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1Tohoku University, Japan
2Ochanomizu University, Japan

3AIST, Japan

IJCNLP 2017, Taipei, Taiwan
November 27, 2017

1 / 51



Three Challenges

1. Meaning Representations (MRs): what are proper MRs for natural
languages?

2. Compositional Semantics: how to compute the MR of a complex
expression from the MRs of its parts?

3. Inference: how can we do inference with MRs?

• We start with Question 2:
• Combinatory Categorial Grammar (CCG)
• Lambda Calculus

• And then move on to Question 1 and Question 3
• Predicate-argument structure, first-order logic, and

higher-order Logic
• Inference-first conception: an MR is good if it enables correct

and efficient inferences
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Semantic Composition via Phrase Structure Grammar

S → NP VP

[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N

[[NP]] = [[Det ]]⊕2 [[N]]

VP → TV NP

[[VP]] = [[TV ]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S

(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP

M3 ⊕3 M4

NP
Taipei

M4

TV
left

M3

NP

M1 ⊕2 M2

N
diplomat

M2

Det
The

M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules
• Many grammar rules, many composition rules

3 / 51



Semantic Composition via Phrase Structure Grammar

S → NP VP

[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N

[[NP]] = [[Det ]]⊕2 [[N]]

VP → TV NP

[[VP]] = [[TV ]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S

(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP

M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP

M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node

• Compute the MR of each phrase in terms of the MRs of its parts,
according to meaning composition rules

• Many grammar rules, many composition rules

3 / 51



Semantic Composition via Phrase Structure Grammar

S → NP VP

[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N
[[NP]] = [[Det ]]⊕2 [[N]]

VP → TV NP
[[VP]] = [[TV ]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S

(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP
M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP
M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules

• Many grammar rules, many composition rules

3 / 51



Semantic Composition via Phrase Structure Grammar

S → NP VP
[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N
[[NP]] = [[Det ]]⊕2 [[N]]

VP → TV NP
[[VP]] = [[TV ]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S
(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP
M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP
M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules

• Many grammar rules, many composition rules

3 / 51



Semantic Composition via Phrase Structure Grammar

S → NP VP
[[S]] = [[NP]]⊕1 [[VP]]

NP → Det N
[[NP]] = [[Det ]]⊕2 [[N]]

VP → TV NP
[[VP]] = [[TV ]]⊕3 [[NP]]

Det → the
N → diplomat

NP → Taipei
TV → left

S
(M1 ⊕1 M2)⊕1 (M3 ⊕2 M4)

VP
M3 ⊕3 M4

NP
Taipei

M4

TV
left
M3

NP
M1 ⊕2 M2

N
diplomat

M2

Det
The
M1

• Assign a MR to each leaf node
• Compute the MR of each phrase in terms of the MRs of its parts,

according to meaning composition rules
• Many grammar rules, many composition rules

3 / 51



Semantic Composition via Categorial Grammar (CG)
S

left(ιx .diplomat(x),Taipei)

VP

λx .left(x ,Taipei)

NP
Taipei

Taipei

TV
left

λyλx .left(x , y)

NP

ιx .diplomat(x)

N
diplomat

λx .diplomat(x)

Det
The

λF .ιx .F (x)

• A small set of basic categories (S,NP,N)
• Each functional category of the form X/Y and X\Y specifies how

words combine with each other

and, at the same time, how to
compute the MR of a phrase node

.
• A small set of grammar rules and meaning composition rules
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Combinatory Rules
Forward Function Application

X
F (M)

Y
M

X/Y
F

Backward Function Application

X
F (M)

X\Y
F

Y
M
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Derivation trees
• Turn the tree upside down (for a historical reason)
• Derivation trees (proof trees)

John

NP
john

likes

(S\NP)/NP
λyλx .like(x , y)

Mary

NP
mary

S\NP
λx .like(x ,mary)

>

S
like(john,mary)

<

• Function Application rules
X/Y

F
Y
M

X
F (M)

>

Y
M

X\Y
F

X
F (M)

<
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From AB to CCG

• The fragment of categorial grammar consisting of function
application rules is called AB grammar (Ajdukiewicz, 1935;
Bar-Hillel, 1953)

• Adding more combinatory rules leads to Combinatory Categorial
Grammar (CCG) (Steedman, 2000, 2012)
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More combinatory rules

Function Composition rules

X/Y
f

Y/Z
g

X/Z
λx .f (g(x))

>B

Y\Z
g

X\Y
f

X\Z
λx .f (g(x))

<B

Crossed Composition rules

X/Y
f

Y\Z
g

X\Z
λx .f (g(x))

>B×

Y/Z
g

X\Y
f

X/Z
λx .f (g(x))

<B×
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A more complicated derivation
John doesn’t like Mary
¬like(john,mary)

John

NP
john

doesn’t

(S\NP)/ (S\NP)

λFλx .¬F (x)

like

(S\NP) /NP
λyλx .like(x , y)

(S\NP)/NP
λyλx .¬like(x , y)

>B
Mary

NP
mary

S\NP
λx .¬like(x ,mary)

>

S
¬like(john,mary)

<

Right node raising shows that doesn’t like can be a constituent:
John [[respects] but [doesn’t like]] Mary.
respect(john,mary) ∧ ¬like(john,mary)
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Lambda Calculus
• A formal system to represent computation
• Simple yet very expressive

function input output
λx .x + 2 number x x + 2
λx .walk(x) entity x proposition walk(x)

β-conversion (simplification, substitution):

(λx . [. . . x . . .])

function

(a)

argument

= [ . . . a . . . ]

Examples:
• (λx .x + 2)(5) = 5 + 2
• (λx .walk(x))(john) = walk(john)
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β-conversion: more examples
β-conversion (simplification):

(λx . [. . . x . . .])

function

(a)

argument

= [ . . . a . . . ]

1. ( λx .like(x , y) )( john ) = like(john, y)

2. ( λy .like(x , y) )( john ) = like(x , john)

3. ( λx .like(x , x) )( john ) = like(john, john)

4. ( λx .like(mary , x) ∧ boy(x) )( john ) = like(mary , john) ∧ boy(john)

5. (( λy .λx .like(x , y) )( john ))(mary) =

( λx .like(x , john) )( mary ) = like(mary , john)
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α-conversion

α-conversion (renaming):

λ x .[ . . . x . . . ] = λ y .[ . . . y . . . ]

Example:

λx .boy(x) ∧ love(x)(z) =
✻ ✻

λy .boy(y) ∧ love(y)(z)
✻ ✻

Lambda calculus vs. Set Theory

Lambda calculus Set Theory
λx .Fx {x | Fx}
(λx .Fx)(a) a ∈ {x | Fx}
(λx .Fx)(a) = Fa a ∈ {x | Fx} ⇔ Fa
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Adding type information
• But is meaning composition via lambda calculus always safe?
• What we need: Type safety
• Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning

E Entity
T Proposition

X → Y A function from X to Y
Examples:

john, mary : E entity
λx .walk(x) : E → T function from entities

to propositions
λy .λx .like(x , y) : E → (E → T) function from two entities

to propositions
walk(john) : T proposition

like(john,mary) : T proposition
walk(like) : # type-mismatch
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Types control semantic composition
β-conversion (simplification):

(λx . [. . . x . . .])

Type: A → B

(a)

Type: A

= [ . . . a . . . ]

Type: B

Example:

(λx .walk(x)

Type: E → T

(john)

Type: E

= walk(john)

Type: T
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CCG-based Compositional Semantics
• Type information is always implicit in CCG-derivation trees

John

NP
john

: E

likes

(S\NP)/NP
λy .λx .like(x , y)

: E → (E → T)

Mary

NP
mary

: E

S\NP
λx .like(x ,mary)

: E → T

>

S
like(john,mary)

: T

<
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Syntactic sugar
Special symbols (constants) to represent logical expression:

Logical expression Type
¬ T → T negation
∧ T → (T → T) conjunction
∨ T → (T → T) disjunction
→ T → (T → T) implication
∀ (E → T) → T universal quantifier
∃ (E → T) → T existential quantifier
ι (E → T) → E iota operator

We can write :

A ∧ B for ∧(A,B)
∀xFx for ∀(λx .Fx)
∃xFx for ∃(λx .Fx)

and so on.
• Logics can be encoded in Lambda Calculus!
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From categories to types

Define a homomorphism (·)• from categories to types:

NP• = E

S• = T

(Y/X )• = (Y\X )• = X • → Y •

Example:

• (S\NP)• = E → T (intransitive verbs)
• ((S\NP)/NP)• = E → (E → T) (transitive verbs)

• As for as type homomorphism is preserved in the lexicon, there is
no danger of type-clash during meaning composition.
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Lexicon: open words and closed words
• For an open word, we can use a template to specify its MR.
• ϕ is the position in which the lemma of a word appears.

Category Meaning templates Type
S\NP λx .ϕ(x) E → T

(S\NP)/NP λy .λx .ϕ(x , y) E → (E → T)

• For a closed word, we can directly assign its MR.
• For example, if we are interested in logical expressions, we can

use the following lexical entries:

Lemma Category MR Type
some NP/N λFλG.∃x(Fx ∧ Gx) (E → T) → (E → T) → T

every NP/N λFλG.∀x(Fx ∧ Gx) (E → T) → (E → T) → T

no NP/N λFλG.¬∃x(Fx ∧ Gx) (E → T) → (E → T) → T

18 / 51



Excerpts of Templates from ccg2lambda

CCG category Meaning Representation
NP λNF .∃x(N(ϕ, x) ∧ F (x))
S\NPnom λQK .Q(λI.I,λx .∃v(K (ϕ, v) ∧ (Nom (v) = x)))
S\NPnom/NPacc λQ2Q1K .Q1(λI.I,λx1.Q2(λI.I,λx2.∃v(K (ϕ, v)

∧ (Nom (v) = x1) ∧ (Acc (v) = x2))))
S/S λSK .S(λJv .K (λv ′.(J(v ′) ∧ ϕ(v ′)), v))
NP/NP λQNF .Q(λGx .N(λy .(ϕ(y) ∧ G(y)), x),F )

Types

Type ::= E | Event | T | X ⇒ Y

Mapping from syntactic categories to semantic types

NP• = ((E→T)→E→T)→(E→T)→T

S• = ((Event→T)→Event→T)→T

(C1/C2)• = (C1\C2)• = C2•→C1•
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English!CCG!parser 
"  !Penn!Treebank!

"  !CCGBank!
![Hockenmaier!and!Steedman!2007]!

" CCG!parser!
!W!C&C![Curran!and!Clark!2007]!
!W!EasyCCG![Lewis!and!Steedman!EMNLP2014]!
!W!depccg![Yoshikawa+!ACL2017]!

"  Seman)c!Parser!
W!Boxer![Bos+!2004]!
W!Langpro![Abzianidze!EMNLP2015]!
W!ccg2lambda![Mineshima+!EMNLP2015]!
!

6 

(S (NP-SBJ-1 John)
(VP (VBN met)

(NP Mary)))

S

NP

John

S[pt]\NP

S[pt]\NP/NP

met

NP

Mary

John
NP

j

met
S[pt]\NP/NP

�y�x.(meet(x, y))

Mary

NP
m

S[pt]\NP
�x.(meet(x,m))

>

S[pt]
meet(j, m)

<
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Japanese!CCG!parser 
" !Kyoto/NAIST!Corpus!

" !Japanese!CCGBank!
![Uematsu+!ACL2013]!

" !CCG!parser!(Jigg,!depccg)!
!!!W!Jigg![Noji!and!Miyao!ACL2016]!
!!!W!depccg![Yoshikawa+!ACL2017]!

" Seman)c!parser!(ccg2lambda)!
!!W!ccg2lambda!![Mineshima+!EMNLP2016]!

 

大使が 交渉に 参加した
ambassador- negoatiation- participate-

ACC DAT PAST

VP

PP

Noun

大使

PostP

が

VP

PP

Noun

交渉

PostP

に

VP

VP

Noun

参加

Verb

し

Aux

た
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Three levels of MRs

• (Level 0 : Individual words)
• Level 1 : Predicate-Argument structure
• Level 2 : Basic logical features (negation, disjunction, etc.)
• Level 3 : Higher-order logical features

22 / 51



Level 1: Predicate-Argument Structure

• Who did what, where, when?
• MRs in Event semantics (Parsons, 1990):

Brutus stabbed Caesar on the street at noon.

∃e(stab(e) ∧ (subj(e) = brutus) ∧ (obj(e) = caesar) ∧
(location(e) = street) ∧ (time(e) = noon))

• MRs have a flat structure with:
• ∃ (existential quantifier)
• ∧ (conjunction)

• Extensional descriptions of scenes or situations
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Other notations: DRS and Graph
• Discourse Representation Structure (DRS) (Kamp and Reyle, 1993):

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

• Graph notation:

•stabbrutus carsar

street

noon

subj

obj

location

time

• These three notations deliver the same information
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The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

⇒ (2) Brutus stabbed Caesar on the street
⇒ (3) Brutus stabbed Caesar at noon.
⇒ (4) Brutus stabbed Caesar.

(1)

(2) (3)

(4)

e
stab(e)
subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon
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The Semantics of Voice
• Perceptual report:

John saw Bob walking on the street.
⇒ Bob walked on the street.

•walk •see JohnBob

street

obj

subjsubj

location

• Active-Passive alternation:
Brutus stabbed Caesar.
⇒ Caesar was stabbed by Brutus.

• Causative-inchoative alternation:
John closed the door.
⇒ The door became closed.
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Level 2: Basic logical features

• Add basic logical expressions:
• not (negation, ¬)
• or (disjunction, ∨)
• if (implication, →)
• any (universal quantification, ∀)

• Indeterminate/underspecified description of a situation
• Not easy to visualize (“Draw a picture of A man is not walking“)
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Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence? (Moss, 2014)

P: Some bears danced.

⇒

H1. Some animals danced.

̸⇒

H2. Some grizzlies danced.

⇒

H3. Some bears moved.

̸⇒

H4. Some bears waltzed.

We write: Some bears↑ danced↑

NP and VP in Some NP VP are upward monotonic
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Monotonicity inference

• grizzly ≤ bear ≤ animal
• waltz ≤ dance ≤ move

P entails which sentence?

P: No bears danced.

̸⇒

H1. No animals danced.

⇒

H2. No grizzlies danced.

̸⇒

H3. No bears moved.

⇒

H4. No bears waltzed.

We write: No bears↓ danced↓

NP and VP in No NP VP are downward monotonic

• Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.
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Bare NPs
For bare NPs (NPs without determiners), predicates play a crucial role.

tigress ≤ tiger ≤ animal

Tigers are striped.
⇒ Tigresses are striped.
̸⇒ Animals are striped.

Tigers are on the lawn.
̸⇒ Tigresses are on the lawn.
⇒ Animals are on the lawn.

Tigers↓ are striped. (individual-level predicate)
Tigers↑ are on the lawn. (stage-level predicate)

• The basic patterns of monotonicity inferences are directly
predictable from logic-based MRs.

• Upward/downward monotonicity properties follow from the
properties of logical operators.
∃x(bear↑(x) ∧ dance↑(x))
¬∃x(bear↓(x) ∧ dance↓(x))
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Level 3: Advanced logic features

There are many linguistic phenomena that allegedly go beyond
standard first-order logic.

• Attitudes, modals and aspectual operators.
• Generalized/proportional quantifiers
• Intensional adjectives
• Comparative and superlatives
• Other higher-order predicates

Some features:
• Introducing intensionality (involving speaker’s perspectives,

mental states, etc.)
• Quantifying over higher-order objects (objects other than entities)
• Not directly formalizable in first-order logics
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Attitudes, modals and temporal operators
• Attitude predicates like know and believe take propositional

objects as argument.
• Inferential contrast between factive predicates (eg. know) and

non-factive predicate (eg. believe)

• John knows that it is raining.
⇒ It is raining.

• John does not know that it is raining.
⇒ It is raining.

• John believes that it is raining.
̸⇒ It is raining.

• John does not believe that it is raining.
̸⇒ It is raining.

• modals: likely, probably, might, must, can. etc.
• aspectual operators: progressives, perfectives, etc.
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Generalized quantifiers

Proportional quantifiers:
• Most, half of, 70% of ...

Monotonicity properties:

Most students smoked. ̸⇒ ⇍ Most female student smoked.
Most students smoked. ⇐= Most student smoked in a building.

• But these quantifiers are known to be not
first-orderizable (Barwise and Cooper, 1981)
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Adjectives: subsective and non-subsective

Subsective (intersective) adjective
• Dumbo is a small elephant. small(dumbo) ∧ elephant(dumbo)
⇒ Dumbo is an elephant. elephant(dumbo)

Non-subsective adjective
• This is a fake diamond.
̸⇒ This is a diamond.
⇒ This is not a diamond.
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Comparatives

• Alice is taller than Bob.
̸⇒ Alice is tall.

• Alice is taller than Bob.
• Bob is tall.
⇒ Alice is tall.

• Alice is taller than Bob.
• Bob is taller than Carol.
⇒ Alice is taller than Carol.

Question:
• What are proper MRs for adjective constructions that are suitable

to efficient inferences?
• How to give a compositional semantics of predicates tall and taller

(how the meanings of tall and taller are related to each other?)
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Some higher-order predicates

• Higher-order predicates that apply to objects other than entities:
rise, change, decrease

• The price of gasoline is rising.
• The price of gasoline is 1,000 dollars.
̸⇒ 1,000 dollars are rising.
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Logic-based Meaning Representations

First-order logic
(FOL)Natural Logic Higher-order logic

(HOL)

• formalizes inferences
with surface form
! only allows single

premise inferences
(mononicity inference)

• efficient provers exist
• dominate computational

linguistics
! limited expressive

power

• high expressive power
• dominate formal semantics
! no general-purpose

efficient prover exists

more efficient
less expressive

less efficient
more expressive

MacCartney (2009) Boxer (Bos 2008) Mineshima et al. (2015)
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HOL as representation language

Higher-order constructions in natural languages
1 Generalized quantifiers

Most students work " most(λ.student(x),λx .work(x))
2 Modals

John might come " might(come(j))
3 Veridical and anti-veridical predicates

Someone managed to come " ∃x(manage(x , come(x)))
Someone failed to come " ∃x(fail(x , come(x)))

4 Attitude verbs
John knows that some student came."

know(j , ∃x(student(x) ∧ come(x)))

• Higher-order inference system implemented in Coq (Mineshima
et al., 2015)

• Alternative: first-order decomposition/reification (Hobbs, 1985)
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Natural Language Inference (Recognizing Textual
Entailment, RTE)

• Does P entail H?
P Most cities in Japan prohibit smoking in restaurants.
H Some cities in Japan do not allow smoking in public spaces.

Yes (entail)

• The best way of testing an NLP system’s semantic capacity
(Cooper et al. 1996)

• Many applications in NLP
• Question Answering,
• Text Summarization
• Fact validation/checking
• etc.
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Datasets for Recognizing Textual Entailment (RTE)
• English:

Dataset Size Crowdsourcing
FraCaS (Cooper et al., 1994) 346
PASCAL-RTE1–5 (Dagan et al. 2006) 7K
SICK (Marelli et al., 2014) 10K

√

SNLI (Bowman et al., 2015) 570K
√

MultiNLI (Williams et al. 2017) 432K
√

• Japanese:

Dataset Size Crowdsourcing
JSeM 780
NTCIR RITE 1–2 1,800
Kyoto RTE dataset 2,471
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FraCaS (Cooper et al. 1996)
• Created by linguists in 1990s.
• Size: 346 problems
• The inferences are divided into nine sections in terms of linguistic

phenomena:
• Generalized quantifier, Plurals, Nominal anaphora, Ellipsis,

Adjective, Comparatives, Temporal reference, Verbs, Attitudes
• Contains lots of logical expressions (at Level 2 and Level 3)
• Lexical and world knowledge is mostly excluded
• Contains multiple-premise inferences

# premise # problem
1 192 55.5%
2 122 35.3%
3 29 8.4%
4 2 0.6%
5 1 0.3%
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FraCaS: Examples

• The XML format was created by Bill MacCartney
https://nlp.stanford.edu/~wcmac/downloads/

fracas-038 (Generalized quantifier) label: no (contradiction)
P: No delegate finished the report.
H: Some delegate finished the report on time.

fracas-084 (Plural) label: yes (entailment)
P: Either Smith, Jones or Anderson signed the contract.
H: If Smith and Anderson did not sign the contract, Jones signed the contract.

fracas-134 (Nominal Anaphora) label: yes (entailment)
P1: Every customer who owns a computer has a service contract for it.
P2: MFI is a customer that owns exactly one computer.
H: MFI has a service contract for all its computers.
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Japanese Semantics Test Suite (JSeM)
Kawazoe et al. (2015)
http://researchmap.jp/community-inf/JSeM/

• Translation of FraCaS (624 problems) and Japanese original ones
(166 problems)

• Each problem is tagged with:
• phenomena type (quantifier, adjective, negation, etc.)
• inference type (logical entailment, presupposition)

• single-premised (66%) and multi-premised (34%) problems
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SICK (Sentences Involving Compositional Knowldedge)
SemEval14, Marelli et al. (2013)

• Size: 4, 500/500/4, 927 for training, dev. and testing.
• Premise: taken from image captions in Flickr30k Corpus
• Hyphothesis and Label: crowdsourcing and expert-check
• contains only single-premise inferences
• contains logical expressions at Level 2 (negation, disjunction,

quantifiers)
• Both word-level and phrase-level paraphrases are required
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SICK: Examples
SICK-506 (label: no)
P: A man wearing a dyed black shirt is sitting at the table and laughing.
H: There is no man wearing a shirt dyed black, sitting at the table and
laughing.

SICK-718 (label: unknown)
P: A few men in a competition are running outside.
H: A few men are running competitions outside.

SICK-3156 (label: yes)
P: A man is cutting a box.
H: A box is being cut by a man.

SICK-3668 (label: yes)
P: A man is strolling in the rain.
H: A man is walking in the rain.
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SNLI
Bowman et al. (2015)

• The Stanford Natural Language Inference (SNLI) Corpus
• P: taken from image captions in Flickr30k Corpus
• H and Label: crowdsourcing
• contains only single-premise inferences
• sentences are confined to descriptions of scenes, not containing

logical features (limited to Level 1)
• largely limited to simple lexical inferences

label: entailment
P: A white dog with long hair jumps to catch a red and green toy.
H: An animal is jumping to catch an object.
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MultiNLI
Williams et al. (2017)

• The Multi-Genre Natural Language Inference (MultiNLI)

genre: Fiction, answer: entailment
P: He turned and saw Jon sleeping in his half-tent.
H: He saw Jon was asleep.

genre: telephone, answer: contradiction
P: someone else noticed it and i said well i guess that’s true and it was
somewhat melodious in other words it wasn’t just you know it was
really funny
H: No one noticed and it wasn’t funny at all.

• A set of linguistic phenomena tags are automatically assigned to
the development set (10K sentences):

• quantifiers, belief verbs, time terms, conditionals, etc.
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Summary

• Compositional Semantics:
• Meaning composition via CCG and Lambda Calculus

• Meaning Representations:
• Three levels of MRs for semantic composition:

Predicate-Argument Structure, Basic Logics and beyond
• Event Semantics, First-order logic, and Higher-order logic

• Inference: RTE datasets
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| |
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∈
∈
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