

JEAN-YVES GIRARD

The reconciliation of the *mathematical* and *philosophical* sides of logic thanks to *informatics*.

1 — EPICYCLES, A.K.A. THE REALIST PREJUDICE

KEIO, 28 Novembre 2015

- xxth century logic begins *after* incompleteness.
 Herbrand: synthetic *a posteriori*, a.k.a. *usine*.
 BHK: synthetic *a priori*, a.k.a. *usage*.
 Gentzen: relation usine/usage through *cut-elimination*.
- XIXth century, up to ~1925: axomatic and semantic.
 Hilbert: *militarism* (axiomatics). *A priori* → consistency.
 Russell: *religion* (of reality). Semantics, a.k.a. *prejudice*.
- *Realism:* cognitive simplicism, yields monsters.
 Epicycles: fantasmatic reality backing *geocentric* prejudice.
- Realism expressed by *classical* reduction to *true/false*.
 Loss of propositional expressivity.
 Compensation: fantasmatic first-order individuals.
 Symptom: no logical handling of *equality* (next talk).

KEIO, 28 Novembre 2015 Analytic Synthetic Usine **Explicit** | Constat Implicit | Performance | Usage

I — WHAT IS AN ANSWER?

Keywords: analytic, untyped, computational.

2 — ANALYTICITY : CONSTAT VS. PERFORMANCE

- Cognition *without* presupposition: everything on the table.
 Including table: finite (no etc.), no link to external « reality ».
 Verbatim: the style of cowards, *meaningless*.
- Key J either constative: adds new line, incremental. Or: Performative: launches program, destructive.
- Pure lambda-calculus approximates analyticity.
 Strong normalisation relates constat and performance.
 Undecidability: performance ≠ constat ; no pravdameter.
 Church-Rosser relates performance and usage.
- External performance replaced with self-performance:
 Plugging of wires of complementary colours.
 Unification: wires split into *implicit* subwires.
 Resolution: clause Γ ⊢ A becomes {γ, a}.

3 — STARS AND CONSTELLATIONS

- Star: $n \neq 0$ terms (rays) with exactly the same variables. Disjoint: rays pairwise not matchable. Substitution: $[t_1, \dots, t_n] \theta := [t_1 \theta, \dots, t_n \theta]$ still a star.
- Constellation: finite set of stars.
 Bound variables, i.e., local to each star.
 Rays of the (stars of the) constellation pairwise disjoint.
- Colours: just a convenience, unary function letters.
 Disjoint: come by complementary pairs.
 Pairs: green/magenta, red/cyan, blue/yellow.
- Colours responsible for divide *constat/performance*.
 Constative constellation: in black (no colour).
 Performance: elimination of colour, normalisation.
 Gol: analytic substrate of synthetic *cut-elimination*.

4 — STRONG NORMALISATION

- *Diagrams* of constellation: *tree* (connected/acyclic graph). Vertices: stars (with repetitions). Infinitely many diagrams. Edges: formal equalities t = u, t = u, t = u.
- *Actualisation* of a diagram:

Match underlying terms: t = u becomes $t\theta = u\theta$. Failure of most actualisations; diagram *correct* otherwise.

- Strong normalisation: knitting constat/performance.
 1–Finiteness: all diagrams of size N, hence ≥ N fail.
 Excludes [[x, x]]. Undecidability: no way to predict N.
 2–Openness: no closed correct diagram (with no free ray).
- *Residual* star of correct diagram: its actualised *free* rays.
 Normal form: constellation of *uncoloured* residual stars.
 Church-Rosser: two pairs of complementary colours.

5 — NON-DETERMINISM

- Non-determinism in constellations allows matching rays.
 Resolution: stars Γ ⊢ A or Γ ⊢ A: a fine mess (PROLOG).
 π-calculi : parallel λ-calculus or cheap linear logic?
- Matching rays can only represent Alzheimer, NL-style.
 Coherence: S ‡ T: forbidden substitutions.
 Strong normalisation: self-incoherent diagrams fail.
- *A* & *B*: choose between « parallel universes » *A*/*B*. If already in universe *A*, I cannot see alternative *B*.
- Herbrand: *formal* function f(t), a variable unknown to t. Herbrand boolean η_S indexed by a substar of some \mathcal{T} . Evolution of \mathcal{T} into \mathcal{T}' induces similar evolution $\eta_S \rightsquigarrow \eta_{S'}$.
- $\eta_{\mathcal{A}\&\mathcal{B}}$: boolean living « outside » A/B. Chooses A. Cancellation with $\neg \eta_{\mathcal{A}\&\mathcal{B}}$: only if behave in same way. Arrival in A & B: not influenced by dichotimy A/B.

II — WHAT IS A QUESTION?

Keywords: synthetic, typed, logical.

6 — SYNTHETICITY : USINE VS. USAGE

- Cognition *with* presupposition. Dubious *since* meaningful.
- *L'usine* a.k.a. synthetic *a posteriori:* factory tests.
 Proof-nets: no vicious circle (already in Herbrand).
 Testing: analytic performance; output unquestionable.
- *L'usage*, a.k.a. synthetic *a priori:* use of the product. Gentzen: the cut-rule, deductive *since* destructive.
- Fundamental *duality* of meaning: *dinaturals*, hexagons.
 Predictivity: *commitment* usine w.r.t. usage.
 Cut-elimination: performance implementing the reduction.
 Incompleteness: convergence of reduction problematic.
- Consistency proofs: no commitment. Ditto with realism: Semantics: identification usine/usage: no testing. Reformed BHK: one must choose between testing and use.

7 — MULTIPLICATIVE PROOF-NETS

- Function symbols 1, r, g (0-ary), · binary.
 To each proposition A associate *location* p_A(x).
 To each proof π associate *vehicle* π[●].
 Identity axiom ⊢ A, ~A: π[●] := [[p_A(x), p_{~A}(x)]].
- $p_A(x) := p_{A \oplus B}(1 \cdot x), p_B(x) := p_{A \oplus B}(r \cdot x)$ ($\mathbb{H} = \otimes, \mathcal{B}, \ldots$) \mathcal{P} -rule: if π comes from ν of $\vdash \Gamma, A, B, \pi^{\bullet} := \nu^{\bullet}$. \otimes -rule: if π from ν, μ of $\vdash \Gamma, A, \vdash \Delta, B$, then $\pi^{\bullet} := \nu^{\bullet} + \mu^{\bullet}$.
- Ordeals: $q_A(x) := p_A(g \cdot x)$; the $q_A(x)$ pairwise disjoint. Conclusions: green/black, premises: magenta/yellow.
- LEGO *bricks:* Literals: $\begin{bmatrix} p_A(x) \\ q_A(x) \end{bmatrix}$; conclusion $A \in \Gamma$: $\begin{bmatrix} q_A(x) \\ p_A(x) \end{bmatrix}$. \otimes -link: $\begin{bmatrix} q_A(x), q_B(x) \\ q_{A\otimes B}(x) \end{bmatrix}$. \Im -links: $\begin{bmatrix} q_A(x) \\ q_{A\otimes B}(x) \end{bmatrix} + \begin{bmatrix} q_B(x) \\ q_B(x) \end{bmatrix}$ or $\begin{bmatrix} q_A(x) \\ q_{A\otimes B}(x) \end{bmatrix} + \begin{bmatrix} q_B(x) \\ q_{A\otimes B}(x) \end{bmatrix}$.

8 — CORRECTNESS

- Gabarit: all ordeals obtained by switching the \mathscr{F} -links. Vehicles coloured in blue. Correctness: $\mathcal{V} + \mathcal{O}$ strongly normalises into Normal form: $[\![p_{\Gamma}(x)]\!] := [\![\{p_A(x); A \in \Gamma\}]\!].$
- η -expansion: identity links on literals. Criterion insensitive.
- *Herbrand:* existentials as functions of universals $\vec{y} = \vec{t}[\vec{x}]$. x := f(y) as independence of y = t from x, i.e., $\exists y \forall x$.
- X (~X) must be paired; not with X, Y, ~Y (~X, Y, ~Y).
 Essentialism: complementarity of *names*.
 Literal X, ~X: occ. of *universally* quantified variable ∀X.
 Cancelling ordeal: special kind bound to normalise to Ø.
 Switching: select a literal in all pairs, ~X, ~Y, Z.
 Sum of all: [^{q_A(1·x),q_A(r·x)}] when literal A is selected.

9 — THE CUT RULE

- Cut as conclusion $[A \otimes \sim A]$. *Predicts* erasure, usage.
- Vehicle \mathcal{V} with conclusions $\vdash \Gamma$, $A \otimes \sim A$ and Feedback: $\mathcal{F}_A := [\![\frac{p_A(x), p_{\sim A}(x)}{p_{\sim A}(x)}]\!]$; fits $p_A(-)$ and $p_{\sim A}(-)$. Performance: $\mathcal{V} + \mathcal{F}_A$ possibly yields normal form \mathcal{W} . Correctness: of \mathcal{W} w.r.t. *ordeal* \mathcal{O} for $\vdash \Gamma$.
- Case A = X: $\mathcal{V} = \left[\left[\frac{1}{p_{\sim X'}(x), p_X(x)} \right] + \left[\left[\frac{1}{p_{\sim X}(x), p_{X''}(x)} \right] + \dots \right] \right]$ Then: $\mathcal{W} = \left[\left[\frac{1}{p_{\sim X'}(x), p_{X''}(x)} \right] + \dots \right]$ passes test \mathcal{O} .
- Case $A = B \otimes C$; replace \mathcal{F}_A with $\mathcal{F}_B + \mathcal{F}_C$. Change of syntheticity: two cuts instead of one. $\mathcal{V} + \mathcal{F}_A$ same normal form as $\mathcal{V} + \mathcal{F}_B + \mathcal{F}_C$.
- Replacing $\begin{bmatrix} \frac{q_D(x)}{p_D(x)} \end{bmatrix}$ with $\begin{bmatrix} \frac{q_D(x)}{p_D(x)} \end{bmatrix}$ in \mathcal{O} yields *closing* \mathcal{O}' . Main result: $\mathcal{V} + \mathcal{O}'$ normalises into: $\begin{bmatrix} \frac{1}{p_B(x)} \end{bmatrix} + \begin{bmatrix} \frac{1}{p_C(x)} \end{bmatrix} + \begin{bmatrix} \frac{1}{p_{\sim B}(x), p_{\sim A}(x)} \end{bmatrix}$

10 — EXPONENTIALS REVISITED

- *Knitting:*, e.g., *Church-Rosser* with two pairs of colours. Relates usine/usage: compositionality, BHK.
- Poorly knitted operations only live at *second order*. Exponentials: !*A*, ?*A*. Intuitionistic disjunction: !*A* ⊕ !*B*; *commutative* cuts. Multiplicative neutrals: 1, ⊥.
- Basic problem: *weakening* impossible. Want of *physical* connection. Hidden conclusion: $\Gamma, \underline{\Delta}$. Ordeal: $\begin{bmatrix} q_A(x) \\ \end{bmatrix}$ when $A \in \Delta$ hidden.
- Revert to *intuitionistic* implication...Not quite. Semi-tensor $A \otimes B := !A \otimes B$. Semi-par $A \ltimes B := ?A \approx B$.
- Vehicles: auxiliary variable for *duplication:* $p_A(x \cdot y)$.

III — WHAT CONVEYS CERTAINTY?

Keywords: derealism, epidictic, épure.

11 — DEREALISM

• First order treatment of \mathbb{N} *axiomatic*, \neq logic.

Second order: (Dedekind) induction on T handled by $\exists X$. Flexibility: range of (inductive) witnesses T in A[T/X]. Subf. property: depends on possible T; ditto for 1st order. Foundational problems: reduction usage/usine problematic.

- Church and Curry both wrong w.r.t. l'usine:
 Essentialism: objets born synthetic, typed. No usine.
 Existentialism: objects born analytic, untyped. Usine ∞.
- Derealism: usine stays finite if witness made part of proof.
 Épure: analytic vehicle + synthetic mould, i.e., witness.
 Epidictics: requires/believes moulds to be balanced.
 Balance: rights/duties (cut-elim.) not checkable at usine.
- Consistency and Hegel's contradictory foundations: Animæ: « Incorrect » proofs, mingle analytic/synthetic.

	12 — sys	KEIO, 28 Novembre 2015
Second order quantifications: over propositions.		
Links:	$oldsymbol{A}$	A[T/X]
	$\overline{orall XA}$	$\exists XA$
Can be ha	ndled by <i>usine</i> (proo	of-nets).
$\forall X: X :=$ Existentia	$\dot{x} \cdot / \otimes / \mathcal{N}$, hence $\sim X$ $\exists X: T$ provides its	$X := \cdot / \Re / \otimes$. own switchings.
However, 2	<i>I</i> is part of the <i>derea</i>	alist answer.
Épure: co	mbination vehicle +	<i>mould</i> , e.g., $T + \sim T$.

Balance: how do we know that $T + \sim T$ actually match? Object/Subject no longer valid: answer partly *subjective*. Answer combines analytic and synthetic features. Epidictic: uncheckable affirmation.

13 — ANIMÆ

- Derealism: two pairs, blue/yellow and red/cyan.
 Animæ: uses colours blue, red.
 Épure: splits as V + M.
 Animist otherwise: Object and Subject intertwinned.
 Ordeal: uses colours yellow, cyan, black.
- Additive neutrals: no balance problem in $\exists XX$.
 - \top : unique ordeal $\llbracket \frac{R(x), S(x)}{\top (x)} \rrbracket + \llbracket \frac{T(x)}{\top (x)} \rrbracket$.

```
0: three ordeals, \left[\frac{r(x)}{O(x)}\right] + \left[\frac{s(x),t(x)}{O(x)}\right] and
```

```
\llbracket \frac{s(x)}{O(x)} 
rbracket + \llbracket \frac{r(x), t(x)}{O(x)} 
rbracket  and \llbracket \frac{t(x)}{O(x)} 
rbracket.
```

• The absurdity has an *animist* proof:

 $\left[\left[\frac{1}{t(x)} \right] + \left[\frac{1}{r(x), s(x)} \right] \right]$

But no épure: hence consistency.