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Three Challenges

1. Meaning Representations (MRs): what are proper MRs for natural
languages?

2. Compositional Semantics: how to compute the MR of a complex
expression from the MRs of its parts?

3. Inference: how can we do inference with MRs?

o We start with Question 2:
o Combinatory Categorial Grammar (CCG)
e Lambda Calculus
¢ And then move on to Question 1 and Question 3
 Predicate-argument structure, first-order logic, and
higher-order Logic
« Inference-first conception: an MR is good if it enables correct
and efficient inferences
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¢ Assign a MR to each leaf node

e Compute the MR of each phrase in terms of the MRs of its parts,
according to meaning composition rules

e Many grammar rules, many composition rules
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Semantic Composition via Categorial Grammar (CG)
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words combine with each other and, at the same time, how to
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¢ A small set of grammar rules and meaning composition rules
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Combinatory Rules

Forward Function Application

XY Y

Backward Function Application
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Derivation trees

¢ Turn the tree upside down (for a historical reason)
o Derivation trees (proof trees)

likes Mary
(S\NP)/NP NP
John Ay Ax.like(x,y) mary .
NP S\NP
Jjohn Ax.like(x, mary)
<
S

like(john, mary)

¢ Function Application rules
XY Y Y X\Y
F M M F

F(M) F(M)



From AB to CCG

e The fragment of categorial grammar consisting of function
application rules is called AB grammar (Ajdukiewicz, 1935;
Bar-Hillel, 1953)

¢ Adding more combinatory rules leads to Combinatory Categorial
Grammar (CCQG) (Steedman, 2000, 2012)
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More combinatory rules

Function Composition rules
XY Y/Z
f g9
X/Z
Ax.f(g(x))

Crossed Composition rules

>B

XY Y\Z
f g9
X\Z
Ax.f(g(x))

>Byx

Y\Z X\Y
g f

<B
X\Z

Ax.f(9(x))

Y/Z  X\Y

g f
<By

X/Z
Ax.f(g(x))
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A more complicated derivation
John doesn’t like Mary
—like(john, mary)

doesn’t like
(S\NP)/ (S\NP) (S\NP) /NP
AFAX.—F(x) AyAx.like(x,y) Mary
B
(S\NP)/NP - NP
John Ay Ax.—like(x, y) mary
— >
NP S\NP
john Ax.—like(x, mary)
S

—like(john, mary)

Right node raising shows that doesn’t like can be a constituent:

John [[respects] but [doesn’t like]] Mary.
respect(john, mary) A —like(john, mary)



Lambda Calculus

o A formal system to represent computation
o Simple yet very expressive

function input output
AX.X +2 number x x +2
Ax.walk(x) entity x proposition walk(x)

B-conversion (simplification, substitution):

function argument

Ox[..x..]) (@ =[...a...]

Examples:

e (Mxx+2)(5)=5+2
e (Ax.walk(x))(john) = walk(john)
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p-conversion: more examples
B-conversion (simplification):

function argument

(M. [..x..]) (@ =[...a...]

—_

. (Ax.like(x, y) )( john ) = like(john, y)

\o}

. (Ay.like(x,y) )( john ) = like(x, john)

w

. ( Ax.like(x, x) )( john ) = like(john, john)
4. ( Ax.like(mary, x) A boy(x) )( john ) = like(mary, john) A boy(john)
5. (( Ay.-Ax.like(x, y) )( john))(mary) =

(' Ax.like(x, john) )( mary ) = like(mary, john)
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a-conversion

a-conversion (renaming):

AxX[...ox . ]=Ay ...y ..

12/51



a-conversion

a-conversion (renaming):
AxX[...ox . ]=Ay ...y ..

Example:

Ax.boy(x) A love(x)(z) = Ay.boy(y) A /ove(%/)(z)

! ! |
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a-conversion

a-conversion (renaming):
AxX[...ox . ]=Ay ...y ..
Example:

Ax.boy(x) A love(x)(z) = Ay.boy(y) A /ove({)(z)

! ! |

Lambda calculus vs. Set Theory

Lambda calculus Set Theory

AXx.Fx {x | Fx}
(Ax.Fx)(a) ae{x| Fx}
(M.Fx)(a)=Fa ac{x|Fx}< Fa
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Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics
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Adding type information

e But is meaning composition via lambda calculus always safe?
o What we need: Type safety
o Type safety lies at the heart of formal compositional semantics

Define simple types:
Type Meaning
E Entity

T Proposition
X =Y Afunctionfrom XtoY

Examples:
john, mary : E entity
Ax.walk(x): E—T function from entities
to propositions
Ay Ax.like(x,y): E— (E—T) function from two entities
to propositions
walk(john) : T proposition
like(john, mary) : T proposition

walk(like) : # type-mismatch
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Types control semantic composition
B-conversion (simplification):

Type: A— B Type: A Type: B

OXl..x..]) @=1...a..]
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Types control semantic composition
B-conversion (simplification):

Type: A— B Type: A Type: B
(M. [...x..]) (@=1[...a...]
Example:
Type:E — T Type: E Type: T

(Ax.walk(x) (John) walk(john)
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CCG-based Compositional Semantics
¢ Type information is always implicit in CCG-derivation trees

likes Mary
(S\NP)/NP NP
Ay Ax.like(x,y) mary
John
NP S\NP i
john Ax.like(x, mary)

S
like(john, mary)
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CCG-based Compositional Semantics
¢ Type information is always implicit in CCG-derivation trees

likes . Mary
(S\NP)/NP NP
Ay Ax.like(x,y) :E— (E—T) mary : E
H
John
NP S\NP ’
john: E Ax.like(x,mary) :E — T
. .

S
like(john, mary) : T
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Syntactic sugar
Special symbols (constants) to represent logical expression:

Logical expression Type

T—>T negation

T — (T — T) conjunction

T— (T —T) disjunction

T — (T—T) implication

(E—T) — T universal quantifier
(E—T)— T existential quantifier
(E—T) —E iota operator

s w< | <> ]

We can write :

ANB for A(A B)

VxFx for V(Ax.Fx)

IxFx for 3(Ax.Fx)
and so on.

¢ Logics can be encoded in Lambda Calculus!
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From categories to types
Define a homomorphism (-)*® from categories to types:
NP*®* =E

S =T
(Y/X)* = (Y\X)* = X* — Y*

Example:
e (S\NP)* =E — T (intransitive verbs)
e ((S\NP)/NP)* =E — (E — T) (transitive verbs)

e As for as type homomorphism is preserved in the lexicon, there is
no danger of type-clash during meaning composition.
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Lexicon: open words and closed words

e For an open word, we can use a template to specify its MR.
e ¢ is the position in which the lemma of a word appears.

Category Meaning templates Type
S\NP  Xx.p(x) E—T
(S\NP)/NP  \y.A\x.o(X,y) E—(E—T)

e For a closed word, we can directly assign its MR.

e For example, if we are interested in logical expressions, we can
use the following lexical entries:

Lemma Category MR Type
some NP/N AFAG3IX(FxNGx) (E—T)—»(E—-T)—>T
every NP/N AFAGVX(FxNGx) (E—T)—(E—T)—T
no NP/N AFAG.—-3Ix(FxNGx) (E—-T)—=(E—=T)—>T
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Excerpts of Templates from ccg2lambda

CCG category | Meaning Representation

NP ANF 3x(N(p, x) A F(x))

S\NPpom AQK.QALL Ax.3v(K (e, v) A (Nom(v) = X)))

S\NProm/NPacc | AQoQi K.Q1 (AL Ax1.Qa (A1, Axp.3v(K (¢, V)
A (Nom(v) = x1) A (Acc (V) = x2))))

S/S ASK.S(AJV.K(AV' .(J(V') A o(V')), V)

NP/NP AQNF.QAGX.N(Ay.(¢(y) A G(y)), ), F)

Types
Type ::= E|Event |T|X=Y

Mapping from syntactic categories to semantic types

NP* = (E-T)—»E—=T)—(E—=T)—>T
S* = ((Event —»T)—Event —T)—T
(C1/C2)* = (C1\C2)* = C2*—C1°*

19/51



English CCG parser

v" Penn Treebank

v' CCGBank

[Hockenmaier and Steedman 2007]

v’ CCG parser
- C&C [Curran and Clark 2007]

- EasyCCG [Lewis and Steedman EMNLP2014]

- depccg [Yoshikawa+ ACL2017]

v Semantic Parser
- Boxer [Bos+ 2004]
- Langpro [Abzianidze EMNLP2015]
- ccg2lambda [Mineshima+ EMNLP2015]

(S (NP-SBJ-1 John)
(VP (VBN met)
(NP Mary)))

S

NP S[pt]\NP
\
John gt \NP/NP NP

met Mary
met Mary
S[pt\NP/NP NP
Jialbn AyAz.(meet(z,y)) m
NP S[pt]\N P
j Az.(meet(z, m))

S[pt]

meet(j, m)
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Japanese CCG parser

v Kyoto/NAIST Corpus

KfAs ZEPRIT SN 7
ambassador- negoatiation- participate-
v’ Japanese CCGBank ACC DAT PAST
[Uematsu+ ACL2013] A

v’ CCG parser (Jigg, depccg) e

- Jigg [Noji and Miyao ACL2016] A L 3 Ve
- depccg [Yoshikawa+ ACL2017] Nom PR vE R
5?"5 “1 Nomrb f‘

v’ Semantic parser (ccg2lambda)
- ccg2lambda [Mineshima+ EMNLP2016]
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Three levels of MRs

(Level O : Individual words)

Level 1 : Predicate-Argument structure

Level 2 : Basic logical features (negation, disjunction, etc.)
Level 3 : Higher-order logical features
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Level 1: Predicate-Argument Structure

Who did what, where, when?
MRs in Event semantics (Parsons, 1990):

Brutus stabbed Caesar on the street at noon.

Jde(stab(e) A (subj(e) = brutus) A (obj(e) = caesar) A
(location(e) = street) A (time(e) = noon))
MRs have a flat structure with:

» 7 (existential quantifier)
e A (conjunction)

Extensional descriptions of scenes or situations
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Other notations: DRS and Graph

e Discourse Representation Structure (DRS) (Kamp and Reyle, 1993):
e

stab(e)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon

¢ Graph notation: noon

subj time/

brutus ®stab carsar

/ obj

street location

e These three notations deliver the same information
24/51



The Diamond Inference
(1) Brutus stabbed Caesar on the street at noon.

= (2) Brutus stabbed Caesar on the street
= (8) Brutus stabbed Caesar at noon.
= (4) Brutus stabbed Caesar.

e

(1)
2) (3) stab(e)
4)

subj(e) = brutus
obj(e) = caesar
location(e) = street
time(e) = noon
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The Semantics of Voice

e Perceptual report:
John saw Bob walking on the street.
= Bob walked on the street.

subj subj

Bob «— ®wai ®sce John

/ obj

street location

e Active-Passive alternation:
Brutus stabbed Caesar.
= Caesar was stabbed by Brutus.
e Causative-inchoative alternation:
John closed the door.
= The door became closed.
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Level 2: Basic logical features

¢ Add basic logical expressions:

not (negation, —)

or (disjunction, V)

if (implication, —)

any (universal quantification, V)

¢ Indeterminate/underspecified description of a situation

¢ Not easy to visualize (“Draw a picture of A man is not walking®)
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Monotonicity inference
Basic/general patterns of inferences triggered by logic features

P entails H

= There is no situation in which P is true but H is false.

= The information in P already contains the information in H.
e grizzly < bear < animal

e waltz < dance < move

P entails which sentence? (Moss, 2014)

P: Some bears danced.
H1. Some animals danced.
H2. Some grizzlies danced.
H3. Some bears moved.
H4. Some bears waltzed.
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Basic/general patterns of inferences triggered by logic features

P entails H
= There is no situation in which P is true but H is false.
= The information in P already contains the information in H.
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P entails which sentence? (Moss, 2014)

P: Some bears danced.

= H1. Some animals danced.
# H2. Some grizzlies danced.
= H3. Some bears moved.
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We write: Some bears' danced'
NP and VP in Some NP VP are upward monotonic
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Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.
H1. No animals danced.
H2. No grizzlies danced.
H3. No bears moved.
H4. No bears waltzed.
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Monotonicity inference

e grizzly < bear < animal
e waltz < dance < move

P entails which sentence?

P: No bears danced.

# H1. No animals danced.
= H2. No grizzlies danced.
=# H3. No bears moved.

= H4. No bears waltzed.

We write: No bears' danced*
NP and VP in No NP VP are downward monotonic

e Logical words like some, no, every, any, not, if play a role in
determining the upward/downward monotonicity.
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Bare NPs

For bare NPs (NPs without determiners), predicates play a crucial role.

tigress < tiger < animal

Tigers are striped. Tigers are on the lawn.
= Tigresses are striped. = Tigresses are on the lawn.
# Animals are striped. = Animals are on the lawn.

Tigers' are striped. (individual-level predicate)
Tigers' are on the lawn. (stage-level predicate)

e The basic patterns of monotonicity inferences are directly
predictable from logic-based MRs.

¢ Upward/downward monotonicity properties follow from the
properties of logical operators.
Ix(bear'(x) A dance'(x))
—3x(bear*(x) A dance*(x))
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Level 3: Advanced logic features

There are many linguistic phenomena that allegedly go beyond
standard first-order logic.

o Attitudes, modals and aspectual operators.
Generalized/proportional quantifiers
Intensional adjectives

Comparative and superlatives

Other higher-order predicates

Some features:

¢ Introducing intensionality (involving speaker’s perspectives,
mental states, etc.)

¢ Quantifying over higher-order objects (objects other than entities)
¢ Not directly formalizable in first-order logics
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Attitudes, modals and temporal operators

Attitude predicates like know and believe take propositional
objects as argument.

Inferential contrast between factive predicates (eg. know) and
non-factive predicate (eg. believe)

John knows that it is raining.

= It is raining.

John does not know that it is raining.
= It is raining.

John believes that it is raining.

# It is raining.

John does not believe that it is raining.
# It is raining.

modals: likely, probably, might, must, can. etc.
aspectual operators: progressives, perfectives, etc.
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Generalized quantifiers

Proportional quantifiers:
e Most, half of, 70% of ...

Monotonicity properties:

Most students smoked. # < Most female student smoked.
Most students smoked. <=  Most student smoked in a building.

o But these quantifiers are known to be not
first-orderizable (Barwise and Cooper, 1981)
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Adjectives: subsective and non-subsective

Subsective (intersective) adjective

e Dumbo is a small elephant. small(dumbo) A elephant(dumbo)
= Dumbo is an elephant. elephant(dumbo)

Non-subsective adjective

e This is a fake diamond.
# This is a diamond.
= This is not a diamond.
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Comparatives

e Alice is taller than Bob.
# Alice is tall.

Alice is taller than Bob.

Bob is tall.
= Alice is tall.

Alice is taller than Bob.

Bob is taller than Carol.
= Alice is taller than Carol.

Question:

e What are proper MRs for adjective constructions that are suitable
to efficient inferences?

¢ How to give a compositional semantics of predicates tall and taller
(how the meanings of tall and taller are related to each other?)
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Some higher-order predicates

e Higher-order predicates that apply to objects other than entities:
rise, change, decrease

e The price of gasoline is rising.
e The price of gasoline is 1,000 dollars.
=% 1,000 dollars are rising.
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Logic-based Meaning Representations

Natural Logic

o formalizes inferences
with surface form

A only allows single
premise inferences
(mononicity inference)

more efficient

First-order logic
(FOL)

o efficient provers exist

e dominate computational
linguistics

A limited expressive
power

Higher-order logic
(HOL)

e high expressive power

e dominate formal semantics

A no general-purpose
efficient prover exists

less efficient

S

less expressive

MacCartney (2009)

Boxer (Bos 2008)

more expressive

Mineshima et al. (2015)
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efficient prover exists

less efficient

S

less expressive

MacCartney (2009)
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HOL as representation language

Higher-order constructions in natural languages
© Generalized quantifiers
Most students work ~» most(\.student(x), A\x.work(x))

® Modals
John might come ~~ might(come()))

® Veridical and anti-veridical predicates
Someone managed to come ~~ Fx(manage(x, come(x)))
Someone failed to come ~» Jx(fail(x, come(x)))
@ Attitude verbs
John knows that some student came. ~~
know(j, 3x(student(x) A come(x)))

e Higher-order inference system implemented in Coq (Mineshima
et al., 2015)

o Alternative: first-order decomposition/reification (Hobbs, 1985)
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Natural Language Inference (Recognizing Textual
Entailment, RTE)

e Does P entail H?

P Most cities in Japan prohibit smoking in restaurants.
H Some cities in Japan do not allow smoking in public spaces.
Yes (entail)

e The best way of testing an NLP system’s semantic capacity
(Cooper et al. 1996)
e Many applications in NLP

e Question Answering,

e Text Summarization

e Fact validation/checking
e etc.
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Datasets for Recognizing Textual Entailment (RTE)

e English:

Dataset

Size  Crowdsourcing

FraCaS (Cooper et al., 1994) 346
PASCAL-RTE1-5 (Dagan et al. 2006) 7K
SICK (Marelli et al., 2014) 10K v
SNLI (Bowman et al., 2015) 570K Vv
MultiNLI (Williams et al. 2017) 432K V
e Japanese:

Dataset Size  Crowdsourcing

JSeM 780

NTCIR RITE 1-2 1,800

Kyoto RTE dataset 2,471
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FraCaS (Cooper et al. 1996)

e Created by linguists in 1990s.
Size: 346 problems

The inferences are divided into nine sections in terms of linguistic
phenomena:

» Generalized quantifier, Plurals, Nominal anaphora, Ellipsis,
Adjective, Comparatives, Temporal reference, Verbs, Attitudes

Contains lots of logical expressions (at Level 2 and Level 3)
Lexical and world knowledge is mostly excluded
Contains multiple-premise inferences

# premise # problem

1 192 55.5%
2 122 35.3%
3 29 8.4%
4 2 0.6%
5 1 0.3%

41/51



FraCaS: Examples

e The XML format was created by Bill MacCartney
https://nlp.stanford.edu/%icmac/downloads/

fracas-038 (Generalized quantifier) label: no (contradiction)
P: No delegate finished the report.
H: Some delegate finished the report on time.

fracas-084 (Plural) label: yes (entailment)
P: Either Smith, Jones or Anderson signed the contract.
H: If Smith and Anderson did not sign the contract, Jones signed the contract.

fracas-134 (Nominal Anaphora) label: yes (entailment)

P1: Every customer who owns a computer has a service contract for it.
P2: MFI is a customer that owns exactly one computer.

H: MFI has a service contract for all its computers.
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Japanese Semantics Test Suite (JSeM)
Kawazoe et al. (2015)
http://researchmap. jp/community-inf/JSeM/

e Translation of FraCaS (624 problems) and Japanese original ones
(166 problems)

e Each problem is tagged with:
e phenomena type (quantifier, adjective, negation, etc.)
« inference type (logical entailment, presupposition)

e single-premised (66%) and multi-premised (34%) problems

jsem-id:1 answer: yes inference type: entailment phenomena: Generalized Quantifier, conservativity
linked to: fracas-001 literal translation?: yes same phenomena?: unknown

P1

script H219 V7 APEREREDT/ —ILRFICBE oo

English  An Italian became the world's greatest tenor.

H

script HREEDT/ —IRFILBSTcAF Y 7 AD W o
English  There was an Italian who became the world's greatest tenor.
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SICK (Sentences Involving Compositional Knowldedge)
SemEval14, Marelli et al. (2013)

e Size: 4,500/500/4,927 for training, dev. and testing.

e Premise: taken from image captions in Flickr30k Corpus
e Hyphothesis and Label: crowdsourcing and expert-check
e contains only single-premise inferences

e contains logical expressions at Level 2 (negation, disjunction,
quantifiers)

¢ Both word-level and phrase-level paraphrases are required
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SICK: Examples

SICK-506 (label: no)

P: A man wearing a dyed black shirt is sitting at the table and laughing.
H: There is no man wearing a shirt dyed black, sitting at the table and
laughing.

SICK-718 (label: unknown)
P: A few men in a competition are running outside.
H: A few men are running competitions outside.

SICK-3156 (label: yes)
P: A man is cutting a box.
H: A box is being cut by a man.

SICK-3668 (label: yes)
P: A man is strolling in the rain.
H: A man is walking in the rain.

45/51



SNLI

Bowman et al. (2015)

The Stanford Natural Language Inference (SNLI) Corpus
P: taken from image captions in Flickr30k Corpus

H and Label: crowdsourcing

contains only single-premise inferences

sentences are confined to descriptions of scenes, not containing
logical features (limited to Level 1)

largely limited to simple lexical inferences

label: entailment
P: A white dog with long hair jumps to catch a red and green toy.
H: An animal is jumping to catch an object.
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MultiNLI

Williams et al. (2017)

e The Multi-Genre Natural Language Inference (MultiNLI)

genre: Fiction, answer: entailment
P: He turned and saw Jon sleeping in his half-tent.
H: He saw Jon was asleep.

genre: telephone, answer: contradiction
P: someone else noticed it and i said well i guess that’s true and it was

somewhat melodious in other words it wasn't just you know it was
really funny

H: No one noticed and it wasn’t funny at all.

o A set of linguistic phenomena tags are automatically assigned to
the development set (10K sentences):

o quantifiers, belief verbs, time terms, conditionals, etc.
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Summary

e Compositional Semantics:
» Meaning composition via CCG and Lambda Calculus
¢ Meaning Representations:

o Three levels of MRs for semantic composition:
Predicate-Argument Structure, Basic Logics and beyond
» Event Semantics, First-order logic, and Higher-order logic

¢ Inference: RTE datasets
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Introduction to ccg2lambda



ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

Semantic
( ] representation
Input: Inference
P1 Smoking is prohibited in most cities.
H Smoking is not allowed in some cities.
The system accepts both single-premise
and multi-premise inferences
Yes (Entail)
- 4 No (Contradict)

Unknown



ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

Semantic
representation

Combinatory Categorial Grammar
CCG (Steedman, 2000; Bekki, 2010)
o C&C parser (Clark and Curran, 2007), trained on

CCGbank (Hockenmaier and Steedman, 2007)
e Jigg (Noji and Miyao, 2015)

Yes (Entail)
- 4 No (Contradict)

Unknown




ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

Semantic
( \ representation
CCG parse tree for each sentence
in most cities
prohibited ((S\NP)\(S\NP))/N N
is S\NP (S\NP)\ (S\NP)
Smoking (S\NP)/(S\NP) S\NP <
NP S\NP
S
L Yes (Entail)

No (Contradict)
Unknown



ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

- . Semantic
Semantic composition via Lambda-calculus representation

Syntactic Category : Meaning

B/A:f A:a A:a B\A:f
B:fa B:fa

Given a CCG-tree, the semantic representation can

be derived in a fully compositional way. Nc)Y?SCc()ﬁ:rt:cllliz:t)

Unknown




ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic
Composition

Text Parse tree

Semantic
Semantic representation in HOL representation
L~

P1 Smoking is prohibited in most cities.
Ix(smoking(x) A
most(Ay.city(y), Ay.prohibited(x) Ain(x,y)))

H Smoking is not allowed in some cities.
Ix(smoking(x) A
y(city(y) A —allowed(x) Ain(x,y))) Yes (Entail)
No (Contradict)
Unknown




ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic

Text Parse tree ...
Composition

1 ) Semantic

. . representation
Higher-order inference system P

implemented on Coq
(Cf. Chatzikyriakidis and Luo, 2014)

Coq: interactive theorem-prover based on
higher-order logic/modern type theory

HOL axiom: VFVG(most(F, G) — Ix(Fx A Gx))

WordNet axiom: Vx(prohibited(x) — —allowed(x)) Yes (Entail)

No (Contradict)
Unknown




ccg2lambda: Semantic Parser and Inference System
https://github.com/mynlp/ccg2lambda

Semantic
Composition

Text Parse tree

( ) Semantic

representation
Output: yes/no/unknown

P1 Jx(smoking(x) A

most(Ay.city(y), Ay.prohibited(x) A in(x,y)))
H  3x(smoking(x) A

Jy(city(y) A —allowed(x) Ain(x,y)))

Answer : Yes (P1 entails H) ™~ Yes (Entail)

No (Contradict)
Unknown




Semantic composition on CCG tree

Bvery student who
NP/N N (NP\NP) / (S\NP)

works
s\np

NP NP\ NP

NP

>

comes

s\np

S

= Syntactic categories and rules indicate composition.



Semantic composition on CCG tree

works

Every student who
(NP\NP) / (S\NP) s\np

NP/N N
(XEx.E(x)) (student)

NP NP\ NP

< comes
NP s\np

= Syntactic categories and rules indicate composition.

= Open words: schematic lexical entries match syntactic categories.



Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
Ax.student (x)

> >
NP NP\ NP

< comes
NP s\np

S

= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.

= [-reduction with lemmas as arguments.



Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
Ax.student (x) AQ.Q(Ax.True) (Ax.work(x))

NP NP\ NP

< comes
NP s\nP
AQ.Q(Ax.True) (Ax.come(x))

= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.

= Semantics more interesting for verbs.



Semantic composition on CCG tree

Bvery student who works
NP/N N (NP\NP) / (S\NP) s\np
AFGH.V/x(Fx A Gx — Hx) Ax.student (x) AVQF.Q(Ax. (V(AGH.Hx) A Fx)) AQ.Q(Ax.True) (Ax.work(x))
>

NP NP\ NP

< comes
NP s\nP
AQ.Q(Ax.True) (Ax.come(x))

= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.

= Semantics more interesting for verbs.

Closed words: direct assignment.
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>

NP NP\ NP
AGH. Vx(student(x) A Gx — Hx)

< comes
NP s\nP
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Semantic composition on CCG tree

Bvery student who works

NP/N N (NP\NP) / (S\NP) s\np
AFGH.V/x(Fx A Gx — Hx) Ax.student (x) AVQF.Q(Ax. (V(AGH.Hx) A Fx)) AQ.Q(Ax.True) (Ax.work(x))
NP > NP\ NP
AGH. Vx(student(x) A Gx — Hx) AQF.Q(Ax. (work(x) A Fx))
comes
NP s\nP
AFH.Vx(student(x) A work(x) A Fx — Hx) AQ.Q(Ax.True) (Ax.come(x))

Vx(student (x) A Work(f) A True — come(x))
= Syntactic categories and rules indicate composition.
= Open words: schematic lexical entries match syntactic categories.
= [-reduction with lemmas as arguments.
= Semantics more interesting for verbs.
= Closed words: direct assignment.
= Semantic composition from leaves to root.

= Logical meaning representation of the sentence at the root.



Lexical entries

@ For closed words: lexical entries directly assigned to surface form (a
limited number of grammatical and logical expressions): 80 entries

Example
= category: NP/N
= semantics: AFAGAH.Vx(Fx A Gx — H)

= surf: every

® For open words: schematic lexical entry (semantic templates)
assigned to syntactic categories: 57 entries

Example
= category: N

= semantics: AEAx.E(x)

“E" is a position in which a particular lexical item appears.
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ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):

= # python semparse.py ccgtrees.xml templates.yaml semantics.xml

" pos="DT"  cat="NP[nb]/N'
1" pos="NN"  cat="N"

©ONOUITAWNH

_sp9" category="S[dcl=true]" rule

_sps” category="S[dcl=true]" rule

exists 21 (_tea(z1) & TrueP & _order(x,21)))" />

n : Entity —> Prop”




ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.

= Easy to use (simple programs):
= # python semparse.py ccgtrees.xml templates.yaml semantics.xml
®= # python visualize.py semantics.xml > semantics.html

_Some woman _ordered
NPpub—true, N (S/dcl=true)\NF) /NP 7
\F1F2 F3.exists x.(F1(x) & F2(x) & F3(x)) \x--woman(x) \Q1 Q2.Q2(\w.TrueP,\x.Q1(\w.TrucP, \y. order(x,y))) \F1F2.exists x.(_tea(x) & F1(x) & F2(x))
fa
NPpup=truc, S ficl=true]\NP
\F2 F3.exists x.( woman(x) & F2(x) & F3(x)) \Q2.Q2(\w.TrucP, \x.exists z4.(_tea(z4) & TrueP & order(x.z4))
ba _por
S/dcl=true, K
exists x.(_woman(x) & TrueP & exists z4.(_tea(z4) & TrucP & _order(x,z4))) XX
T]
P Sjdel=true

exists x.(_woman(x) & TrueP & exists z4.(_tea(z4) & TrueP & _order(x,z4)))



ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):
= # python semparse.py ccgtrees.xml templates.yaml semantics.xml

®= # python visualize.py semantics.xml > semantics.html
®* # python prove.py semantics.xml



ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.
= Easy to use (simple programs):

= # python semparse.py ccgtrees.xml templates.yaml semantics.xml

# python visualize.py semantics.xml > semantics.html
# python prove.py semantics.xml

= Easy to extend (declarative).

— semantics : A-formula
category : syntactic_category
conds : values

cond; : value;



ccg2lambda: a few more words
https://github.com/mynlp/ccg2lambda

= Publicly available and open-sourced.

= Easy to use (simple programs):
= # python semparse.py ccgtrees.xml templates.yaml semantics.xml
®= # python visualize.py semantics.xml > semantics.html
®* # python prove.py semantics.xml

= Easy to extend (declarative).

= Easy to process (XML output).
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P Smoking in restaurants is prohibited by law in most cities in Japan.
H Smoking in public spaces is not allowed in some cities.
Yes (Entailment)
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Recognizing Textual Entailment

= Does Premise P entail Hypothesis H?

P Smoking in restaurants is prohibited by law in most cities in Japan.

H Smoking in public spaces is not allowed in some cities.
Yes (Entailment)

= The best way of testing an NLP system’s semantic capacity (Cooper
et al. 1996)

= Many application areas (Question Answering, Machine Translation, etc.)

= relevant factors:

1. syntax Logical/
2. logical words: most, not, some, every =~ Compositional semantics

3. content words:
restaurant — public__space Lexical Knowledge
prohibited — — allowed



Introducing Lexical Knowledge



Introduction

Logic sometimes is not enough

T: men are sawing logs.
Ix.(man(x) A Jy.(log(y) A saw(x, y))
H:  men are cutting wood.

Ax.(man(x) A Jy.(wood(y) A cut(x, y))



Introduction

Logic sometimes is not enough

T: men are sawing logs.
Ix.(man(x) A Jy.(log(y) A saw(x, y))
H:  men are cutting wood.
3Ix.(man(x) A Jy.(wood(y) A cut(x, y))
Method: to inject lexical knowledge into the proof.
= Word relations can be found in ontologies (e.g. WordNet, etc.)
VxVy.saw(x, y) — cut(x, y)

Vx.log(x) — wood(x)



Naive injection of lexical knowlege
Running example:
Ixy vy (dog(x1) A white(xq) A black(x1) A nap(vy) A Subj(vi) = x1)

T: A black and white dog  naps .

H: A black and white dog  sleeps

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(va) = x2)

= Obtain semantic representation.



Naive injection of lexical knowlege

Running example:

Ixq v (dog(x1 ) A white(x1) A black(x1) A nap(vy) A Subj(vy)

——— —— -

T AC black ‘and\ Wh/te ‘( dog u naps .

—_—_—

—— - ——— -

H: A b/ack ‘andk Wh/te ‘( dog xd sleeps .

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(vz)

= |dentify content/interesting words.

=x)

= Xp)



Naive injection of lexical knowlege

Running example:

Ixy vy (dog(x1) A white(xq) A black(x1) A nap(vy) A Subj(vi) = x1)

A b/acké‘ and Wh/te ‘( dog u naps .
[IENSG /51'(/\ /;|’\ Pl it
| \yy \,‘l/ s \ 7/
|

T:

|
s /,{\+>:\( \/K\/X\ |
P D O SR
H: A black and white dog i sleeps '

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(vz)

= X2)
= Enumerate possible relations.



Naive injection of lexical knowlege

Running example:

Ixy vy (dog(x1) A white(xq) A black(x1) A nap(vy) A Subj(vi) = x1)

———

T AC black ‘and\ Wh/te ‘( dog u naps .
s——\\ e -l'
/V\ ‘l

—_— K N .__\

H: A b/ack ‘and\ Wh/te ‘( dog xd sleeps .

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(va) = x2)

= Select/predict relations according to ontology or classifier:
= Vx.black(x) — — white(x)
= Vx.white(x) — — black(x)
= Vv.nap(v) — sleep(v)



Naive injection of lexical knowlege

Running example:

Ixq v (dog(x1 ) A white(x1) A black(x1) A nap(vy) A Subj(vy)

——— —— -

T AC black ‘and\ Wh/te ‘( dog u naps .

—_—_—

—— - ——— -

H: A b/ack ‘and\ Wh/te ‘( dog xd sleeps .

—_—_—

Ixava(dog(x2) A white(xz) A black(x2) A sleep(va) A Subj(vz)

= Insert knowledge, run proof.
= ... and possibly get the wrong answer.
= This problem is aggravated for longer sentences.

=x)

= Xp)



Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step O = Decompose T and H into:

Dp1:
D2:
Pp3:
Pa:
bs:

dog(x1) :
white(x1)
black(z1)
Subj(v1) = =1
nap(v:)

» List of sub-goals G.

| S —

g1:
g2:
gs3:
94:
gs:

dog(z2)
white(mg)
black(xs)

Su bj(Uz) = T2
sleep(v2)

~ @@




Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 1 = Decompose T and H into:

» List of sub-goals G.

= Variable unification xy := xq.

__:____( _____ = Prove g1,82 and g3 ...
. = ... using p1, p2 and ps.

g5: sleep(v2)




Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 2 = Decompose T and H into:

p1: dOhg(l’l) = List of sub-goals G.
: te

8 L ) = Variable unification xo := xy.
P3: black(z1) > d
P Ty S S = rove gi,82 and gs ...
P4 §u_bl(3)1_)_—_a£1) = ... using p1, p2 and ps.
Ps: nap(v .

p( 1) = Variable unification vy := vy.

= Prove g4 using py.

H++—dog{err
H—blaeki+
G+-SebHor =21
g5 sleep(vy)




Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 3 = Decompose T and H into:

D1: dog (1)
P2: white(z1)
P3: black(xy)

. = Prove g1,g0 and g3 ...
4: Subj(v1) = @ :
/ZZ S == J_(_l_)_ _ _1\ = ... using p1, p2 and ps.

—————————— = Variable unification vy := vy.

» List of sub-goals G.

= Variable unification xy := xq.

= Prove g4 using py.

} = Inject axiom Vv.nap(v) — sleep(v).

= nap(vq) and sleep(vy) share
variable.

= nap-sleep € WordNet.

= Continue proof.




Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xq) A black(x1) A nap(vi) A Subj(vy) = x1)
H: 3xava(dog(xa) A white(xa) A black(x2) A sleep(va) A Subj(va) = x2)

step 3 = Decompose T and H into:

D1: dog (1)
P2: white(z1)
P3: black(xy)

. = Prove g1,g0 and g3 ...
4: Subj(v1) = @ :
/ZZ S == J_(_l_)_ _ _1\ = ... using p1, p2 and ps.

—————————— = Variable unification vy := vy.

» List of sub-goals G.

= Variable unification xy := xq.

= Prove g4 using py.

} = Inject axiom Vv.nap(v) — sleep(v).

= nap(vq) and sleep(vy) share
variable.

= nap-sleep € WordNet.

= Continue proof.




Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xy) A black(x1) A nap(vi) A Subj(vi) = x1)

H : 3xy vy (dog(x1) A white(x1) A black(x1) A sleep(vi) A Subj(vi) = x1)



Proving strategy and Axiom construction

T: Elxll vll(dog(xl) A white(xy) A black(xy) A nap(vi) A Subj(vi) = x1)
I
11
11

H: 3)&1 dl(dog(xl) A white(xy) A black(xy) A sleep(vy) A Subj(v1) = x1)

= Variable unification from proof...



Proving strategy and Axiom construction

T:3x vl(dclng(xl) A qute(xl) A blﬁck(xl) A n?p(vl) A Su‘bj( vi) = X1)
| | | | |
1 | | 1 |
| | | | |
¥ V. V ¥ Vo
H : 3xy vy (dog(x1) A white(x1) A black(x1) A sleep(vy) A Subj(v1) = x1)

= Variable unification from proof...
= Defines an alignment between logic predicates.
= Most theorem provers perform backtracking in the search of best
alignment.



Proving strategy and Axiom construction

T : 3xy vy (dog(x1) A white(xy) A black(x1) A n?p(vl) A Subj(vi) = x1)

¥
H : 3xy vy (dog(x1) A white(x1) A black(x1) A sleep(vy) A Subj(v1) = x1)

= Variable unification from proof...
= Defines an alignment between logic predicates.
= Most theorem provers perform backtracking in the search of best
alignment.
= Better identify logic/textual relations:
= Yv.nap(v) — sleep(v).



System

Text
Hypothesis

semantic ) |, MR
parser T'—H

- »r == @@

@ Tokenize T and H.
® Syntactic parsing with C&C and EasyCCG.
© Obtain Meaning Representations with ccg2lambda.

_)

\

L

\

yes, no
unk

Axiom
V0.pi(0;) — p(65)

Sub-goal info.
P = {pi(0:), pr(0x)}
G = {p}(07)}

@ Monitor proof and inject axioms on-demand:
synonymy (e.g. house — home),
hypernymy (e.g. sea — water),
adjectival similarity (e.g. huge — big),
derivationally related forms (e.g. accommodating — accommodation),
inflection relations (e.g. wooded — wood),
antonymy relations (e.g. big — —small).

axiom
construction



Evaluation

SICK dataset

= Size: 4,500/500/4,927 for training, dev. and testing.
= Label distribution: .29/.15/.56 for yes/no/unk.

= About 212,000 running words.

= Average premise and conclusion length: 10.6.

= No parameter estimation.



Evaluation

SICK dataset

= Size: 4,500/500/4,927 for training, dev. and testing.
= Label distribution: .29/.15/.56 for yes/no/unk.

= About 212,000 running words.

= Average premise and conclusion length: 10.6.

= No parameter estimation.

Examples:
Problem ID | T-H pairs Entailment

1412 T: Men are sawing logs . Yes
H: Men are cutting wood .

4114 T: There is no man eat'/ng food . No
H: A man is eating a pizza .

718 T: A few men in a compet:t:on are running quts:de | Unknown
H: A few men are running competitions outside .




Evaluation

System

Results:

Prec.

Rec.

Acc.

Baseline (majority)

56.69




Evaluation

Results:
System Prec. | Rec. Acc.
Baseline (majority) - — | 56.69
MLN — — | 73.40
Nutcracker — — | 74.30
Nutcracker-WN — — | 77.50
Nutcracker-WN-PPDB — — | 78.60
MLN-WN-PPDB — — | 80.40
LangPro Hybrid-800 97.95 | 58.11 | 81.35
The Meaning Factory 93.63 | 60.64 | 81.60
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MLN-WN-PPDB — — | 80.40
LangPro Hybrid-800 97.95 | 58.11 | 81.35
The Meaning Factory 93.63 | 60.64 | 81.60
No axioms 98.90 | 46.48 | 76.65
Naive 92.99 | 59.70 | 80.98
SPSA WN,VO 97.04 | 63.64 | 83.13




Evaluation

Results:
System Prec. Rec. Acc.
Baseline (majority) — — | 56.69
MLN — — | 73.40
Nutcracker — — | 74.30
Nutcracker-WN — — | 77.50
Nutcracker-WN-PPDB — — | 78.60
MLN-WN-PPDB — — | 80.40
LangPro Hybrid-800 97.95 | 58.11 | 81.35
The Meaning Factory 93.63 | 60.64 | 81.60
No axioms 98.90 | 46.48 | 76.65
Naive 92.99 | 59.70 | 80.98
SPSA WN,VO 97.04 | 63.64 | 83.13
SemantiKLUE 85.40 | 69.63 | 82.32
UNAL-NLP 81.99 | 76.80 | 83.05
ECNU 84.37 | 74.37 | 83.64
Illinois-LH 81.56 | 81.87 | 84.57
MLN-eclassif (CL2016) — — | 85.10
Yin-Schutze (EACL2017) - — | 87.10



Error analysis

(more complex examples in back-up slide)

Prob. ID T-H pairs Gold System Axioms needed
412 | [ e cutting wood Yes | Yes | Ui o wood(o)
2404 | |\ There 12 o one costing o tomato No | No | Wwslice(v) — cut(y)
2895 ;I_'— 7.’::: ';ZZ ;z"h;tf;zlii;ihts . No No Vx.weight(x) — barbell(x)




Error analysis

(more complex examples in back-up slide)

Prob. ID T-H pairs Gold System Axioms needed
412 | e e cortng vood Yes | Yes | e o weodlo)
2404 |\ There i no one eosting 3 tomato . No | MNo | Wwslice(s) — cut(v)
2895 ;I_'— 7.’::: ';ZZ ;z"h;tf::";ii?lihts ’ No No Vx.weight(x) — barbell(x)
530 :i— ﬁ l;’[’;:: Se\na/:iznflag:; rlsmfrlec:k:z; Itahc: éears . Unk Yes




Error analysis

(more complex examples in back-up slide)

Prob. ID T-H pairs Gold System Axioms needed
T: Men are sawing logs . Vv.saw(v) — cut(v)
1412 H: Men are cutting wood . Yes Yes Vx.log(x) — wood(x)
T: The lady is slicing a tomato . .
2404 H: There is no one cutting a tomato . No No Vv.slice(v) — cut(v)
T: The man isn't lifting weights . .
2895 H: The man is lifting barbells . No No Vx.weight(x) — barbell(x)
T: A biker is wearing gear which is black .
530 H: A biker wearing black is breaking the gears . Unk Yes
T: A man is playing a guitar .
1495 H: A man is strumming a guitar . Yes Unk vv-play(v) — strum(v)
T: A band is playing on a stage . “ " “ "
1266 H: A band is playing onstage . Yes Unk on a stage” — “onstage
2166 T: A woman is sewing with a machine . ] Yes Unk “se\-Nlng with a machine” — L
H: A woman is using a machine made for sewing . using a machine made for sewing
384 T: A white and tan dog is running through Yes Unk

the tall and green grass .

H: A white and tan dog is running through a field .

“tall and green grass” — “field”




Phrasal Entailments with Visual Denotations



Phrasal Entailments with Visual Denotations

Recognizing phrase entailments is also necessary!

T:  men walk in the tall and green grass.

Ix.(man(x) A Jy.(tall(y) A green(y) A grass(y) A walk(x, y))

H: men walk in the field.

Ix.(man(x) A y.(field(y) A walk(x, y))

Problem:

= Such knowledge can not be found in databases (e.g. WordNet,
PPDB).

= Semantic relatedness # semantic entailment.
= Distributional approaches (e.g. word2vec) are not effective:
= piano =4 guitar, cat =~ dog



Phrasal Entailments with Visual Denotations

Get visual denotations of phrases and compare images.

T: men walk in the tall and green grass.

H: men walk in the field.

tall and green grass

tall and green grass.




Phrasal Entailments with Visual Denotations

Get visual denotations of phrases and compare images.

T: He chats with his wife via internet camera.

H: He chats with his wife via webcam.

internet camera Webcam
> intemetcamera B




Phrasal Entailments with Visual Denotations

Step 1: phrase pair identification

— Identify ——
RTE |, (candidate phrase) 5 |phrases
datasets entailments

= Identify examples of phrase equivalences.

oY

walks in the tall and green grass .

Men walksin the field .

N



Phrasal Entailments with Visual Denotations

Step 2: obtain visual denotations

Image
Search

Visual
denotations

= Query images using phrases.

tall and green grass { - E-- ' -
s -
internet camera —> { & ! 'v v g &
webcam { /g m g e ® s

{ = }



Phrasal Entailments with Visual Denotations
Step 3: Learn RTE Classifier

Classtlﬁer of Estimate
sen entcle <«— ( multimodal
semantic embeddings
relations

= Learn parameters of RTE classifier.

Entailment
(Yes/No/Unk)

h ) Classifier
(Phrase , image set) estimation Logic & Linguistic
(Phrase,, image set) ' ~ features




Phrasal Entailments with Visual Denotations
Step 4: Integrate into RTE pipeline

RTE
datasets

= Integrate on RTE pipeline and evaluate.

Axmm
V9 pi

) = pi( "\
Text cee art]. MR a axiom
semantic .
Hypothesis parser T — H construction
— Sub goal info. /
yes no P = {pi(6:), pi(01)}
unk G = {p(0))}




Phrasal Entailments with Visual Denotations
T: Some men walk in the.

Source phrase

i) = cos(u(if), v(i}) = o)

= TG TR GEDT]

LSETISTIASTE Y

Target phrase

H: Some people walk in thelficld].

= Select best and worst phrase pair according to:

max (it i)

score(t, h) =
(t,h) e

/_
’ h‘ I';’E/h



Phrasal Entailments with Visual Denotations

Results when using visual denotations

System Prec. | Rec. | Acc.
ccg2lambda + images | 90.24 | 71.08 | 84.29
ccg2lambda, only text | 96.95 | 62.65 | 83.13
L&H, text + images — — 82.70
L&H, only text - — 81.50

Baseline (majority) | — | - ]56.69




Phrasal Entailments with Visual Denotations
Examples

True positive:

T: The woman is picking up a|kangar00 that is littlel




Phrasal Entailments with Visual Denotations

Examples

False positive:

T: A monkey is wading through aimursh:.

H: A monkey is wading through a[river]

- T Ipm—.




Phrasal Entailments with Visual Denotations

Examples

False negative:

T: A boy is spanking a man with a plaqtlc sword

oy .I'Y

H: A boy is spanking a man with a toy weapon

¥
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Two Basic Approaches
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Two Basic Approaches

o

fo:

D
distributional formal
a dog
Norm. co-occs Meaning
R\e/ﬁcéﬁjpi/lrlﬁ.m Jz.dog(z) Representation
SVD, NCE
a brown dog a brown dog

o P, =gla,pi)

coPi=g(b,)

.. not very good...
b

X |[O—{=,%}
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Two Basic Approaches

e

distributional )

Norm. co-occs
\Pij , PMI, ...
Reduce dim.

SVD, NCE

a brown dog

RecNNs
Lexicalization
Syn-Tensor types
Joint training
Additive

Paths on KBs
Path on DCS

-

formal

a dog

Jz.dog(z)

a brown dog

Jz.dog(z) A brown(z)

Jzv.dog(x) A run(v, x) A slowly(v)

Jzv.dog(z) A run(v, x)

Meaning
Representation

IComposionality

Inference
Reasoning
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Two Basic Approaches
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distributional
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\/Pij , PMI, ...
Reduce dim.

SVD, NCE

a brown dog

RecNNs
Lexicalization
Syn-Tensor types
Joint training
Additive
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Path on DCS

~

4 formal

Predicates
Open sets
Close sets

a brown dog

Jz.dog(z) A brown(z)
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Meaning
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Representation

How to handle
lex. variations?

a brown dog abrown dog

What about
idioms and
no-decomp.
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info. fits in
a vector?

IComposionality

Is it possible
to do general
OL inferences?,

wly (v) Inference
Reasoning

Can we train
theorem
provers?
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-

Thank you! Ran Tian, Koji Mineshima, Pascual Martinez-Gémez.
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