The Challenge of Composition in
Distributional and Formal Semantics
Part Il

Ran Tian', Koji Mineshima? and Pascual Martinez-Gémez®

1Tohoku University, Japan
20chanomizu University, Japan
SAIST, Japan

IJCNLP 2017, Taipei, Taiwan
November 27, 2017

Three Challenges

1. Meaning Representations (MRs): what are proper MRs for natural
languages?

2. Compositional Semantics: how to compute the MR of a complex
expression from the MRs of its parts?

3. Inference: how can we do inference with MRs?

o We start with Question 2:
o Combinatory Categorial Grammar (CCG)
e Lambda Calculus
¢ And then move on to Question 1 and Question 3
 Predicate-argument structure, first-order logic, and
higher-order Logic
« Inference-first conception: an MR is good if it enables correct
and efficient inferences

51

Semantic Composition via Phrase Structure Grammar

S

NP

VP

Det

NP
TV

%

%

i

U

NP VP S

TV NP NP VP

the /\ /\
diplomat Det N TV NP
Taipei The diplomat left Taipei

left

/51

Semantic Composition via Phrase Structure Grammar

S
NP
VP
Det
N

NP
TV

%

%

i

U

NP VP S

TV NP NP VP

the /\ /\
diplomat Det N TV NP
Taipei The diplomat left Taipei
left M, Mo Ms M,

¢ Assign a MR to each leaf node

Semantic Composition via Phrase Structure Grammar

S — NPVP S

[NP] = [Det] &2 [N] NP VP
VT[)vp]Tz [[TTVVI]?;s ey M 22 Ve v
Det — the /\ /\
N — diplomat pet N TV NP
NP — Taipei The diplomat left Taipei
TV — left M, M, Mz My

¢ Assign a MR to each leaf node

e Compute the MR of each phrase in terms of the MRs of its parts,
according to meaning composition rules

Semantic Composition via Phrase Structure Grammar

S — NPVP S

[S] = [NP] &+ [VP] (M @1 M) ©1 (M3 ©2 Mj)

[NP] = [Det] @2 [N] NP vp
VT[)VP]T: [[T ;/VTEI; neyp M 2 Me Ms &5 Ma
Det — the /\ /\

N — diplomat pet N TV NP
NP — Taipei The diplomat left Taipei
V. — left M, M, M 1Y

¢ Assign a MR to each leaf node

e Compute the MR of each phrase in terms of the MRs of its parts,
according to meaning composition rules

Semantic Composition via Phrase Structure Grammar

S — NPVP S

[S] = [NP] &+ [VP] (M @1 M) ©1 (M3 ©2 Mj)

[NP] = [Det] @2 [N] NP vp
VT[)VP]T: [[T 7yV[]]\16F;3 neyp M 2 Me Ms &5 Ma
Det — the /\ /\

N — diplomat pet N TV NP
NP — Taipei The diplomat left Taipei
V. — left M, M, M 1Y

¢ Assign a MR to each leaf node

e Compute the MR of each phrase in terms of the MRs of its parts,
according to meaning composition rules

e Many grammar rules, many composition rules

/51

Semantic Composition via Categorial Grammar (CG)

S
NP VP
Det N TV NP

The diplomat left Taipei

/51

Semantic Composition via Categorial Grammar (CG)

S
NP S\NP
Det N TV NP

The diplomat left Taipei

/51

Semantic Composition via Categorial Grammar (CG)

S
NP S\NP
NP/N N (S\NP)/NP NP

The diplomat left Taipei

Semantic Composition via Categorial Grammar (CG)

S

NP S\NP
NP/N N (S\NP)/NP NP
The diplomat left

Taipei

o A small set of basic categories (S, NP, N)

¢ Each functional category of the form X/Y and X\ Y specifies how
words combine with each other

Semantic Composition via Categorial Grammar (CG)

S
NP S\NP
NP/N N (S\NP)/NP NP
The diplomat left Taipei
AF.ux.F(x) Ax.diplomat(x) AyAx.left(x,y) Taipei

o A small set of basic categories (S, NP, N)

¢ Each functional category of the form X/Y and X\ Y specifies how
words combine with each other and, at the same time, how to
compute the MR of a phrase node.

Semantic Composition via Categorial Grammar (CG)

S
NP S\NP
1X.diplomat(x) Ax.left(x, Taipei)
NP/N N (S\NP)/NP NP
The diplomat left Taipei
AF.ux.F(x) Ax.diplomat(x) AyAx.left(x,y) Taipei

o A small set of basic categories (S, NP, N)

¢ Each functional category of the form X/Y and X\ Y specifies how
words combine with each other and, at the same time, how to
compute the MR of a phrase node.

4/51

Semantic Composition via Categorial Grammar (CG)

S
left(vx.diplomat(x), Taipei)

/\

NP S\NP
1X.diplomat(x) Ax.left(x, Taipei)
NP/N N (S\NP)/NP NP
The diplomat left Taipei
AF.ux.F(x) Ax.diplomat(x) AyAx.left(x,y) Taipei

o A small set of basic categories (S, NP, N)

¢ Each functional category of the form X/Y and X\ Y specifies how
words combine with each other and, at the same time, how to
compute the MR of a phrase node.

¢ A small set of grammar rules and meaning composition rules

4/51

Combinatory Rules

Forward Function Application

XY Y

Backward Function Application

X
F(M)

N

Y X\Y
M F

/51

Derivation trees

¢ Turn the tree upside down (for a historical reason)
o Derivation trees (proof trees)

likes Mary
(S\NP)/NP NP
John Ay Ax.like(x,y) mary .
NP S\NP
Jjohn Ax.like(x, mary)
<
S

like(john, mary)

¢ Function Application rules
XY Y Y X\Y
F M M F

F(M) F(M)

From AB to CCG

e The fragment of categorial grammar consisting of function
application rules is called AB grammar (Ajdukiewicz, 1935;
Bar-Hillel, 1953)

¢ Adding more combinatory rules leads to Combinatory Categorial
Grammar (CCQG) (Steedman, 2000, 2012)

51

More combinatory rules

Function Composition rules
XY Y/Z
f g9
X/Z
Ax.f(g(x))

Crossed Composition rules

>B

XY Y\Z
f g9
X\Z
Ax.f(g(x))

>Byx

Y\Z X\Y
g f

<B
X\Z

Ax.f(9(x))

Y/Z X\Y

g f
<By

X/Z
Ax.f(g(x))

/51

A more complicated derivation
John doesn’t like Mary
—like(john, mary)

doesn’t like
(S\NP)/ (S\NP) (S\NP) /NP
AFAX.—F(x) AyAx.like(x,y) Mary
B
(S\NP)/NP - NP
John Ay Ax.—like(x, y) mary
— >
NP S\NP
john Ax.—like(x, mary)
S

—like(john, mary)

Right node raising shows that doesn’t like can be a constituent:

John [[respects] but [doesn’t like]] Mary.
respect(john, mary) A —like(john, mary)

Lambda Calculus

o A formal system to represent computation
o Simple yet very expressive

function input output
AX.X +2 number x x +2
Ax.walk(x) entity x proposition walk(x)

B-conversion (simplification, substitution):

function argument

Ox[..x..]) (@ =[...a...]

Examples:

e (Mxx+2)(5)=5+2
e (Ax.walk(x))(john) = walk(john)

10/51

p-conversion: more examples
B-conversion (simplification):

function argument

(M. [..x..]) (@ =[...a...]

—_

. (Ax.like(x, y))(john) = like(john, y)

\o}

. (Ay.like(x,y))(john) = like(x, john)

w

. (Ax.like(x, x))(john) = like(john, john)
4. (Ax.like(mary, x) A boy(x))(john) = like(mary, john) A boy(john)
5. ((Ay.-Ax.like(x, y))(john))(mary) =

(' Ax.like(x, john))(mary) = like(mary, john)

11/51

a-conversion

a-conversion (renaming):

AxX[...ox .]=Ay ...y ..

12/51

a-conversion

a-conversion (renaming):
AxX[...ox .]=Ay ...y ..

Example:

Ax.boy(x) A love(x)(z) = Ay.boy(y) A /ove(%/)(z)

! ! |

12/51

a-conversion

a-conversion (renaming):
AxX[...ox .]=Ay ...y ..
Example:

Ax.boy(x) A love(x)(z) = Ay.boy(y) A /ove({)(z)

! ! |

Lambda calculus vs. Set Theory

Lambda calculus Set Theory

AXx.Fx {x | Fx}
(Ax.Fx)(a) ae{x| Fx}
(M.Fx)(a)=Fa ac{x|Fx}< Fa

12/51

Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics

13/51

Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics

Define simple types:

Type Meaning
E Entity
T Proposition
X —'Y Afunction from Xto Y

Examples:
john, mary : E entity
Ax.walk(x): E—T function from entities
to propositions
Ay Ax.like(x,y): E— (E—T) function from two entities

to propositions

13/51

Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning
E Entity

T Proposition
X =Y Afunctionfrom XtoY

Examples:
john, mary : E entity
Ax.walk(x): E—T function from entities
to propositions
Ay Ax.like(x,y): E— (E—T) function from two entities

to propositions
walk(john) : T proposition

13/51

Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning
E Entity
T Proposition
X — Y Afunction from Xto Y

Examples:
john, mary : E entity
Ax.walk(x): E—T function from entities
to propositions
Ay Ax.like(x,y): E— (E—T) function from two entities
to propositions
walk(john) : T proposition

like(john, mary) : T proposition

13/51

Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning
E Entity

T Proposition
X =Y Afunctionfrom XtoY

Examples:
john, mary : E entity
Ax.walk(x): E—T function from entities
to propositions
Ay Ax.like(x,y): E— (E—T) function from two entities
to propositions
walk(john) : T proposition
like(john, mary) : T proposition

walk(like) : # type-mismatch

13/51

Types control semantic composition
B-conversion (simplification):

Type: A— B Type: A Type: B

OXl..x..]) @=1...a..]

14/51

Types control semantic composition
B-conversion (simplification):

Type: A— B Type: A Type: B
(M. [...x..]) (@=1[...a...]
Example:
Type:E — T Type: E Type: T

(Ax.walk(x) (John) walk(john)

14/51

CCG-based Compositional Semantics
¢ Type information is always implicit in CCG-derivation trees

likes Mary
(S\NP)/NP NP
Ay Ax.like(x,y) mary
John
NP S\NP i
john Ax.like(x, mary)

S
like(john, mary)

15/51

CCG-based Compositional Semantics
¢ Type information is always implicit in CCG-derivation trees

likes . Mary
(S\NP)/NP NP
Ay Ax.like(x,y) :E— (E—T) mary : E
H
John
NP S\NP ’
john: E Ax.like(x,mary) :E — T
. .

S
like(john, mary) : T

15/51

Syntactic sugar
Special symbols (constants) to represent logical expression:

Logical expression Type

T—>T negation

T — (T — T) conjunction

T— (T —T) disjunction

T — (T—T) implication

(E—T) — T universal quantifier
(E—T)— T existential quantifier
(E—T) —E iota operator

s w< | <>]

We can write :

ANB for A(A B)

VxFx for V(Ax.Fx)

IxFx for 3(Ax.Fx)
and so on.

¢ Logics can be encoded in Lambda Calculus!

16/51

From categories to types
Define a homomorphism (-)*® from categories to types:
NP*®* =E

S =T
(Y/X)* = (Y\X)* = X* — Y*

Example:
e (S\NP)* =E — T (intransitive verbs)
e ((S\NP)/NP)* =E — (E — T) (transitive verbs)

e As for as type homomorphism is preserved in the lexicon, there is
no danger of type-clash during meaning composition.

17/51

Lexicon: open words and closed words

e For an open word, we can use a template to specify its MR.
e ¢ is the position in which the lemma of a word appears.

Category Meaning templates Type
S\NP Xx.p(x) E—T
(S\NP)/NP \y.A\x.o(X,y) E—(E—T)

e For a closed word, we can directly assign its MR.

e For example, if we are interested in logical expressions, we can
use the following lexical entries:

Lemma Category MR Type
some NP/N AFAG3IX(FxNGx) (E—T)—»(E—-T)—>T
every NP/N AFAGVX(FxNGx) (E—T)—(E—T)—T
no NP/N AFAG.—-3Ix(FxNGx) (E—-T)—=(E—=T)—>T

18/51

Excerpts of Templates from ccg2lambda

CCG category | Meaning Representation

NP ANF 3x(N(p, x) A F(x))

S\NPpom AQK.QALL Ax.3v(K (e, v) A (Nom(v) = X)))

S\NProm/NPacc | AQoQi K.Q1 (AL Ax1.Qa (A1, Axp.3v(K (¢, V)
A (Nom(v) = x1) A (Acc (V) = x2))))

S/S ASK.S(AJV.K(AV' .(J(V') A o(V')), V)

NP/NP AQNF.QAGX.N(Ay.(¢(y) A G(y)),), F)

Types
Type ::= E|Event |T|X=Y

Mapping from syntactic categories to semantic types

NP* = (E-T)—»E—=T)—(E—=T)—>T
S* = ((Event —»T)—Event —T)—T
(C1/C2)* = (C1\C2)* = C2*—C1°*

19/51

English CCG parser

v" Penn Treebank

v' CCGBank

[Hockenmaier and Steedman 2007]

v’ CCG parser
- C&C [Curran and Clark 2007]

- EasyCCG [Lewis and Steedman EMNLP2014]

- depccg [Yoshikawa+ ACL2017]

v Semantic Parser
- Boxer [Bos+ 2004]
- Langpro [Abzianidze EMNLP2015]
- ccg2lambda [Mineshima+ EMNLP2015]

(S (NP-SBJ-1 John)
(VP (VBN met)
(NP Mary)))

S

NP S[pt]\NP
\
John gt \NP/NP NP

met Mary
met Mary
S[pt\NP/NP NP
Jialbn AyAz.(meet(z,y)) m
NP S[pt]\N P
j Az.(meet(z, m))

S[pt]

meet(j, m)

20/51

Japanese CCG parser

v Kyoto/NAIST Corpus

KfAs ZEPRIT SN 7
ambassador- negoatiation- participate-
v’ Japanese CCGBank ACC DAT PAST
[Uematsu+ ACL2013] A

v’ CCG parser (Jigg, depccg) e

- Jigg [Noji and Miyao ACL2016] A L 3 Ve
- depccg [Yoshikawa+ ACL2017] Nom PR vE R
5?"5 “1 Nomrb f‘

v’ Semantic parser (ccg2lambda)
- ccg2lambda [Mineshima+ EMNLP2016]

21/51

Three levels of MRs

(Level O : Individual words)

Level 1 : Predicate-Argument structure

Level 2 : Basic logical features (negation, disjunction, etc.)
Level 3 : Higher-order logical features

22/51

Level 1: Predicate-Argument Structure

Who did what, where, when?
MRs in Event semantics (Parsons, 1990):

Brutus stabbed Caesar on the street at noon.

Jde(stab(e) A (subj(e) = brutus) A (obj(e) = caesar) A
(location(e) = street) A (time(e) = noon))
MRs have a flat structure with:

» 7 (existential quantifier)
e A (conjunction)

Extensional descriptions of scenes or situations

23/51

Other notations: DRS and Graph

e Discourse Representation Structure (DRS) (Kamp and Reyle, 1993):
e

stab(e)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

¢ Graph notation: noon

subj time/

brutus ®stab carsar

/ obj

street location

e These three notations deliver the same information
24/51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

= (2) Brutus stabbed Caesar on the street
= (8) Brutus stabbed Caesar at noon.
= (4) Brutus stabbed Caesar.

e

(1)
2) (3) stab(e)
4)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25/51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

= (2) Brutus stabbed Caesar on the street
= (8) Brutus stabbed Caesar at noon.
= (4) Brutus stabbed Caesar.

e

(1)
(2) (3) stab(e)
4)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25/51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

= (2) Brutus stabbed Caesar on the street
= (8) Brutus stabbed Caesar at noon.
= (4) Brutus stabbed Caesar.

e

(1)
2) (3) stab(e)
4)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25/51

The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

= (2) Brutus stabbed Caesar on the street
= (8) Brutus stabbed Caesar at noon.
= (4) Brutus stabbed Caesar.

e

(1)
2) (3) stab(e)
(4)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

25/51

The Semantics of Voice

e Perceptual report:
John saw Bob walking on the street.
= Bob walked on the street.

subj subj

Bob «— ®wai ®sce John

/ obj

street location

e Active-Passive alternation:
Brutus stabbed Caesar.
= Caesar was stabbed by Brutus.
e Causative-inchoative alternation:
John closed the door.
= The door became closed.

26/51

Level 2: Basic logical features

¢ Add basic logical expressions:

not (negation, —)

or (disjunction, V)

if (implication, —)

any (universal quantification, V)

¢ Indeterminate/underspecified description of a situation

¢ Not easy to visualize (“Draw a picture of A man is not walking®)

27/51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H

= There is no situation in which P is true but H is false.

= The information in P already contains the information in H.
e grizzly < bear < animal

e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
H1. Some animals danced.
H2. Some grizzlies danced.
H3. Some bears moved.
H4. Some bears waltzed.

28/51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features
P entails H

= There is no situation in which P is true but H is false.

= The information in P already contains the information in H.
e grizzly < bear < animal

e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

= H1. Some animals danced.
H2. Some grizzlies danced.
H3. Some bears moved.
H4. Some bears waltzed.

28/51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features
P entails H

= There is no situation in which P is true but H is false.

= The information in P already contains the information in H.
e grizzly < bear < animal

e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

= H1. Some animals danced.

H2. Some grizzlies danced.
H3. Some bears moved.
H4. Some bears waltzed.

28/51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features
P entails H

= There is no situation in which P is true but H is false.

= The information in P already contains the information in H.
e grizzly < bear < animal

e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

= H1. Some animals danced.

H2. Some grizzlies danced.

= H3. Some bears moved.
H4. Some bears waltzed.

28/51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features
P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.
e grizzly < bear < animal
e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

= H1. Some animals danced.
H2. Some grizzlies danced.
= H3. Some bears moved.

H4. Some bears waltzed.

28/51

Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

= H1. Some animals danced.
H2. Some grizzlies danced.
= H3. Some bears moved.

H4. Some bears waltzed.

We write: Some bears' danced'
NP and VP in Some NP VP are upward monotonic

28/51

Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.
H1. No animals danced.
H2. No grizzlies danced.
H3. No bears moved.
H4. No bears waltzed.

29/51

Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.

H1. No animals danced.
H2. No grizzlies danced.
H3. No bears moved.
H4. No bears waltzed.

29/51

Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.

H1. No animals danced.
= H2. No grizzlies danced.
H3. No bears moved.
H4. No bears waltzed.

29/51

Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.

H1. No animals danced.

= H2. No grizzlies danced.

=# H3. No bears moved.
H4. No bears waltzed.

29/51

Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.

H1. No animals danced.
= H2. No grizzlies danced.
=# H3. No bears moved.

= H4. No bears waltzed.

29/51

Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.

H1. No animals danced.
= H2. No grizzlies danced.
=# H3. No bears moved.

= H4. No bears waltzed.

We write: No bears' danced*
NP and VP in No NP VP are downward monotonic

e Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.

29/51

Bare NPs

For bare NPs (NPs without determiners), predicates play a crucial role.

tigress < tiger < animal

Tigers are striped. Tigers are on the lawn.
= Tigresses are striped. = Tigresses are on the lawn.
Animals are striped. = Animals are on the lawn.

Tigers' are striped. (individual-level predicate)
Tigers' are on the lawn. (stage-level predicate)

e The basic patterns of monotonicity inferences are directly
predictable from logic-based MRs.

¢ Upward/downward monotonicity properties follow from the
properties of logical operators.
Ix(bear'(x) A dance'(x))
—3x(bear*(x) A dance*(x))

30/51

Level 3: Advanced logic features

There are many linguistic phenomena that allegedly go beyond
standard first-order logic.

o Attitudes, modals and aspectual operators.
Generalized/proportional quantifiers
Intensional adjectives

Comparative and superlatives

Other higher-order predicates

Some features:

¢ Introducing intensionality (involving speaker’s perspectives,
mental states, etc.)

¢ Quantifying over higher-order objects (objects other than entities)
¢ Not directly formalizable in first-order logics

31/51

Attitudes, modals and temporal operators

Attitude predicates like know and believe take propositional
objects as argument.

Inferential contrast between factive predicates (eg. know) and
non-factive predicate (eg. believe)

John knows that it is raining.

= It is raining.

John does not know that it is raining.
= It is raining.

John believes that it is raining.

It is raining.

John does not believe that it is raining.
It is raining.

modals: likely, probably, might, must, can. etc.
aspectual operators: progressives, perfectives, etc.

32/51

Generalized quantifiers

Proportional quantifiers:
e Most, half of, 70% of ...

Monotonicity properties:

Most students smoked. # < Most female student smoked.
Most students smoked. <= Most student smoked in a building.

o But these quantifiers are known to be not
first-orderizable (Barwise and Cooper, 1981)

33/51

Adjectives: subsective and non-subsective

Subsective (intersective) adjective

e Dumbo is a small elephant. small(dumbo) A elephant(dumbo)
= Dumbo is an elephant. elephant(dumbo)

Non-subsective adjective

e This is a fake diamond.
This is a diamond.
= This is not a diamond.

34/51

Comparatives

e Alice is taller than Bob.
Alice is tall.

Alice is taller than Bob.

Bob is tall.
= Alice is tall.

Alice is taller than Bob.

Bob is taller than Carol.
= Alice is taller than Carol.

Question:

e What are proper MRs for adjective constructions that are suitable
to efficient inferences?

¢ How to give a compositional semantics of predicates tall and taller
(how the meanings of tall and taller are related to each other?)

35/51

Some higher-order predicates

e Higher-order predicates that apply to objects other than entities:
rise, change, decrease

e The price of gasoline is rising.
e The price of gasoline is 1,000 dollars.
=% 1,000 dollars are rising.

36/51

Logic-based Meaning Representations

Natural Logic

o formalizes inferences
with surface form

A only allows single
premise inferences
(mononicity inference)

more efficient

First-order logic
(FOL)

o efficient provers exist

e dominate computational
linguistics

A limited expressive
power

Higher-order logic
(HOL)

e high expressive power

e dominate formal semantics

A no general-purpose
efficient prover exists

less efficient

S

less expressive

MacCartney (2009)

Boxer (Bos 2008)

more expressive

Mineshima et al. (2015)

37/51

Logic-based Meaning Representations

Natural Logic

o formalizes inferences
with surface form

A only allows single
premise inferences
(mononicity inference)

more efficient

First-order logic
(FOL)

o efficient provers exist

e dominate computational
linguistics

A limited expressive
power

Higher-order logic
(HOL)

e high expressive power

e dominate formal semantics

A no general-purpose
efficient prover exists

less efficient

S

less expressive

MacCartney (2009)

Boxer (Bos 2008)

more expressive

Mineshima et al. (2015)

37/51

Logic-based Meaning Representations

Natural Logic

o formalizes inferences
with surface form

A only allows single
premise inferences
(mononicity inference)

more efficient

First-order logic
(FOL)

o efficient provers exist

e dominate computational
linguistics

A limited expressive
power

Higher-order logic
(HOL)

e high expressive power

e dominate formal semantigs

A no general-purpose
efficient prover exists

less efficient

S

less expressive

MacCartney (2009)

Boxer (Bos 2008)

more expressive

Mineshima et al. (2015)

37/51

HOL as representation language

Higher-order constructions in natural languages
© Generalized quantifiers
Most students work ~» most(\.student(x), A\x.work(x))

® Modals
John might come ~~ might(come()))

® Veridical and anti-veridical predicates
Someone managed to come ~~ Fx(manage(x, come(x)))
Someone failed to come ~» Jx(fail(x, come(x)))
@ Attitude verbs
John knows that some student came. ~~
know(j, 3x(student(x) A come(x)))

e Higher-order inference system implemented in Coq (Mineshima
et al., 2015)

o Alternative: first-order decomposition/reification (Hobbs, 1985)

38/51

Natural Language Inference (Recognizing Textual
Entailment, RTE)

e Does P entail H?

P Most cities in Japan prohibit smoking in restaurants.
H Some cities in Japan do not allow smoking in public spaces.
Yes (entail)

e The best way of testing an NLP system’s semantic capacity
(Cooper et al. 1996)
e Many applications in NLP

e Question Answering,

e Text Summarization

e Fact validation/checking
e etc.

39/51

Datasets for Recognizing Textual Entailment (RTE)

e English:

Dataset

Size Crowdsourcing

FraCaS (Cooper et al., 1994) 346
PASCAL-RTE1-5 (Dagan et al. 2006) 7K
SICK (Marelli et al., 2014) 10K v
SNLI (Bowman et al., 2015) 570K Vv
MultiNLI (Williams et al. 2017) 432K V
e Japanese:

Dataset Size Crowdsourcing

JSeM 780

NTCIR RITE 1-2 1,800

Kyoto RTE dataset 2,471

40/51

FraCaS (Cooper et al. 1996)

e Created by linguists in 1990s.
Size: 346 problems

The inferences are divided into nine sections in terms of linguistic
phenomena:

» Generalized quantifier, Plurals, Nominal anaphora, Ellipsis,
Adjective, Comparatives, Temporal reference, Verbs, Attitudes

Contains lots of logical expressions (at Level 2 and Level 3)
Lexical and world knowledge is mostly excluded
Contains multiple-premise inferences

premise # problem

1 192 55.5%
2 122 35.3%
3 29 8.4%
4 2 0.6%
5 1 0.3%

41/51

FraCaS: Examples

e The XML format was created by Bill MacCartney
https://nlp.stanford.edu/%icmac/downloads/

fracas-038 (Generalized quantifier) label: no (contradiction)
P: No delegate finished the report.
H: Some delegate finished the report on time.

fracas-084 (Plural) label: yes (entailment)
P: Either Smith, Jones or Anderson signed the contract.
H: If Smith and Anderson did not sign the contract, Jones signed the contract.

fracas-134 (Nominal Anaphora) label: yes (entailment)

P1: Every customer who owns a computer has a service contract for it.
P2: MFI is a customer that owns exactly one computer.

H: MFI has a service contract for all its computers.

42/51

Japanese Semantics Test Suite (JSeM)
Kawazoe et al. (2015)
http://researchmap. jp/community-inf/JSeM/

e Translation of FraCaS (624 problems) and Japanese original ones
(166 problems)

e Each problem is tagged with:
e phenomena type (quantifier, adjective, negation, etc.)
« inference type (logical entailment, presupposition)

e single-premised (66%) and multi-premised (34%) problems

jsem-id:1 answer: yes inference type: entailment phenomena: Generalized Quantifier, conservativity
linked to: fracas-001 literal translation?: yes same phenomena?: unknown

P1

script H219 V7 APEREREDT/ —ILRFICBE oo

English An Italian became the world's greatest tenor.

H

script HREEDT/ —IRFILBSTcAF Y 7 AD W o
English There was an Italian who became the world's greatest tenor.

43/51

SICK (Sentences Involving Compositional Knowldedge)
SemEval14, Marelli et al. (2013)

e Size: 4,500/500/4,927 for training, dev. and testing.

e Premise: taken from image captions in Flickr30k Corpus
e Hyphothesis and Label: crowdsourcing and expert-check
e contains only single-premise inferences

e contains logical expressions at Level 2 (negation, disjunction,
quantifiers)

¢ Both word-level and phrase-level paraphrases are required

44/51

SICK: Examples

SICK-506 (label: no)

P: A man wearing a dyed black shirt is sitting at the table and laughing.
H: There is no man wearing a shirt dyed black, sitting at the table and
laughing.

SICK-718 (label: unknown)
P: A few men in a competition are running outside.
H: A few men are running competitions outside.

SICK-3156 (label: yes)
P: A man is cutting a box.
H: A box is being cut by a man.

SICK-3668 (label: yes)
P: A man is strolling in the rain.
H: A man is walking in the rain.

45/51

SNLI

Bowman et al. (2015)

The Stanford Natural Language Inference (SNLI) Corpus
P: taken from image captions in Flickr30k Corpus

H and Label: crowdsourcing

contains only single-premise inferences

sentences are confined to descriptions of scenes, not containing
logical features (limited to Level 1)

largely limited to simple lexical inferences

label: entailment
P: A white dog with long hair jumps to catch a red and green toy.
H: An animal is jumping to catch an object.

46/51

MultiNLI

Williams et al. (2017)

e The Multi-Genre Natural Language Inference (MultiNLI)

genre: Fiction, answer: entailment
P: He turned and saw Jon sleeping in his half-tent.
H: He saw Jon was asleep.

genre: telephone, answer: contradiction
P: someone else noticed it and i said well i guess that’s true and it was

somewhat melodious in other words it wasn't just you know it was
really funny

H: No one noticed and it wasn’t funny at all.

o A set of linguistic phenomena tags are automatically assigned to
the development set (10K sentences):

o quantifiers, belief verbs, time terms, conditionals, etc.

47/51

Summary

e Compositional Semantics:
» Meaning composition via CCG and Lambda Calculus
¢ Meaning Representations:

o Three levels of MRs for semantic composition:
Predicate-Argument Structure, Basic Logics and beyond
» Event Semantics, First-order logic, and Higher-order logic

¢ Inference: RTE datasets

48/51

Introduction to ccg2lambda

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

Semantic
(] representation
Input: Inference
P1 Smoking is prohibited in most cities.
H Smoking is not allowed in some cities.
The system accepts both single-premise
and multi-premise inferences
Yes (Entail)
- 4 No (Contradict)

Unknown

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

Semantic
representation

Combinatory Categorial Grammar
CCG (Steedman, 2000; Bekki, 2010)
o C&C parser (Clark and Curran, 2007), trained on

CCGbank (Hockenmaier and Steedman, 2007)
e Jigg (Noji and Miyao, 2015)

Yes (Entail)
- 4 No (Contradict)

Unknown

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

Semantic
(\ representation
CCG parse tree for each sentence
in most cities
prohibited ((S\NP)\(S\NP))/N N
is S\NP (S\NP)\ (S\NP)
Smoking (S\NP)/(S\NP) S\NP <
NP S\NP
S
L Yes (Entail)

No (Contradict)
Unknown

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

- . Semantic
Semantic composition via Lambda-calculus representation

Syntactic Category : Meaning

B/A:f A:a A:a B\A:f
B:fa B:fa

Given a CCG-tree, the semantic representation can

be derived in a fully compositional way. Nc)Y?SCc()ﬁ:rt:cllliz:t)

Unknown

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic
Composition

Text Parse tree

Semantic
Semantic representation in HOL representation
L~

P1 Smoking is prohibited in most cities.
Ix(smoking(x) A
most(Ay.city(y), Ay.prohibited(x) Ain(x,y)))

H Smoking is not allowed in some cities.
Ix(smoking(x) A
y(city(y) A —allowed(x) Ain(x,y))) Yes (Entail)
No (Contradict)
Unknown

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

1) Semantic

. . representation
Higher-order inference system P

implemented on Coq
(Cf. Chatzikyriakidis and Luo, 2014)

Coq: interactive theorem-prover based on
higher-order logic/modern type theory

HOL axiom: VFVG(most(F, G) — Ix(Fx A Gx))

WordNet axiom: Vx(prohibited(x) — —allowed(x)) Yes (Entail)

No (Contradict)
Unknown

ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic
Composition

Text Parse tree

() Semantic

representation
Output: yes/no/unknown

P1 Jx(smoking(x) A

most(Ay.city(y), Ay.prohibited(x) A in(x,y)))
H 3x(smoking(x) A

Jy(city(y) A —allowed(x) Ain(x,y)))

Answer : Yes (P1 entails H) ™~ Yes (Entail)

No (Contradict)
Unknown

Semantic composition on CCG tree

Bvery student who
NP/N N (NP\NP) / (S\NP)

works
s\np

NP NP\ NP

NP

>

comes

s\np

S

= Syntactic categories and rules indicate composition.

Semantic composition on CCG tree

works

Every student who
(NP\NP) / (S\NP) s\np

NP/N N
(XEx.E(x)) (student)

NP NP\ NP

< comes
NP s\np

= Syntactic categories and rules indicate composition.

= Open words: schematic lexical entries match syntactic categories.

Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
Ax.student (x)

> >
NP NP\ NP

< comes
NP s\np

S

= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.

= [-reduction with lemmas as arguments.

Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
Ax.student (x) AQ.Q(Ax.True) (Ax.work(x))

NP NP\ NP

< comes
NP s\nP
AQ.Q(Ax.True) (Ax.come(x))

= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.

= Semantics more interesting for verbs.

Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
AFGH.V/x(Fx A Gx — Hx) Ax.student (x) AVQF.Q(Ax. (V(AGH.Hx) A Fx)) AQ.Q(Ax.True) (Ax.work(x))
>

NP NP\ NP

< comes
NP s\nP
AQ.Q(Ax.True) (Ax.come(x))

= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.

= Semantics more interesting for verbs.

Closed words: direct assignment.

Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
AFGH.V/x(Fx A Gx — Hx) Ax.student (x) AVQF.Q(Ax. (V(AGH.Hx) A Fx)) AQ.Q(Ax.True) (Ax.work(x))
>

NP NP\ NP
AGH. Vx(student(x) A Gx — Hx)

< comes
NP s\nP
AQ.Q(Ax.True) (Ax.come(x))

= Syntactic categories and rules indicate composition.

= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.

= Semantics more interesting for verbs.

= Closed words: direct assignment.

= Semantic composition from leaves to root.

Semantic composition on CCG tree

Bvery student who works

NP/N N (NP\NP) / (S\NP) s\np
AFGH.V/x(Fx A Gx — Hx) Ax.student (x) AVQF.Q(Ax. (V(AGH.Hx) A Fx)) AQ.Q(Ax.True) (Ax.work(x))
NP > NP\ NP
AGH. Vx(student(x) A Gx — Hx) AQF.Q(Ax. (work(x) A Fx))
comes
NP s\nP
AFH.Vx(student(x) A work(x) A Fx — Hx) AQ.Q(Ax.True) (Ax.come(x))

Vx(student (x) A Work(f) A True — come(x))
= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.
= Semantics more interesting for verbs.
= Closed words: direct assignment.
= Semantic composition from leaves to root.

= Logical meaning representation of the sentence at the root.

Lexical entries

@ For closed words: lexical entries directly assigned to surface form (a
limited number of grammatical and logical expressions): 80 entries

Example
= category: NP/N
= semantics: AFAGAH.Vx(Fx A Gx — H)

= surf: every

® For open words: schematic lexical entry (semantic templates)
assigned to syntactic categories: 57 entries

Example
= category: N

= semantics: AEAx.E(x)

“E" is a position in which a particular lexical item appears.

ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):

ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):

= # python semparse.py ccgtrees.xml templates.yaml semantics.xml

" pos="DT" cat="NP[nb]/N'
1" pos="NN" cat="N"

©ONOUITAWNH

_sp9" category="S[dcl=true]" rule

_sps” category="S[dcl=true]" rule

exists 21 (_tea(z1) & TrueP & _order(x,21)))" />

n : Entity —> Prop”

ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.

= Easy to use (simple programs):
= # python semparse.py ccgtrees.xml templates.yaml semantics.xml
®= # python visualize.py semantics.xml > semantics.html

_Some woman _ordered
NPpub—true, N (S/dcl=true)\NF) /NP 7
\F1F2 F3.exists x.(F1(x) & F2(x) & F3(x)) \x--woman(x) \Q1 Q2.Q2(\w.TrueP,\x.Q1(\w.TrucP, \y. order(x,y))) \F1F2.exists x.(_tea(x) & F1(x) & F2(x))
fa
NPpup=truc, S ficl=true]\NP
\F2 F3.exists x.(woman(x) & F2(x) & F3(x)) \Q2.Q2(\w.TrucP, \x.exists z4.(_tea(z4) & TrueP & order(x.z4))
ba _por
S/dcl=true, K
exists x.(_woman(x) & TrueP & exists z4.(_tea(z4) & TrucP & _order(x,z4))) XX
T]
P Sjdel=true

exists x.(_woman(x) & TrueP & exists z4.(_tea(z4) & TrueP & _order(x,z4)))

ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):
= # python semparse.py ccgtrees.xml templates.yaml semantics.xml

®= # python visualize.py semantics.xml > semantics.html
®* # python prove.py semantics.xml

ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):

= # python semparse.py ccgtrees.xml templates.yaml semantics.xml

python visualize.py semantics.xml > semantics.html
python prove.py semantics.xml

= Easy to extend (declarative).

— semantics : A-formula
category : syntactic_category
conds : values

cond; : value;

ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.

= Easy to use (simple programs):
= # python semparse.py ccgtrees.xml templates.yaml semantics.xml
®= # python visualize.py semantics.xml > semantics.html
®* # python prove.py semantics.xml

= Easy to extend (declarative).

= Easy to process (XML output).

Recognizing Textual Entailment

Recognizing Textual Entailment

= Does Premise P entail Hypothesis H?

P Smoking in restaurants is prohibited by law in most cities in Japan.
H Smoking in public spaces is not allowed in some cities.
Yes (Entailment)

Recognizing Textual Entailment

= Does Premise P entail Hypothesis H?

P Smoking in restaurants is prohibited by law in most cities in Japan.
H Smoking in public spaces is not allowed in some cities.
Yes (Entailment)

= The best way of testing an NLP system’s semantic capacity (Cooper
et al. 1996)

= Many application areas (Question Answering, Machine Translation, etc.)

Recognizing Textual Entailment

= Does Premise P entail Hypothesis H?

P Smoking in restaurants is prohibited by law in most cities in Japan.
H Smoking in public spaces is not allowed in some cities.
Yes (Entailment)

= The best way of testing an NLP system’s semantic capacity (Cooper
et al. 1996)
= Many application areas (Question Answering, Machine Translation, etc.)

= relevant factors:

1. syntax Logical/
2. logical words: most, not, some, every ~ Compositional semantics

Recognizing Textual Entailment

= Does Premise P entail Hypothesis H?

P Smoking in restaurants is prohibited by law in most cities in Japan.

H Smoking in public spaces is not allowed in some cities.
Yes (Entailment)

= The best way of testing an NLP system’s semantic capacity (Cooper
et al. 1996)

= Many application areas (Question Answering, Machine Translation, etc.)

= relevant factors:

1. syntax Logical/
2. logical words: most, not, some, every =~ Compositional semantics

3. content words:
restaurant — public__space Lexical Knowledge
prohibited — — allowed

Introducing Lexical Knowledge

Introduction

Logic sometimes is not enough

T: men are sawing logs.
Ix.(man(x) A Jy.(log(y) A saw(x, y))
H: men are cutting wood.

Ax.(man(x) A Jy.(wood(y) A cut(x, y))

Introduction

Logic sometimes is not enough

T: men are sawing logs.
Ix.(man(x) A Jy.(log(y) A saw(x, y))
H: men are cutting wood.
3Ix.(man(x) A Jy.(wood(y) A cut(x, y))
Method: to inject lexical knowledge into the proof.
= Word relations can be found in ontologies (e.g. WordNet, etc.)
VxVy.saw(x, y) — cut(x, y)

Vx.log(x) — wood(x)

Naive injection of lexical knowlege
Running example:
Ixy vy (dog(x1) A white(xq) A black(x1) A nap(vy) A Subj(vi) = x1)

T: A black and white dog naps .

H: A black and white dog sleeps

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(va) = x2)

= Obtain semantic representation.

Naive injection of lexical knowlege

Running example:

Ixq v (dog(x1) A white(x1) A black(x1) A nap(vy) A Subj(vy)

——— —— -

T AC black ‘and\ Wh/te ‘(dog u naps .

—_—_—

—— - ——— -

H: A b/ack ‘andk Wh/te ‘(dog xd sleeps .

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(vz)

= |dentify content/interesting words.

=x)

= Xp)

Naive injection of lexical knowlege

Running example:

Ixy vy (dog(x1) A white(xq) A black(x1) A nap(vy) A Subj(vi) = x1)

A b/acké‘ and Wh/te ‘(dog u naps .
[IENSG /51'(/\ /;|’\ Pl it
| \yy \,‘l/ s \ 7/
|

T:

|
s /,{\+>:\(\/K\/X\ |
P D O SR
H: A black and white dog i sleeps '

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(vz)

= X2)
= Enumerate possible relations.

Naive injection of lexical knowlege

Running example:

Ixy vy (dog(x1) A white(xq) A black(x1) A nap(vy) A Subj(vi) = x1)

———

T AC black ‘and\ Wh/te ‘(dog u naps .
s——\\ e -l'
/V\ ‘l

—_— K N .__\

H: A b/ack ‘and\ Wh/te ‘(dog xd sleeps .

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(va) = x2)

= Select/predict relations according to ontology or classifier:
= Vx.black(x) — — white(x)
= Vx.white(x) — — black(x)
= Vv.nap(v) — sleep(v)

Naive injection of lexical knowlege

Running example:

Ixq v (dog(x1) A white(x1) A black(x1) A nap(vy) A Subj(vy)

——— —— -

T AC black ‘and\ Wh/te ‘(dog u naps .

—_—_—

—— - ——— -

H: A b/ack ‘and\ Wh/te ‘(dog xd sleeps .

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(vz)

= Insert knowledge, run proof.
= ... and possibly get the wrong answer.
= This problem is aggravated for longer sentences.

=x)

= Xp)

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step O = Decompose T and H into:

Dp1:
D2:
Pp3:
Pa:
bs:

dog(x1) :
white(x1)
black(z1)
Subj(v1) = =1
nap(v:)

» List of sub-goals G.

| S —

g1:
g2:
gs3:
94:
gs:

dog(z2)
white(mg)
black(xs)

Su bj(Uz) = T2
sleep(v2)

~ @@

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 1 = Decompose T and H into:

» List of sub-goals G.

= Variable unification xy := xq.

__:____(_____ = Prove g1,82 and g3 ...
. = ... using p1, p2 and ps.

g5: sleep(v2)

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 2 = Decompose T and H into:

p1: dOhg(l’l) = List of sub-goals G.
: te

8 L) = Variable unification xo := xy.
P3: black(z1) > d
P Ty S S = rove gi,82 and gs ...
P4 §u_bl(3)1_)_—_a£1) = ... using p1, p2 and ps.
Ps: nap(v .

p(1) = Variable unification vy := vy.

= Prove g4 using py.

H++—dog{err
H—blaeki+
G+-SebHor =21
g5 sleep(vy)

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 3 = Decompose T and H into:

D1: dog (1)
P2: white(z1)
P3: black(xy)

. = Prove g1,g0 and g3 ...
4: Subj(v1) = @ :
/ZZ S == J_(_l_)_ _ _1\ = ... using p1, p2 and ps.

—————————— = Variable unification vy := vy.

» List of sub-goals G.

= Variable unification xy := xq.

= Prove g4 using py.

} = Inject axiom Vv.nap(v) — sleep(v).

= nap(vq) and sleep(vy) share
variable.

= nap-sleep € WordNet.

= Continue proof.

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 3 = Decompose T and H into:

D1: dog (1)
P2: white(z1)
P3: black(xy)

. = Prove g1,g0 and g3 ...
4: Subj(v1) = @ :
/ZZ S == J_(_l_)_ _ _1\ = ... using p1, p2 and ps.

—————————— = Variable unification vy := vy.

» List of sub-goals G.

= Variable unification xy := xq.

= Prove g4 using py.

} = Inject axiom Vv.nap(v) — sleep(v).

= nap(vq) and sleep(vy) share
variable.

= nap-sleep € WordNet.

= Continue proof.

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xy) A black(x1) A nap(vi) A Subj(vi) = x1)

H : 3xy vy (dog(x1) A white(x1) A black(x1) A sleep(vi) A Subj(vi) = x1)

Proving strategy and Axiom construction

T: Elxll vll(dog(xl) A white(xy) A black(xy) A nap(vi) A Subj(vi) = x1)
I
11
11

H: 3)&1 dl(dog(xl) A white(xy) A black(xy) A sleep(vy) A Subj(v1) = x1)

= Variable unification from proof...

Proving strategy and Axiom construction

T:3x vl(dclng(xl) A qute(xl) A blﬁck(xl) A n?p(vl) A Su‘bj(vi) = X1)
| | | | |
1 | | 1 |
| | | | |
¥ V. V ¥ Vo
H : 3xy vy (dog(x1) A white(x1) A black(x1) A sleep(vy) A Subj(v1) = x1)

= Variable unification from proof...
= Defines an alignment between logic predicates.
= Most theorem provers perform backtracking in the search of best
alignment.

Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xy) A black(x1) A n?p(vl) A Subj(vi) = x1)

¥
H : 3xy vy (dog(x1) A white(x1) A black(x1) A sleep(vy) A Subj(v1) = x1)

= Variable unification from proof...
= Defines an alignment between logic predicates.
= Most theorem provers perform backtracking in the search of best
alignment.
= Better identify logic/textual relations:
= Yv.nap(v) — sleep(v).

System

Text
Hypothesis

semantic) |, MR
parser T'—H

- »r == @@

@ Tokenize T and H.
® Syntactic parsing with C&C and EasyCCG.
© Obtain Meaning Representations with ccg2lambda.

_)

\

L

\

yes, no
unk

Axiom
V0.pi(0;) — p(65)

Sub-goal info.
P = {pi(0:), pr(0x)}
G = {p}(07)}

@ Monitor proof and inject axioms on-demand:
synonymy (e.g. house — home),
hypernymy (e.g. sea — water),
adjectival similarity (e.g. huge — big),
derivationally related forms (e.g. accommodating — accommodation),
inflection relations (e.g. wooded — wood),
antonymy relations (e.g. big — —small).

axiom
construction

Evaluation

SICK dataset

= Size: 4,500/500/4,927 for training, dev. and testing.
= Label distribution: .29/.15/.56 for yes/no/unk.

= About 212,000 running words.

= Average premise and conclusion length: 10.6.

= No parameter estimation.

Evaluation

SICK dataset

= Size: 4,500/500/4,927 for training, dev. and testing.
= Label distribution: .29/.15/.56 for yes/no/unk.

= About 212,000 running words.

= Average premise and conclusion length: 10.6.

= No parameter estimation.

Examples:
Problem ID | T-H pairs Entailment

1412 T: Men are sawing logs . Yes
H: Men are cutting wood .

4114 T: There is no man eat'/ng food . No
H: A man is eating a pizza .

718 T: A few men in a compet:t:on are running quts:de | Unknown
H: A few men are running competitions outside .

Evaluation

System

Results:

Prec.

Rec.

Acc.

Baseline (majority)

56.69

Evaluation

Results:
System Prec. | Rec. Acc.
Baseline (majority) - — | 56.69
MLN — — | 73.40
Nutcracker — — | 74.30
Nutcracker-WN — — | 77.50
Nutcracker-WN-PPDB — — | 78.60
MLN-WN-PPDB — — | 80.40
LangPro Hybrid-800 97.95 | 58.11 | 81.35
The Meaning Factory 93.63 | 60.64 | 81.60

Evaluation

Results:
System Prec. Rec. Acc.
Baseline (majority) — — | 56.69
MLN — — | 73.40
Nutcracker — — | 74.30
Nutcracker-WN — — | 77.50
Nutcracker-WN-PPDB — — | 78.60
MLN-WN-PPDB — — | 80.40
LangPro Hybrid-800 97.95 | 58.11 | 81.35
The Meaning Factory 93.63 | 60.64 | 81.60
No axioms 98.90 | 46.48 | 76.65
Naive 92.99 | 59.70 | 80.98
SPSA WN,VO 97.04 | 63.64 | 83.13

Evaluation

Results:
System Prec. Rec. Acc.
Baseline (majority) — — | 56.69
MLN — — | 73.40
Nutcracker — — | 74.30
Nutcracker-WN — — | 77.50
Nutcracker-WN-PPDB — — | 78.60
MLN-WN-PPDB — — | 80.40
LangPro Hybrid-800 97.95 | 58.11 | 81.35
The Meaning Factory 93.63 | 60.64 | 81.60
No axioms 98.90 | 46.48 | 76.65
Naive 92.99 | 59.70 | 80.98
SPSA WN,VO 97.04 | 63.64 | 83.13
SemantiKLUE 85.40 | 69.63 | 82.32
UNAL-NLP 81.99 | 76.80 | 83.05
ECNU 84.37 | 74.37 | 83.64
Illinois-LH 81.56 | 81.87 | 84.57
MLN-eclassif (CL2016) — — | 85.10
Yin-Schutze (EACL2017) - — | 87.10

Error analysis

(more complex examples in back-up slide)

Prob. ID T-H pairs Gold System Axioms needed
412 | [e cutting wood Yes | Yes | Ui o wood(o)
2404 | |\ There 12 o one costing o tomato No | No | Wwslice(v) — cut(y)
2895 ;I_'— 7.’::: ';ZZ ;z"h;tf;zlii;ihts . No No Vx.weight(x) — barbell(x)

Error analysis

(more complex examples in back-up slide)

Prob. ID T-H pairs Gold System Axioms needed
412 | e e cortng vood Yes | Yes | e o weodlo)
2404 |\ There i no one eosting 3 tomato . No | MNo | Wwslice(s) — cut(v)
2895 ;I_'— 7.’::: ';ZZ ;z"h;tf::";ii?lihts ’ No No Vx.weight(x) — barbell(x)
530 :i— ﬁ l;’[’;:: Se\na/:iznflag:; rlsmfrlec:k:z; Itahc: éears . Unk Yes

Error analysis

(more complex examples in back-up slide)

Prob. ID T-H pairs Gold System Axioms needed
T: Men are sawing logs . Vv.saw(v) — cut(v)
1412 H: Men are cutting wood . Yes Yes Vx.log(x) — wood(x)
T: The lady is slicing a tomato . .
2404 H: There is no one cutting a tomato . No No Vv.slice(v) — cut(v)
T: The man isn't lifting weights . .
2895 H: The man is lifting barbells . No No Vx.weight(x) — barbell(x)
T: A biker is wearing gear which is black .
530 H: A biker wearing black is breaking the gears . Unk Yes
T: A man is playing a guitar .
1495 H: A man is strumming a guitar . Yes Unk vv-play(v) — strum(v)
T: A band is playing on a stage . “ " “ "
1266 H: A band is playing onstage . Yes Unk on a stage” — “onstage
2166 T: A woman is sewing with a machine .] Yes Unk “se\-Nlng with a machine” — L
H: A woman is using a machine made for sewing . using a machine made for sewing
384 T: A white and tan dog is running through Yes Unk

the tall and green grass .

H: A white and tan dog is running through a field .

“tall and green grass” — “field”

Phrasal Entailments with Visual Denotations

Phrasal Entailments with Visual Denotations

Recognizing phrase entailments is also necessary!

T: men walk in the tall and green grass.

Ix.(man(x) A Jy.(tall(y) A green(y) A grass(y) A walk(x, y))

H: men walk in the field.

Ix.(man(x) A y.(field(y) A walk(x, y))

Problem:

= Such knowledge can not be found in databases (e.g. WordNet,
PPDB).

= Semantic relatedness # semantic entailment.
= Distributional approaches (e.g. word2vec) are not effective:
= piano =4 guitar, cat =~ dog

Phrasal Entailments with Visual Denotations

Get visual denotations of phrases and compare images.

T: men walk in the tall and green grass.

H: men walk in the field.

tall and green grass

tall and green grass.

Phrasal Entailments with Visual Denotations

Get visual denotations of phrases and compare images.

T: He chats with his wife via internet camera.

H: He chats with his wife via webcam.

internet camera Webcam
> intemetcamera B

Phrasal Entailments with Visual Denotations

Step 1: phrase pair identification

— Identify ——
RTE |, (candidate phrase) 5 |phrases
datasets entailments

= Identify examples of phrase equivalences.

oY

walks in the tall and green grass .

Men walksin the field .

N

Phrasal Entailments with Visual Denotations

Step 2: obtain visual denotations

Image
Search

Visual
denotations

= Query images using phrases.

tall and green grass { - E-- ' -
s -
internet camera —> { & ! 'v v g &
webcam { /g m g e ® s

{ = }

Phrasal Entailments with Visual Denotations
Step 3: Learn RTE Classifier

Classtlﬁer of Estimate
sen entcle <«— (multimodal
semantic embeddings
relations

= Learn parameters of RTE classifier.

Entailment
(Yes/No/Unk)

h) Classifier
(Phrase , image set) estimation Logic & Linguistic
(Phrase,, image set) ' ~ features

Phrasal Entailments with Visual Denotations
Step 4: Integrate into RTE pipeline

RTE
datasets

= Integrate on RTE pipeline and evaluate.

Axmm
V9 pi

) = pi("\
Text cee art]. MR a axiom
semantic .
Hypothesis parser T — H construction
— Sub goal info. /
yes no P = {pi(6:), pi(01)}
unk G = {p(0))}

Phrasal Entailments with Visual Denotations
T: Some men walk in the.

Source phrase

i) = cos(u(if), v(i}) = o)

= TG TR GEDT]

LSETISTIASTE Y

Target phrase

H: Some people walk in thelficld].

= Select best and worst phrase pair according to:

max (it i)

score(t, h) =
(t,h) e

/_
’ h‘ I';’E/h

Phrasal Entailments with Visual Denotations

Results when using visual denotations

System Prec. | Rec. | Acc.
ccg2lambda + images | 90.24 | 71.08 | 84.29
ccg2lambda, only text | 96.95 | 62.65 | 83.13
L&H, text + images — — 82.70
L&H, only text - — 81.50

Baseline (majority) | — | -]56.69

Phrasal Entailments with Visual Denotations
Examples

True positive:

T: The woman is picking up a|kangar00 that is littlel

Phrasal Entailments with Visual Denotations

Examples

False positive:

T: A monkey is wading through aimursh:.

H: A monkey is wading through a[river]

- T Ipm—.

Phrasal Entailments with Visual Denotations

Examples

False negative:

T: A boy is spanking a man with a plaqtlc sword

oy .I'Y

H: A boy is spanking a man with a toy weapon

¥

Two Basic Approaches

/ \
(" distributional) formal
a dog a dog
6 Meaning.
O Jz.dog(z) Representation
O
a brown dog a brown dog
O Composionality
+ 0| = Jz.dog(z) A brown(z)
O
sl s2
Jzv.dog(z) Arun(v,) Aslowly(v) |nference
fo:[OxO—= {=,%} o doge o) Reasoning
zv.dog(x) A run(v,x
pS)

Two Basic Approaches

- ———— 3

4 distributional I

a brown dog

sl s2
Jo :IX I% {=.%}
- Y,

formal
a dog
Meaning
Jz.dog(z) Representation
a brown dog

c ionalit
Jz.dog(z) A brown(z) omposionality

Jzv.dog(z) Arun(v,) Aslowly(v) |nference
Reasoning
Jzv.dog(x) A run(v, z)

Two Basic Approaches

- ———— 3

4 distributional N

a brown dog

sl s2
Jo :IX I% {=.%}
- Y,

formal
a dog
Meaning
Jz.dog(z) Representation
a brown dog

c ionalit
Jz.dog(z) A brown(z) omposionality

Jzv.dog(z) Arun(v,) Aslowly(v) |nference
Reasoning
Jzv.dog(z) A run(v, x)

Two Basic Approaches

- ———— 3

4 distributional I

Norm. co-occs
VPij , PMI, ...
Reduce dim.

SVD, NCE

a brown dog

sl s2
Jo :IX I% {=.%}
- Y,

formal
a dog
Meaning
Jz.dog(z) Representation
a brown dog

c ionalit
Jz.dog(z) A brown(z) omposionality

Jzv.dog(z) Arun(v,) Aslowly(v) |nference
Reasoning
Jzv.dog(z) A run(v, x)

Two Basic Approaches

o

fo:

D
distributional formal
a dog
Norm. co-occs Meaning
R\e/ﬁcéﬁjpi/lrlﬁ.m Jz.dog(z) Representation
SVD, NCE
a brown dog a brown dog

o P, =gla,pi)

coPi=g(b,)

.. not very good...
b

X |[O—{=,%}

J

c ionalit
Jz.dog(z) A brown(z) omposionality

Jzv.dog(z) Arun(v, z) Aslowly(v) |nference
Reasoning

Jzv.dog(z) A run(v, x)

Two Basic Approaches

fo:

D
distributional formal
a dog
Norm. co-occs Meaning
Rﬂcépd"i"r'ﬁ.--- Jz.dog(z) Representation
SVD, NCE
a brown dog a brown dog

RecNNs
Lexicalization
Syn-Tensor types
Joint training
Additive

sl s2

x|0= {=, %}

J

c ionalit
Jz.dog(z) A brown(z) omposionality

Fwv.dog(x) Arun(v, z) Aslowly(v) inference

Reasoning
Jzv.dog(z) A run(v, x)

Two Basic Approaches

e ——
("~ distributional) formal
a dog
Norm. co-occs Meaning
\/Pij , PMI, ... i
Radtich dim. Jz.dog(x) Representation
SVD, NCE
a brown dog a brown dog
RecNNs
Lexicalization Composionality
Syn-Tensor types Elx.dog(x) AN brown(x)
Joint training
Additive
Jzv.dog(z) Arun(v,) Aslowly(v) |nference
Paths on KBs Reasonin
f6 Path on DCS } 9

Jzv.dog(z) A run(v, z)

Two Basic Approaches

e

distributional)

Norm. co-occs
\Pij , PMI, ...
Reduce dim.

SVD, NCE

a brown dog

RecNNs
Lexicalization
Syn-Tensor types
Joint training
Additive

Paths on KBs
Path on DCS

-

formal

a dog

Jz.dog(z)

a brown dog

Jz.dog(z) A brown(z)

Jzv.dog(x) A run(v, x) A slowly(v)

Jzv.dog(z) A run(v, x)

Meaning
Representation

IComposionality

Inference
Reasoning

J

Two Basic Approaches

e

distributional

Norm. co-occs
\/Pij , PMI, ...
Reduce dim.

SVD, NCE

a brown dog

RecNNs
Lexicalization
Syn-Tensor types
Joint training
Additive

Paths on KBs
Path on DCS

~

4 formal

Predicates
Open sets
Close sets

a brown dog

Jz.dog(z) A brown(z)

Jzv.dog(x) A run(v, x) A slowly(v)

Jzv.dog(z) A run(v, x)

Meaning
Representation

IComposionality

Inference
Reasoning

J

Two Basic Approaches

e
(" distributional \ (~ formal A
Norm. co-occs Predicates
vDij , PMI, ... Open sets
Reduce dim. |
SVD, NCE Close sets
a brown dog abrown dog
RecNNs)
Lexicalization Syntax-Semantics
Syn-Tensor types Jx.d Interface, e.g. CCG })
Joint training Lambda Calculus
Additive
Jzv.dog(x) A run(v, x) A slowly(v)
Paths on KBs
f6 Path on DCS }

Meaning
Representation

IComposionality

Inference
Reasoning

Jzv.dog(z) A run(v, x))

Two Basic Approaches

S

.
distributional) (~ formal
Norm. co-occs Predicates
VPii , PMI, ... Open sets
Reduce dim.
SVD, NCE Close sets
a brown dog abrown dog
RecNNs)
Lexicalization Syntax-Semantics
Syn-Tensor types Jx.d Interface, e.g. CCG })
Joint training Lambda Calculus
Additive
Jzv.dog(z wly (v)
Paths on KBs o
Path on DCS } 5 § | eSufert)
Tv. 7
NG

Meaning
Representation

IComposionality

Inference
Reasoning

Two Basic Approaches

(distributional) ([~ formal
No}gm. %‘I’\;If’ccs Predicates
VPij L.
Reduce dim. Open sets
SVD, NCE Close sets
a brown dog abrown dog
RecNNs _
Lexicalization Syntax-Semantics
Syn-Tensor types Jx.d Interface, e.g. CCG }
Joint training Lambda Calculus
Additive
Paths on KBs Theorem
f@ Path on DCS } proving

Meaning
Representation

IComposionality

Inference
Reasoning

Two Basic Approaches

> e
(" distributional formal
Norm. co-occs Predicates
Vi, PMI, ... Open sets
Reduce dim. |
SVD, NCE Close sets
a brown dog abrown dog
RecNNs)
Lexicalization Syntax-Semantics
Syn-Tensor types Interface, e.g. CCG })
Joint training Lambda Calculus
Additive
wly(v)
Paths on KBs Theorem
fo\' pathonDCs proving

Meaning
Representation

IComposionality

Inference
Reasoning

Two Basic Approaches

/ distributional

Are there
universal
representations?

a brown dog
How much
info. fits in
a vector?

Is it possible
to do general
OL inferences?,

fGH

4 formal

How to handle
lex. variations?

abrown dog

What about
idioms and
no-decomp.
phrases?

Can we train
theorem
provers?

Q

Meaning
Representation

IComposionality

Inference
Reasoning

Two Basic Approaches
—— Q
(" distributional) [~ formal A

Are there
universal
representations?

Meaning
Representation

How to handle
lex. variations?

a brown dog abrown dog

What about
idioms and
no-decomp.
phrases?

How much
info. fits in
a vector?

IComposionality

Is it possible
to do general
OL inferences?,

wly (v) Inference
Reasoning

Can we train
theorem
provers?

ft9|-|

-

Thank you! Ran Tian, Koji Mineshima, Pascual Martinez-Gémez.

Reference |

Ajdukiewicz, K. (1935) “Die syntaktische Konnexit/"at”, Studia Philosophica 1,
pp.1-27.

Bar-Hillel, Y. (1953) “A quasi-arithmetical notation for syntactic description”,
Language 29(1), pp.47-58.

Barwise, J. and R. Cooper. (1981) “Generalized quantifiers and natural
language”, Linguistics and Philosophy 4(2), pp.159-219.

Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning. (2015) “A large
annotated corpus for learning natural language inference”, In the
Proceedings of Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational
Linguistics.

Cooper, R., R. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspers, H.
Kamp, M. Pinkal, M. Poesio, S. Pulman, et al. (1994) “FraCaS — A
Framework for Computational Semantics”, Deliverable D16.

Hobbs, J. R. (1985) “Ontological promiscuity”, In the Proceedings of
Proceedings of the 23rd annual meeting on Association for Computational
Linguistics. pp.60—69.

49/51

Reference Il

Kamp, H. and U. Reyle. (1993) From discourse to logic: An introduction to
modeltheoretic semantics of natural language, formal logic and DRT.
Kluwer, Dordrecht.

Kawazoe, A., R. Tanaka, K. Mineshima, and D. Bekki. (2015) “An Inference
Problem Set for Evaluating Semantic Theories and Semantic Processing
Systems for Japanese”, In the Proceedings of Proceedings of LENLS12.
pp.67-73.

Marelli, M., S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R.
Zamparelli. (2014) “A SICK cure for the evaluation of compositional
distributional semantic models.”, In the Proceedings of Proceedings of
LREC2014. pp.216—223.

Mineshima, K., P. Martinez-Gémez, Y. Miyao, and D. Bekki. (2015)
“Higher-order logical inference with compositional semantics”, In the
Proceedings of Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. pp.2055-2061.

Moss, L. (2014) “Natural Logic”. NASSLLI 2014, Lecture slides.

Parsons, T. (1990) Events in the Semantics of English. MIT Press.

50/51

Reference llI

Steedman, M. (2000) The Syntactic Process. MIT Press.

Steedman, M. (2012) Taking scope: The natural semantics of quantifiers. MIT
Press.

51/51

