The door became closed.

26 / 51

Level 2: Basic logical features

• Add basic logical expressions:
• not (negation, ¬)
• or (disjunction, ∨)
• if (implication, →)
• any (universal quantification, ∀)

• Indeterminate/underspecified description of a situation
• Not easy to visualize (“Draw a picture of A man is not walking“)

27 / 51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

⇒

H1. Some animals danced.

̸⇒

H2. Some grizzlies danced.

⇒

H3. Some bears moved.

̸⇒

H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic

28 / 51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
⇒ H1. Some animals danced.

̸⇒

H2. Some grizzlies danced.

⇒

H3. Some bears moved.

̸⇒

H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic

28 / 51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
⇒ H1. Some animals danced.
̸⇒ H2. Some grizzlies danced.

⇒

H3. Some bears moved.

̸⇒

H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic

28 / 51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
⇒ H1. Some animals danced.
̸⇒ H2. Some grizzlies danced.
⇒ H3. Some bears moved.

̸⇒

H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic

28 / 51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
⇒ H1. Some animals danced.
̸⇒ H2. Some grizzlies danced.
⇒ H3. Some bears moved.
̸⇒ H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic

28 / 51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
⇒ H1. Some animals danced.
̸⇒ H2. Some grizzlies danced.
⇒ H3. Some bears moved.
̸⇒ H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic
28 / 51

Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.

̸⇒

H1. No animals danced.

⇒

H2. No grizzlies danced.

̸⇒

H3. No bears moved.

⇒

H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29 / 51

Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.
̸⇒ H1. No animals danced.

⇒

H2. No grizzlies danced.

̸⇒

H3. No bears moved.

⇒

H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29 / 51

Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.
̸⇒ H1. No animals danced.
⇒ H2. No grizzlies danced.

̸⇒

H3. No bears moved.

⇒

H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29 / 51

Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.
̸⇒ H1. No animals danced.
⇒ H2. No grizzlies danced.
̸⇒ H3. No bears moved.

⇒

H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29 / 51

Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.
̸⇒ H1. No animals danced.
⇒ H2. No grizzlies danced.
̸⇒ H3. No bears moved.
⇒ H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29 / 51

Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.
̸⇒ H1. No animals danced.
⇒ H2. No grizzlies danced.
̸⇒ H3. No bears moved.
⇒ H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29 / 51

Bare NPs
For bare NPs (NPs without determiners), predicates play a crucial role.

tigress ≤ tiger ≤ animal

Tigers are striped.
⇒ Tigresses are striped.
̸⇒ Animals are striped.

Tigers are on the lawn.
̸⇒ Tigresses are on the lawn.
⇒ Animals are on the lawn.

Tigers↓ are striped. (individual-level predicate)
Tigers↑ are on the lawn. (stage-level predicate)

• The basic patterns of monotonicity inferences are directly
predictable from logic-based MRs.

• Upward/downward monotonicity properties follow from the
properties of logical operators.
∃x(bear↑(x) ∧ dance↑(x))
¬∃x(bear↓(x) ∧ dance↓(x))

30 / 51

Level 3: Advanced logic features

There are many linguistic phenomena that allegedly go beyond
standard first-order logic.

• Attitudes, modals and aspectual operators.
• Generalized/proportional quantifiers
• Intensional adjectives
• Comparative and superlatives
• Other higher-order predicates

Some features:
• Introducing intensionality (involving speaker’s perspectives,

mental states, etc.)
• Quantifying over higher-order objects (objects other than entities)
• Not directly formalizable in first-order logics

31 / 51

Attitudes, modals and temporal operators
• Attitude predicates like know and believe take propositional

objects as argument.
• Inferential contrast between factive predicates (eg. know) and

non-factive predicate (eg. believe)

• John knows that it is raining.
⇒ It is raining.

• John does not know that it is raining.
⇒ It is raining.

• John believes that it is raining.
̸⇒ It is raining.

• John does not believe that it is raining.
̸⇒ It is raining.

• modals: likely, probably, might, must, can. etc.
• aspectual operators: progressives, perfectives, etc.

32 / 51

Generalized quantifiers

Proportional quantifiers:
• Most, half of, 70% of ...

Monotonicity properties:

Most students smoked. ̸⇒ ⇍ Most female student smoked.
Most students smoked. ⇐= Most student smoked in a building.

• But these quantifiers are known to be not
first-orderizable (Barwise and Cooper, 1981)

33 / 51

Adjectives: subsective and non-subsective

Subsective (intersective) adjective
• Dumbo is a small elephant. small(dumbo) ∧ elephant(dumbo)
⇒ Dumbo is an elephant. elephant(dumbo)

Non-subsective adjective
• This is a fake diamond.
̸⇒ This is a diamond.
⇒ This is not a diamond.

34 / 51

Comparatives

• Alice is taller than Bob.
̸⇒ Alice is tall.

• Alice is taller than Bob.
• Bob is tall.
⇒ Alice is tall.

• Alice is taller than Bob.
• Bob is taller than Carol.
⇒ Alice is taller than Carol.

Question:
• What are proper MRs for adjective constructions that are suitable

to efficient inferences?
• How to give a compositional semantics of predicates tall and taller

(how the meanings of tall and taller are related to each other?)

35 / 51

Some higher-order predicates

• Higher-order predicates that apply to objects other than entities:
rise, change, decrease

• The price of gasoline is rising.
• The price of gasoline is 1,000 dollars.
̸⇒ 1,000 dollars are rising.

36 / 51

Logic-based Meaning Representations

First-order logic
(FOL)Natural Logic Higher-order logic

(HOL)

• formalizes inferences
with surface form
! only allows single

premise inferences
(mononicity inference)

• efficient provers exist
• dominate computational

linguistics
! limited expressive

power

• high expressive power
• dominate formal semantics
! no general-purpose

efficient prover exists

more efficient
less expressive

less efficient
more expressive

MacCartney (2009) Boxer (Bos 2008) Mineshima et al. (2015)

37 / 51

Logic-based Meaning Representations

First-order logic
(FOL)Natural Logic Higher-order logic

(HOL)

• formalizes inferences
with surface form
! only allows single

premise inferences
(mononicity inference)

• efficient provers exist
• dominate computational

linguistics
! limited expressive

power

• high expressive power
• dominate formal semantics
! no general-purpose

efficient prover exists

more efficient
less expressive

less efficient
more expressive

MacCartney (2009) Boxer (Bos 2008) Mineshima et al. (2015)

37 / 51

Logic-based Meaning Representations

First-order logic
(FOL)Natural Logic Higher-order logic

(HOL)

• formalizes inferences
with surface form
! only allows single

premise inferences
(mononicity inference)

• efficient provers exist
• dominate computational

linguistics
! limited expressive

power

• high expressive power
• dominate formal semantics
! no general-purpose

efficient prover exists

more efficient
less expressive

less efficient
more expressive

MacCartney (2009) Boxer (Bos 2008) Mineshima et al. (2015)

37 / 51

HOL as representation language

Higher-order constructions in natural languages
1 Generalized quantifiers

Most students work " most(λ.student(x),λx .work(x))
2 Modals

John might come " might(come(j))
3 Veridical and anti-veridical predicates

Someone managed to come " ∃x(manage(x , come(x)))
Someone failed to come " ∃x(fail(x , come(x)))

4 Attitude verbs
John knows that some student came."

know(j , ∃x(student(x) ∧ come(x)))

• Higher-order inference system implemented in Coq (Mineshima
et al., 2015)

• Alternative: first-order decomposition/reification (Hobbs, 1985)
38 / 51

Natural Language Inference (Recognizing Textual
Entailment, RTE)

• Does P entail H?
P Most cities in Japan prohibit smoking in restaurants.
H Some cities in Japan do not allow smoking in public spaces.

Yes (entail)

• The best way of testing an NLP system’s semantic capacity
(Cooper et al. 1996)

• Many applications in NLP
• Question Answering,
• Text Summarization
• Fact validation/checking
• etc.

39 / 51

Datasets for Recognizing Textual Entailment (RTE)
• English:

Dataset Size Crowdsourcing
FraCaS (Cooper et al., 1994) 346
PASCAL-RTE1–5 (Dagan et al. 2006) 7K
SICK (Marelli et al., 2014) 10K

√

SNLI (Bowman et al., 2015) 570K
√

MultiNLI (Williams et al. 2017) 432K
√

• Japanese:

Dataset Size Crowdsourcing
JSeM 780
NTCIR RITE 1–2 1,800
Kyoto RTE dataset 2,471

40 / 51

FraCaS (Cooper et al. 1996)
• Created by linguists in 1990s.
• Size: 346 problems
• The inferences are divided into nine sections in terms of linguistic

phenomena:
• Generalized quantifier, Plurals, Nominal anaphora, Ellipsis,

Adjective, Comparatives, Temporal reference, Verbs, Attitudes
• Contains lots of logical expressions (at Level 2 and Level 3)
• Lexical and world knowledge is mostly excluded
• Contains multiple-premise inferences

premise # problem
1 192 55.5%
2 122 35.3%
3 29 8.4%
4 2 0.6%
5 1 0.3%

41 / 51

FraCaS: Examples

• The XML format was created by Bill MacCartney
https://nlp.stanford.edu/~wcmac/downloads/

fracas-038 (Generalized quantifier) label: no (contradiction)
P: No delegate finished the report.
H: Some delegate finished the report on time.

fracas-084 (Plural) label: yes (entailment)
P: Either Smith, Jones or Anderson signed the contract.
H: If Smith and Anderson did not sign the contract, Jones signed the contract.

fracas-134 (Nominal Anaphora) label: yes (entailment)
P1: Every customer who owns a computer has a service contract for it.
P2: MFI is a customer that owns exactly one computer.
H: MFI has a service contract for all its computers.

42 / 51

Japanese Semantics Test Suite (JSeM)
Kawazoe et al. (2015)
http://researchmap.jp/community-inf/JSeM/

• Translation of FraCaS (624 problems) and Japanese original ones
(166 problems)

• Each problem is tagged with:
• phenomena type (quantifier, adjective, negation, etc.)
• inference type (logical entailment, presupposition)

• single-premised (66%) and multi-premised (34%) problems

43 / 51

SICK (Sentences Involving Compositional Knowldedge)
SemEval14, Marelli et al. (2013)

• Size: 4, 500/500/4, 927 for training, dev. and testing.
• Premise: taken from image captions in Flickr30k Corpus
• Hyphothesis and Label: crowdsourcing and expert-check
• contains only single-premise inferences
• contains logical expressions at Level 2 (negation, disjunction,

quantifiers)
• Both word-level and phrase-level paraphrases are required

44 / 51

SICK: Examples
SICK-506 (label: no)
P: A man wearing a dyed black shirt is sitting at the table and laughing.
H: There is no man wearing a shirt dyed black, sitting at the table and
laughing.

SICK-718 (label: unknown)
P: A few men in a competition are running outside.
H: A few men are running competitions outside.

SICK-3156 (label: yes)
P: A man is cutting a box.
H: A box is being cut by a man.

SICK-3668 (label: yes)
P: A man is strolling in the rain.
H: A man is walking in the rain.

45 / 51

SNLI
Bowman et al. (2015)

• The Stanford Natural Language Inference (SNLI) Corpus
• P: taken from image captions in Flickr30k Corpus
• H and Label: crowdsourcing
• contains only single-premise inferences
• sentences are confined to descriptions of scenes, not containing

logical features (limited to Level 1)
• largely limited to simple lexical inferences

label: entailment
P: A white dog with long hair jumps to catch a red and green toy.
H: An animal is jumping to catch an object.

46 / 51

MultiNLI
Williams et al. (2017)

• The Multi-Genre Natural Language Inference (MultiNLI)

genre: Fiction, answer: entailment
P: He turned and saw Jon sleeping in his half-tent.
H: He saw Jon was asleep.

genre: telephone, answer: contradiction
P: someone else noticed it and i said well i guess that’s true and it was
somewhat melodious in other words it wasn’t just you know it was
really funny
H: No one noticed and it wasn’t funny at all.

• A set of linguistic phenomena tags are automatically assigned to
the development set (10K sentences):

• quantifiers, belief verbs, time terms, conditionals, etc.

47 / 51

Summary

• Compositional Semantics:
• Meaning composition via CCG and Lambda Calculus

• Meaning Representations:
• Three levels of MRs for semantic composition:

Predicate-Argument Structure, Basic Logics and beyond
• Event Semantics, First-order logic, and Higher-order logic

• Inference: RTE datasets

48 / 51

•

•

(\)/(\)

\
((\)\(\))/

(\)\(\)
>

\
<

\
>

<

/ : :

:
>

: \ :

:
<

∃ (() ∧
(λ . (),λ . () ∧ (,)))

∃ (() ∧
∃ (() ∧ ¬ () ∧ (,)))

∀ ∀ ((,) → ∃ (∧))

∀ (() → ¬ ())

∃ (() ∧
(λ . (),λ . () ∧ (,)))

∃ (() ∧
∃ (() ∧ ¬ () ∧ (,)))

/

λ .∀ (∧ →) λ . ()

λ .∀ (() ∧ →)

>

(\)/(\)

λ . (λ .((λ .) ∧))

\

λ . (λ .)(λ . ())

\

λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/

λ .∀ (∧ →)

(λ . ())()

λ .∀ (() ∧ →)

>

(\)/(\)

λ . (λ .((λ .) ∧))

\

λ . (λ .)(λ . ())

\

λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/

λ .∀ (∧ →)

λ . ()

λ .∀ (() ∧ →)

>

(\)/(\)

λ . (λ .((λ .) ∧))

\

λ . (λ .)(λ . ())

\

λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/

λ .∀ (∧ →)

λ . ()

λ .∀ (() ∧ →)

>

(\)/(\)

λ . (λ .((λ .) ∧))

\
λ . (λ .)(λ . ())

\

λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/
λ .∀ (∧ →) λ . ()

λ .∀ (() ∧ →)

>

(\)/(\)
λ . (λ .((λ .) ∧))

\
λ . (λ .)(λ . ())

\

λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/
λ .∀ (∧ →) λ . ()

λ .∀ (() ∧ →)

>

(\)/(\)
λ . (λ .((λ .) ∧))

\
λ . (λ .)(λ . ())

\

λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/
λ .∀ (∧ →) λ . ()

λ .∀ (() ∧ →)

>

(\)/(\)
λ . (λ .((λ .) ∧))

\
λ . (λ .)(λ . ())

\
λ . (λ .(() ∧))

>

λ .∀ (() ∧ () ∧ →)

<
\

λ . (λ .)(λ . ())

∀ (() ∧ () ∧ → ())

<

β

/

λ λ λ .∀ (∧ →)

λ λ . ()

−

−

− : λ

:

:

:

1.
2.

3.
→
→ ¬

1.
2.

3.
→
→ ¬

1.
2.

3.
→
→ ¬

1.
2.

3.
→
→ ¬

∃ .(() ∧ ∃ .(() ∧ (,))

∃ .(() ∧ ∃ .(() ∧ (,))

∀ ∀ . (,) → (,)

∀ . () → ()

∃ .(() ∧ ∃ .(() ∧ (,))

∃ .(() ∧ ∃ .(() ∧ (,))

∀ ∀ . (,) → (,)

∀ . () → ()

∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

∀ . () → ¬ ()
∀ . () → ¬ ()
∀ . () → ()

∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

2 := 1

1, 2 3

1, 2 3

2 := 1

4 4

∀ . () → ()

(1) (1)

∈

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

2 := 1

1, 2 3

1, 2 3

2 := 1

4 4

∀ . () → ()

(1) (1)

∈

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

2 := 1

1, 2 3

1, 2 3

2 := 1

4 4

∀ . () → ()

(1) (1)

∈

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

2 := 1

1, 2 3

1, 2 3

2 := 1

4 4

∀ . () → ()

(1) (1)

∈

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 2 2((2) ∧ (2) ∧ (2) ∧ (2) ∧ (2) = 2)

2 := 1

1, 2 3

1, 2 3

2 := 1

4 4

∀ . () → ()

(1) (1)

∈

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∀ . () → ()

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∀ . () → ()

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∀ . () → ()

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

: ∃ 1 1((1) ∧ (1) ∧ (1) ∧ (1) ∧ (1) = 1)

∀ . () → ()

→
→

→
→

→
→ ¬

4, 500/500/4, 927

.29/.15/.56

212, 000

10.6

4, 500/500/4, 927

.29/.15/.56

212, 000

10.6

− − 56.69

− − 73.40
− − 74.30
− − 77.50
− − 78.60
− − 80.40

97.95 58.11 81.35
93.63 60.64 81.60
98.90 46.48 76.65
92.99 59.70 80.98
97.04 63.64 .
85.40 69.63 82.32
81.99 76.80 83.05
84.37 74.37 83.64
81.56 81.87 84.57

− − 85.10
− − .

− − 56.69

− − 73.40
− − 74.30
− − 77.50
− − 78.60
− − 80.40

97.95 58.11 81.35
93.63 60.64 81.60

98.90 46.48 76.65
92.99 59.70 80.98
97.04 63.64 .
85.40 69.63 82.32
81.99 76.80 83.05
84.37 74.37 83.64
81.56 81.87 84.57

− − 85.10
− − .

− − 56.69

− − 73.40
− − 74.30
− − 77.50
− − 78.60
− − 80.40

97.95 58.11 81.35
93.63 60.64 81.60
98.90 46.48 76.65
92.99 59.70 80.98
97.04 63.64 .

85.40 69.63 82.32
81.99 76.80 83.05
84.37 74.37 83.64
81.56 81.87 84.57

− − 85.10
− − .

− − 56.69

− − 73.40
− − 74.30
− − 77.50
− − 78.60
− − 80.40

97.95 58.11 81.35
93.63 60.64 81.60
98.90 46.48 76.65
92.99 59.70 80.98
97.04 63.64 .
85.40 69.63 82.32
81.99 76.80 83.05
84.37 74.37 83.64
81.56 81.87 84.57

− − 85.10
− − .

∀ . () → ()
∀ . () → ()

∀ . () → ()

∀ . () → ()

∀ . () → ()

→

→

→

∀ . () → ()
∀ . () → ()

∀ . () → ()

∀ . () → ()

∀ . () → ()

→

→

→

∀ . () → ()
∀ . () → ()

∀ . () → ()

∀ . () → ()

∀ . () → ()

→

→

→

∃ .(() ∧ ∃ .(() ∧ () ∧ () ∧ (,))

∃ .(() ∧ ∃ .(() ∧ (,))

̸=

̸ ⇒ ̸ ⇒

(,) =
1

| |
∑

∈
∈

(,)

90.24 71.08 .
96.95 62.65 83.13
− − 82.70
− − 81.50

− − 56.69

Reference I

Ajdukiewicz, K. (1935) “Die syntaktische Konnexit/”at”, Studia Philosophica 1,
pp.1–27.

Bar-Hillel, Y. (1953) “A quasi-arithmetical notation for syntactic description”,
Language 29(1), pp.47–58.

Barwise, J. and R. Cooper. (1981) “Generalized quantifiers and natural
language”, Linguistics and Philosophy 4(2), pp.159–219.

Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning. (2015) “A large
annotated corpus for learning natural language inference”, In the
Proceedings of Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational
Linguistics.

Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspers, H.
Kamp, M. Pinkal, M. Poesio, S. Pulman, et al. (1994) “FraCaS – A
Framework for Computational Semantics”, Deliverable D16.

Hobbs, J. R. (1985) “Ontological promiscuity”, In the Proceedings of
Proceedings of the 23rd annual meeting on Association for Computational
Linguistics. pp.60–69.

49 / 51

Reference II
Kamp, H. and U. Reyle. (1993) From discourse to logic: An introduction to

modeltheoretic semantics of natural language, formal logic and DRT.
Kluwer, Dordrecht.

Kawazoe, A., R. Tanaka, K. Mineshima, and D. Bekki. (2015) “An Inference
Problem Set for Evaluating Semantic Theories and Semantic Processing
Systems for Japanese”, In the Proceedings of Proceedings of LENLS12.
pp.67–73.

Marelli, M., S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R.
Zamparelli. (2014) “A SICK cure for the evaluation of compositional
distributional semantic models.”, In the Proceedings of Proceedings of
LREC2014. pp.216–223.

Mineshima, K., P. Martı́nez-Gómez, Y. Miyao, and D. Bekki. (2015)
“Higher-order logical inference with compositional semantics”, In the
Proceedings of Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. pp.2055–2061.

Moss, L. (2014) “Natural Logic”. NASSLLI 2014, Lecture slides.
Parsons, T. (1990) Events in the Semantics of English. MIT Press.

50 / 51

Reference III

Steedman, M. (2000) The Syntactic Process. MIT Press.

Steedman, M. (2012) Taking scope: The natural semantics of quantifiers. MIT
Press.

51 / 51

