
Information Flow Analysis and

Type Systems for Secure C Language

(VITC Project)

Jun FURUSE

The University of Tokyo

furuse@yl.is.s.u-tokyo.ac.jp

1



e-Society

MEXT project

toward secure and reliable software infrastructure

for highly networked information society

2



e-Society in Yonezawa lab.

Related 3 sub projects:

Safe language

Secure existing programming languages and programs

for system description (i.e. C/C++)

Safe OS by typing

Construct type secure OS kernel

using TAL (typed assembly language)

Safe OS by theorem prover

Develop formal method

to prove correctness of safe memory management

using Coq theorem prover

3



Safe language sub-project

Goal

Securing existing C programs with minimum modifications

by providing better compilers (VITC).

Current threat

Many security violation incidents and security hole alerts are

reported around programs written in C language.

Final disaster: security leaks.

4



VITC in spotlight

Programs (written in C) survive attacks,

once compiled by VITC

(Vulnerability and Intrusion Tolerant Compilation)

Memory safe

Memory accesses are checked to prevent buffer overflow

attacks.

Information flow security

Programs never leak secret information.

5



Memory safety in C

Existing works:

StackGuard

By canary words

NX-bit

Approach from hardware

CCured, Fail-Safe C, etc.

Memory secure reimplementation of C compiler

• Range check for each memory access

• Optimization thanks to typing and pointer analysis

6



Safety by Failure

They are all fail-safe:

• StackGuard

• NX-bit

• CCured, Fail-Safe C

Detection of illegal memory access =⇒ Termination of program

7



Limitation of fail-safety

Fail safety is secure,

but not sufficient in some environment.

The same attack now kill the program:

• Server programs are still vulnerable against DoS attacks.

• Non server programs are still unstable.

• The problem remains until bug fixes.

Programs should survive attacks and continue to work.

(Attack tolerance)

8



Attack tolerance

Extending fail-safety to attack tolerance

by boundless memory block[Rinards].

• Virtually infinite access range (no memory access error)

• Implemented by memory block extension on demand

9



Attack tolerance by boundless memory block

f(char *user, char *pass)
{

char buf[256]; // This may cause buffer overflow
sprintf(buf, "%s:%s", user, pass);
... /* use of buf */

Buffer is extended when buffer overrun detected,

as if it had larger size from the beginning.

f(char *user, char *pass)
{

char buf[512]; // Buffer extended on demand
sprintf(buf, "%s:%s", user, pass);
... /* use of buf */

Very natural recovery from errors.

10



Wow, then, there is nothing to do!

Answre is of course, No.

11



Attack tolerance needs more security

Careless use of boundless block: new vulnerability!

f(char *user, char *pass)
{

char buf[256⇒512];
sprintf(buf, "%s:%s", user, pass);
... /* use of buf for secret data */
bzero(buf, 2566⇒512);
... /* use of buf for public data */

Secret information of the extended part may leak to public.

12



Our claim

Information flow security is mandatory for attack tolerance:

• The final goal: protection of our privacy.

• Attack tolerance may introduce new security leaks,

since it modifies program semantics.

• Such semantic modification is justified

only if no security leak is assured.

13



VITC

VITC = Attack tolerance by

Memory safety + Information flow security

They are mutual:

Memory safety with boundless memory block

Justified by information flow analysis.

Information flow security by static typing

Requires memory safety.

14



Information flow analysis by security typing for C

15



Information flow based security

Track the flow of secure information in the program and

detect suspicious leak of secrecy.

Static typing

A type-based approach: security typing [Volpano, Smith].

Non-interference

Modifications of higher secret information must not be

observed as the change of results of lower secrecy.

16



Why typing?

Since it is automatic D.I.Y. security:

You do not need:

• Ph.D to use theorem prover

• Knowledge of internals of the program

All you need are:

• The source

• and the compiler

• security policy (small specifications of privacy)

• and some amount of luck.

17



Security typing

Similar to the normal typing, but they talk about secrecy:

Security labels ` ∈ (L,≤)

Form a lattice L, such as {L,H} where L ≤ H.

Type attached with security labels

password : stringH 3.141592 : floatL

Typing rules track down information flow

Γ ` e1 : intH Γ ` e2 : intL

Γ ` e1 + e2 : intH

18



Security typing in C: expressions

C as a memory safe, imperative language:

e ::= expressions

| n : t integer

| x : t variable

| ∗e : t dereference

| ∗e = e : t update

| (t)e : t cast

| e + e : t addition

| new(t) : t boundless allocation

| let x : t = e in e : t let binding

19



Security typing in C: types

Types are lists of security labels:

t ::= ` | t; `

Ignoring the normal part of types:

With normal part intH ptrL ptrL

Formal type H; L; L

• The normal part C typing is boring.

• Functional types are treated separately.

• Structure members have the same type.

20



Types and casts

Cast has been a big troublemaker of C programming.

Cast is a troublemaker also in security typing.

Modification of security labels by casts breaks non-interference:

e : intH ptrL

(int)e : intL ?

(int∗)(int)e : int? ptrL ???

Solution: we do not allow casts of security labels.

21



Types and casts #2

Cast can change the normal part of types,

but not security labels:

e : intH ptrL

(int)e : ?H intL

(int∗)(int)e : intH ptrL

Even a mere integer type may have much longer security labels:

?H ?H ?H ?L intL (H; H; H; L; L)

22



Types and casts #3

Sometimes label sequence becomes infinite

int *p; // t; `
int length = 0;
· · ·
while (p != NULL){

length++;
p = (int*)*p; // t; ` = t

}

Such types will be expressed as fixed points: µα.α; `.

23



Subtyping

(≤) for labels is extended to subtype relation:

` ≤ `′

` ≤ `′
` ≤ `′

t; ` ≤ t; `′

The content type t of pointer types t; ` is invariant,

just like the subtyping of references.

24



Typing rules

Quite straightforward (since we have omitted many):

Γ ` n : t
t ∈ Γ(x)

Γ ` x : t

Γ ` e : t′ t′ ≤ t

Γ ` e : t

Γ ` e : t′; ` t′ ≤ t ` � t

Γ ` ∗e : t

Γ ` e1 : t; ` Γ ` e2 : t ` � t

Γ ` ∗e1 = e2 : t

Γ ` e : t

Γ ` (t)e : t

Γ ` e1 : t Γ ` e2 : t

Γ ` e1 + e2 : t
Γ ` new(t) : t; `

Γ ` e1 : t Γ[x 7→ t] ` e2 : t′

Γ ` let x = e1 in e2 : t′
` ≤ `′

` � `′, ` � t; `′

25



Typing rules #2

Integer has any sequence of labels for interaction with pointers:

Γ ` n : t

Cast does nothing:

Γ ` e : t

Γ ` (t)e : t

new(t) has a pointer type t; `:

Γ ` new(t) : t; `

26



More on typing (what I omitted today)

Implicit flow so called pc

Stop security leaks due to conditionals:

if secretH then x = 0L else x = 1L

Function types with effects

For flows produced by side effects inside functions

Polymorphism

For genericity of functions

Type inference

Constraint based system

27



Future work

Measure impact of the new typing

Cast typing may be too restrictive.

• Need to check using various examples.

• Allowing casts of security types with dynamic typing.

Interaction with OS security information

Dynamic security policies obtained from OS

Dynamic checking

Risk of new implicit information flow by run-time checks.

Dependent types will be one of the keys.

28



Yet more: Auto-securing of C programs

Memory safe C compilers produce memory safe programs without

any fix of the C source code.

Possible also for information flow security?

Idea: Closing security leaks from H to L by replacing secret data

by something lower:

let f x = print "your message is "; print x

f "hello"L ⇒ your message is hello

f passwordH ⇒ your message is <secret>

let f x` = print "your message is ";
if ` = L then print x else print "<secret>"

29



Conclusion

VITC is C program compilation:

Memory safe

No more memory vulnerability attacks such as buffer overflow

Attack tolerance

Programs can survive attacks.

Information flow security

Programs never leak secret information,

even if they are attacked.

30


